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ABSTRACT The transmission and reflection properties of magnetostatic biased graphene layers are
investigated based on analytical method, where graphene is treated as a bulk material. Considering the
anisotropic nature of the magnetostatic biased graphene (magnetized graphene), the generalized reflection
and transmission coefficients of a plane wave incidence on anisotropic multilayer structures are first
derived. The accuracy of this method is validated by a numerical example of a plane wave incidence on
a magnetized monolayer graphene in free space. Based on this model, the transmission coefficient decreases
with increasing the incident angle for the TE (transverse electric) polarizedwave incidence, while an opposite
phenomenon occurs for the TM (transverse magnetic) polarized wave incidence. The transmission properties
can be also modulated by changing the external static magnetic field. The electromagnetic propagation
properties of composites consisting of magnetized graphene and dielectric layers are also analyzed based
on this method. The transmission properties degrade with increasing the number of magnetized graphene
layers.

INDEX TERMS Magnetostatic biased graphene, reflection properties, transmission properties.

I. INTRODUCTION
Graphene has attracted much attention due to its supe-
rior electrical, thermal, optical and mechanical proper-
ties [1]. Surface conductivity is a key parameter usually used
for describing the electromagnetic properties of graphene.
Generally, the expression of surface conductivity can be cat-
egorized into three forms [2]: (i) in the case of spatial dis-
persion but with neither electrostatic nor magnetostatic bias,
the surface conductivity can be expressed by an operator;
(ii) when graphene is biased by a static electric field with
neither static magnetic field nor spatial dispersion, the surface
conductivity is a scalar and the corresponding graphene can
be regarded as an isotropic material; (iii) when graphene is
biased by a static magnetic field and also possibly a static
electric field (but with no spatial dispersion), the surface
conductivity is a tensor. Particularly, in the case of (iii),
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graphene is an anisotropic material with gyrotropic and elec-
tromagnetic nonreciprocal properties, and thus has a great
potential in applications of nonreciprocal and gyrotropic
microwave/terahertz devices [3], [4].

So far, two main methods have been reported to estab-
lish the electromagnetic model for investigating the inter-
action between the electromagnetic field and the graphene.
In one method, graphene is regarded as a two-dimensional
(2-D) conductive sheet [3]–[7]; in the other method, graphene
is treated as a bulk material [8]–[14]. Based on the first
method with graphene as a 2-D sheet, Sounas and Caloz suc-
cessfully obtained the analytic expressions of the reflection
and transmission coefficients when a plane wave obliquely
incidents on a magnetostatic biased graphene sheet in free
space [3]. This original work has opened up a new strategy
in revealing the fundamentals of gyrotropy and nonreciproc-
ity of graphene. Therefore, it has received much attention.
Recently, considering that periodic arrays of magnetically-
biased graphene ribbons are one of the most popular
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graphene-based structures, Memarian et al. proposed an ana-
lytical method for the analysis of this structure. Based on
integral equations governing the field and the surface current
density on magnetically biased graphene ribbons, this new
method is precise, reliable, and affordable [7]. It is noted that
it is not easy to experimentally prepare monolayer graphene
and alternatively graphene used in practice usually consists of
several layers. The above facts suggest that it is more suitable
for graphene to bemodeled as a bulkmaterial than a 2-D sheet
under this circumstance.

On the other hand, besides the interaction between the
electromagnetic field and the surface of graphene, the prop-
agation of the electromagnetic wave inside graphene also
needs to be considered when graphene is regarded as a bulk
material. This significantly enhances the difficulty of ana-
lytic modeling, and thus leads to a fact that the numerical
algorithms (e.g. the finite-difference time-domain (FDTD)
algorithm) are mainly adopted when graphene is regarded as
a bulk material [8]–[11]. However, the ultra-thin nature of
the graphene would inevitably increases the numbers of grids
(and thus degrading the simulation efficiency) for the conven-
tional FDTD algorithm. To address this issue, many improved
FDTD algorithms (e.g. unconditionally stable and weakly
conditionally stable FDTD algorithms) have been developed,
which can improve the simulation efficiency without sacrific-
ing the simulation precision [8]–[10]. However, the numerical
algorithms reported in the literatures only solved the simple
problem of normal plane wave incidence on a monolayer
graphene, and the problems associated with oblique plane
wave incidence on multilayer graphene are rarely solved due
to computational efficiency.

To the best of our knowledge, little effort has been made
to provide an effective method to study the electromag-
netic transmission and reflection properties of magnetized
graphene layers when the graphene ismodeled as a bulkmate-
rial. Therefore, this paper offers the analytical formulations
of the generalized transmission and reflection coefficients of
a plane wave incidence on anisotropic multilayer structures
based on the transfer matrix method (TMM). It is noted that,
this work mainly focuses on the applications of graphene in
the fields of electromagnetic shielding (EMC) and absorbers,
therefore, the linearly polarized wave incidence, rather than
the circularly polarizedwave incidence is utilized in this work
[12]–[14]. Then the electromagnetic propagation properties
of both magnetized monolayer graphene and composites con-
sisting of magnetized graphene layers and dielectrics can be
analyzed.

The paper is organized as follows. Firstly, the problem of
an oblique plane wave incidence on an anisotropic multilayer
structure is solved to infer the generalized reflection and
transmission coefficients. Secondly, a numerical example of
a plane wave incidence on a magnetized monolayer graphene
in free space is calculated to validate the accuracy of this
modeling method by comparison with the work in the lit-
erature [3]. The influences of incident angle and external
magnetic field on the propagation properties of this graphene

layer are discussed. Finally, the paper provides numerical
examples of oblique plane wave incidence on composites
consisting of magnetized graphene layers and dielectrics, and
analyzes the reflection and transmission properties of these
structures.

II. FORMULATIONS
A. ELECTROMAGNETIC PARAMETERS OF THE
MAGNETIZED GRAPHENE
When a graphene layer is biased with a perpendicular static
magnetic field B0, it exhibits anisotropy and its surface
conductivity ¯̄σ is a tensor as discussed earlier and can be
described by the following equation

¯̄σ =

[
σxx(ω) σxy(ω)
σyx(ω) σyy(ω)

]
(1)

In the above equation, the diagonal conductivity σxx , σyy
and the off-diagonal conductivity σxy, σyx can be expressed
in the Drude model form according to [3], [15]

σxx(ω,B0) = σyy(ω,B0) = σ0
1+ jωτ

(ωcτ )2 + (1+ jωτ )2
(2)

σyx(ω,B0) = −σxy(ω,B0) = σ0
ωcτ

(ωcτ )2 + (1+ jωτ )2
(3)

where

σ0 =
2e2τ

π h̄2
kBT ln(2 cosh

µc

2kBT
) (4)

ωc =
eB0v2F
µc

(5)

where e is the single electron charge, τ is the scattering
time, h is the reduced Planck’s constant, kB is the Boltzmann
constant, T is the operating temperature. µc is the chemical
potential, ωc is the cyclotron frequency and vF is the Fermi
velocity. Formulas (2)-(5) are valid under the conditions of
µC � kBT and µC � h̄ω [16], [17].

The permittivity and permeability of the magnetostatic
biased graphene can be expressed by

ε̄ =

 ε11 ε12 0
ε21 ε22 0
0 0 ε0

 (6)

µ̄ =

µ0 0 0
0 µ0 0
0 0 µ0

 (7)

where

ε11 = ε22 = ε0 − i
σxx

ω1z
(8)

ε21 = −ε12 = −i
σyx

ω1z
(9)

where ε0 is the vacuum permittivity and µ0 is the vacuum
permeability.
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B. PLANE WAVE IN MAGNETIZED GRAPHENE
The time harmonic form of the Maxwell’s equations in a
passive, lossless and anisotropic material is described as

∇ × E = −jωµ̄ · H (10)

∇ × H = jωε̄ · E (11)

∇ · D = 0 (12)

∇ · B = 0 (13)

For an anisotropic material, the TE and TM polarized
waves would couple with each other, that is, when the mate-
rial is illuminated by a TE (or TM) polarized wave, both
TE and TM modes exist in the reflected and transmitted
waves simultaneously. Consequently, the wave equations in
anisotropic materials are vector equations, which can be eas-
ily solved by using the state variable method [18]. In order to
facilitate using the boundary conditions, we deduce the state
equations of the transverse components of the electric and
magnetic fields (suppose that the propagation direction of the
plane wave is parallel to the z axis in the Cartesian coordinate
system).

By decomposing the two curl equations of the Maxwell’s
equations into the transverse and vertical components respec-
tively and eliminating the vertical components, we get the
following state equation

d
dz
V = jH · V (14)

where V = [Ex , Ey, Hx , Hy]T is the state variable, and H
is a 4 × 4 matrix related to the parameters of frequency,
permittivity, permeability and transverse wave number. H is
also called the coupling matrix, which can be described as

[H ]

=



0 0 −
kxky
ωε0

−ωµ0+
kxkx
ωε0

0 0 ωµ0−
kyky
ωε0

kxky
ωε0

ωε21+
kxky
ωµ0

ωε11−
kxkx
ωµ0

0 0

−ωε11+
kyky
ωµ0

ωε21−
kxky
ωµ0

0 0


(15)

In the above equation, kx = ksinθcosϕ and ky = ksinθsinϕ
are the transverse wave numbers, where k is the amplitude of
wave vector, θ is the pitch angle and ϕ is the azimuth angle.
According to the boundary conditions, transverse compo-

nents of electric and magnetic fields are continuous at the
interface, so equation (14) is a first-order ordinary differential
equation. Its general solution is

V = V0ejλz (16)

inserting (16) into (14) yields

(H − λI ) · V0 = 0 (17)

which can be ascribed to an eigenvalue problem. Since H is
a 4 × 4 square matrix, (17) has four eigenvalues and four
eigenvectors. So the general solution described by (16) has
the following form

V (z) = A1a1ejβ1z + A2a2ejβ2z + A3a3e−jβ3z + A4a4e−jβ4z

(18)

where Ai is amplitude, βi is eigenvalue and ai is the eigen-
vector for the eigenvalue βi. The four components represent
the TE and TM polarized wave propagating along the z and
-z directions respectively.
Suppose an infinite magnetized graphene layer with its

two surfaces perpendicular to the z axis, when a plane wave
obliquely incident on the graphene in the xoz plane, the
coupling matrix H becomes

[H ] =


0 0 0 −ωµ0 +

kxkx
ωε0

0 0 ωµ0 0

ωε21 ωε11 −
kxkx
ωµ0

0 0

−ωε11 ωε21 0 0

 (19)

By substituting (19) into (17), the eigenvalues and eigen-
vectors are

β1 =

√
m1 + m2

2ε0
, β2 =

√
m1 − m2

2ε0

β3 = −

√
m1 + m2

2ε0
, β4 = −

√
m1 − m2

2ε0
(20)

a1 =



β1(ε0β21 + m2)

ε0m3
β1(ε0ε11β21 + m4)

ε0ε21m3

m5 −
m1 + m2

2µ0ε0ε21ω2

1


, a2=



β2(ε0β22+m2)

ε0m3
β2(ε0ε11β22 + m4)

ε0ε21m3

m5+
m1−m2

2µ0ε0ε21ω2

1



a3 =



−
β1(ε0β21+m2)

ε0m3

−
β1(ε0ε11β21 + m4)

ε0ε21m3

m5 −
m1+m2

2µ0ε0ε21ω2

1


, a4=



−
β2(ε0β22+m2)

ε0m3

−
β2(ε0ε11β22+m4)

ε0ε21m3

m5+
m1 − m2

2µ0ε0ε21ω2

1


(21)

where

m1 = −

√
k4x (ε0 − ε11)2 + 4µ0ε0ε

2
21ω

2(k2x − µ0ε0ω2)

m2 = k2x (ε0 + ε11)− 2µ0ε0ε11ω
2

m3 = ω(µ0ε
2
11ω

2
− k2x ε11 + µ0ε

2
21ω

2)

m4 = k2x ε
2
11 + µ0ε0ω

2(ε221 − ε
2
11)

m5 = (k2x ε11 − µ0ε0ε11ω
2)/(µ0ε0ε21ω

2) (22)

By substituting the eigenvalues and eigenvectors into (18),
the electromagnetic field in magnetized graphene can be
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FIGURE 1. Plane wave incidence on an anisotropic multilayer structure.

obtained in the matrix form

V (z) = ā · ejβ̄z · Ā (23)

where ā = [a1 a2 a3 a4], Ā = [A1 A2 A3 A4]T,
and

ejβ̄z =


ejβ1z 0 0 0
0 ejβ2z 0 0
0 0 e−jβ3z 0
0 0 0 e−jβ4z

 (24)

This arrangement means that the first two diagonal ele-
ments represent electromagnetic wave propagating along the
-z direction, while the latter two diagonal elements represent
electromagnetic wave propagating along the z direction.

III. REFLECTION AND TRANSMISSION PROPERTIES OF
ANISOTROPIC MULTILAYER STRUCTURES
Regarding a multilayer structure with N layers of anisotropic
materials in Fig.1, the generalized reflection coefficient (the
ratio of the reflected field with the incident field) and trans-
mission coefficient (the ratio of the transmitted field with
the incident field) can be solved by using the transfer matrix
method [18].

A. THE GENERALIZED REFLECTION COEFFICIENT
For the vacuum adjacent to the left side of the 1st layer
(denoted as layer 1) in Fig.1, the state variable of electromag-
netic field is

V0 (z) = ā0 · ejβ̄0z · Ā0 (25)

The relationship between the electromagnetic fields in the
vacuum and the 1st layer material at the interface z = z0 can
be expresses as[

A10ejβ10z0

A20ejβ20z0

]
= [R01]

[
A30e−jβ10z0

A40e−jβ20z0

]
(26)

where R01 is the generalized reflection coefficient matrix at
the interface z = z0. For reflection wave of the TE and
TM modes propagating along the -z direction, A10 and A20
represent their amplitude respectively, while A30 and A40
represent amplitude of the TE and TM polarized transmitted
waves propagating along the z direction.
Assume that A30 and A40 are known and A10 and A20 or

R01 are unknowns, then the state variable at z = z0 can be

written as

V0 (z0) = ā0 ·
[
R01
I

] [
A30e−jβ10z0

A40e−jβ20z0

]
(27)

B. THE GENERALIZED TRANSMISSION COEFFICIENT
For the vacuum adjacent to the right side of the N th layer in
Fig. 1, the state variable of the electromagnetic field is

VN+1 (z) = āN+1 · ejβ̄N+1z · ĀN+1 (28)

The relationship between the electromagnetic fields in the
N th layer material and the vacuum at the interface z = zN can
be expresses as[

A3(N+1)e−jβ1(N+1)zN

A4(N+1)e−jβ2(N+1)zN

]
= [T0N ]

[
A30e−jβ10z0

A40e−jβ20z0

]
(29)

where T0N is the generalized transmission coefficient matrix.
For transmitted wave of the TE and TM modes propagating
along the z direction, A3(N+1) and A4(N+1) represent their
amplitude respectively.
Considering that there is no reflection wave along the -z

direction in the vacuum, the state variable at z = zN can be
written as

VN+1 (zN ) = āN+1 ·
[

0
T0N

] [
A30e−jβ10z0

A40e−jβ20z0

]
(30)

C. THE TRANSFER MATRIX FROM z = z0 TO z = zN
The state variable of (23) in layer m can be rewritten as

Vm (z) = ām · ejβ̄mz · Ām
= ām · ejβ̄m(z−z

′) · ā−1m · ām · e
jβ̄mz′ · Ām

= ām · ejβ̄m(z−z
′) · ā−1m · Vm

(
z′
)

= P̄m
(
z, z′

)
· Vm

(
z′
)

(31)

where P̄m(z, z′) = ām · ejβ̄m(z−z
′)
· ā−1m is the transfer matrix

from z to z′ in layer m.
For layer m, the electromagnetic field at interfaces z =

zm−1 and z = zm can be linked through

Vm (zm) = P̄ (zm, zm−1) · Vm (zm−1) (32)

According to the boundary conditions that transverse com-
ponents of the electromagnetic field are continuous at the
interface, the following equation can be obtained

Vm (zm−1) = Vm−1 (zm−1) (33)

thus,

VN+1 (zN ) = VN (zN ) = P̄N (zN , zN−1) · VN (zN−1)

= P̄N (zN , zN−1) · · · P̄1 (z1, z0) · V0 (z0)

= P̄ (zN , z0) · V0 (z0) (34)

where P̄(zN , z0) =
1∏

m=N
P̄m(zm, zm−1) is the transfer matrix

from z = z0 to z = zN .
Substituting (27) and (30) into (34) yeilds[

0
T0N

]
= ā−1N+1 · P̄ (zN , z0) · ā0 ·

[
R01
I

]
(35)
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FIGURE 2. A schematic of a plane wave incidence on a magnetized
monolayer graphene in free space.

define

[G] = ā−1N+1 · P̄ (zN , z0) · ā0 =
[
g1 g2
g3 g4

]
(36)

where [g1]-[g4] are 2× 2 matrixes.
Finally, the generalized reflection and transmission coeffi-

cients can be obatined

[R01] = − [g1]−1 [g2] (37)

[T0N ] = [g3] [R01]+ [g4] (38)

IV. NUMERICAL EXAMPLES
A. TRANSMISSION PROPERTIES OF A MAGNETIZED
MONOLAYER GRAPHENE
Fig. 2 shows the schematic of an infinite monolayer graphene
in free space with its two surfaces perpendicular to the z axis.
The graphene is biased by a static magnetic field B0 which
is along the z-axis direction. A plane wave incident on the
graphene in the xoz plane with an incident angle θ .
In this case, the transfer matrix of the graphene layer can

be written as

P̄1 (z1, z0) = ā1 · ejβ̄1(z1−z0) · ā
−1
1 (39)

where z1− z0 = 0.34nm is the thickness of a single graphene
layer [19]–[21].

When T = 300K , µc = 0.117eV and B0 = 2T ,
we first calculate the transmission coefficient of the mag-
netized graphene layer with different incident angles for
both TE and TM polarized wave incidences. To validate the
accuracy of our method, we also calculate the transmission
coefficient by using the following formulation [3]:

¯̄T21 = 2

[
2+ Zhσxx Z eσyx
−Zhσyx 2+ Z eσxx

]
(2+ Z eσxx)(2+ Zhσxx)+ (η0σyx)2

(40)

where η0 =
√
µ0/ε0 is the wave impedance of free space,

Z e = kz/(ωε0) and Zh = ωµ0/kz are the wave impedance
of the E(TM) andH (TE) polarized waves respectively. Com-
parison between these two results is shown in Fig. 3.

Graphene is modeled as a 2-D conductive sheet in [3],
while it is treated as a bulk material in our work. The
following conclusions can be obtained according to Fig. 3:
(1) firstly, the results in our work coincide well with those

FIGURE 3. Transmission coefficient of a magnetized monolayer graphene
under the TE and TM polarized waves incidence for different incident
angles in free space.

FIGURE 4. Transmission coefficient of a monolayer graphene biased by
different static magnetic fields B0 for the TE polarized wave incidence.

reported in [3] for both normal incidence and oblique
incidence, thus validating the accuracy of our method. (2)
Secondly, when the plane wave is normally incident, the
transmission coefficient is equal for both TE and TM wave
incidence, and thus the four curves (denoted as TE_0o_ref
[3], TE_0o_our, TM_0o_ref [3], TM_0o_our) overlap.
(3) Thirdly, for the TE polarized wave incidence, the trans-
mission property decreases with increasing the incident angle
θ , while for the TM polarized wave incidence, it shows an
opposite phenomenon. This could be explained as following.
For the TE polarized wave, the electric field is always par-
allel to the graphene surface for all incident angles, and so
graphene always interacts with the wave. As θ increases, the
interaction between the incident wave and graphene enhances
and thus leading to the transmission decreases. For the TM
polarized wave, the component of the electric field parallel to
the graphene surface decreases with increasing the incident
angle θ , and the field becomes completely perpendicular to
the graphene surface as θ is 90o. Therefore, the interaction
between the incident wave and the graphene attenuates with
increasing the incident angle θ , thus leading to the trans-
mission increases. In addition, all the transmission spectra
displays minimum points. This should be due to that the
worst impedance matching between the graphene character-
istic impedance and the air characteristic impedance occurs
at this frequency.
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FIGURE 5. A schematic of a plane wave incidence on a multilayer
structure of alternate graphene and dielectric layers in free space.

FIGURE 6. The transmission and reflection coefficients of the multilayer
structure with different N for the TE polarized wave incidence (a) the
transmission coefficient (b) the reflection coefficient.

The transmission coefficient is also influenced by the
external static magnetic field B0, as shown in Fig. 4. When
B0 increases from 0.2T to 2.0T , the transmission coefficient
increases obviously for the TE polarized wave incidence. For
the TM polarized wave incidence, its transmission coefficient
also increases with increasing B0.

B. PROPAGATION PROPERTIES OF MULTILAYER
STRUCTURES CONTAINING MAGNETIZED GRAPHENE
LAYERS
Since the graphene/dielectric composites are widely used in
applications, a typical multilayer structure of this composite
is shown in Fig. 5, which consisting of alternate graphene
and dielectric layers. The thicknesses of each graphene and
dielectric layers are d1 and d2 respectively, and the relative
dielectric constant of the dielectric layer is εr2.

The transmission and reflection coefficients of this multi-
layer structure with different number of layers (denoted as N )

FIGURE 7. The transmission and reflection coefficients of the multilayer
structure when N = 6 versus incident angle for the TE polarized wave
incidence.

FIGURE 8. A schematic of a plane wave incidence on the M + 1 structure
in free space.

under the TE polarized wave incidence are shown in Fig. 6.
Here, B0 is 2T , εr2 is 2.25 [13], d2 is 1µm, and the inci-
dent angle θ is π /6. From the result it can be concluded
that the transmission properties degrade while the reflection
properties improve with increasing the number of magnetized
graphene layers.

When the number of layers is N = 6, the transmission
and reflection coefficients versus different incidence angles
at 1GHz and 1THz are shown in Fig. 7. It can be found
that for the TE polarized wave incidence, the transmission
decreases while the reflection increases when the incident
angle θ increases, the reason is the same as that of TE and
TM waves incidence on a monolayer graphene as mentioned
before.

As it mentioned earlier, the graphene in practice is usually
consisted of several layers due to the preparation constraint.
For instance, the graphene prepared by the supercritical fluid
stripping method is about 5 layers. So another composite
structure (called the M + 1 structure below) is shown in
Fig. 8. This structure is consisted of M continuous layers of
magnetized graphene and one single layer of dielectric whose
relative dielectric constant is εr2 and thickness is d2.
Fig. 9 shows the transmission coefficient and reflection

coefficient of this structure for the TE polarized wave inci-
dence with an incident angle θ = π /6 when M takes dif-
ferent numbers. The chemical potential µc of the M + 1
structure is assumed to be the same as that of the monolayer
graphene structure. It can be found that when M increases
from 1 to 5, the transmission coefficient declines obviously
while the reflection coefficient takes a remarkable increase.
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FIGURE 9. The transmission and reflection coefficients of the
M + 1 structure with different M for the TE polarized wave incidence
(a) the transmission coefficient (b) the reflection coefficient.

V. CONCLUSION
The transmission and reflection properties of magnetized
graphene layers with graphene treated as a bulk material are
studied. The accuracy of the proposed analytical method is
validated by the numerical example. The method can be also
used to analyze electromagnetic propagation properties of
structures containing other anisotropic materials thus has a
great potential for applications.
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