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ABSTRACT The rise of cyber-physical-social systems (CPSS) as a novel paradigm has revolutionized the
relationship among humans, computers and physical environment. The key technologies to design CPSS
directly related to multi-disciplinary technologies including cyber-physical systems (CPS) and cyber-social
systems (CSS). Unfortunately, the design of CPSS is not an easier process because of the network heterogene-
ity, complex hardware and software entities. At the same time, fog computing is emerged as an expansion
of cloud computing which efficiently addresses the abovementioned issue. Resource provisioning is a main
technology involved in fog computing. This paper devises a novel fuzzy clustering with flower pollination
algorithm called FCM-FPA as a resource provisioning model for fog computing. At the earlier stage, the
resource attributes are standardized and normalized. Next, the fuzzy clustering with FPA is developed for
partitioning the resources and the scalability of resource searching has been minimized. At last, the presented
resource provisioning algorithm based on optimized fuzzy clustering has been devised. The performance of
the proposed FCM-FPA model has been tested using a set of two benchmark Iris and Wine dataset. The
experimental outcome ensured that the FCM-FPA model has shown proficient results over the compared

methods by offering maximum user satisfaction and effective resource provisioning.

INDEX TERMS CPSS, big data, resource provisioning, clustering, flower pollination algorithm.

I. INTRODUCTION

The evolving computing model of CPSS develops on basis of
CPS as well as CSS. Different types of sensors and actuators
are applied to monitor the nature of external environment as
shown in Fig. 1 and the simulation outcome are transferred
to a cyber world, where it has been examined to acquire
the state of the external world and produce the electronic
representations of applied external entities [1]. The digital
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representation has been applied to retrieve a knowledge
regarding the condition of a physical world and optimizing by
actions generated from actuators. Hence, the associated study
is concerned with the combination of external processes as
well as processing to integrate the physical and cyber world as
named as CPS [1]. The Internet of Things (IoT) model tends
to interlink the computers to objects with self-configuration
abilities which act a major part in converging physical as
well as cyber worlds by assuring the energy efficiency to
transfer data. The combination of CPS with IoT leads to
a relativity among physical world tracking, screened with
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FIGURE 1. Basic architecture of CPSS.

linked smart objects, through the computation process of a
cyber world. It enables the modeling as well as reasoning
of physical platform that has been integrated with effective
communication and data processing that results in productive
activation. The types of devices are capable of monitoring the
outer platform, as shown in Fig. 1, where the attached sensor
network deployments like Wireless Sensor Networks (WSN)
to monitor the external world [2], smart home appliances
and sensor installations for air quality tracking [3]. The
maximum deployment cost of attached sensors and lack of
spatial coverage results in mobile sensing units, mostly with
city authorities, which has sensors, and public transportation
system.

The developing application of sensor induced smart phones
as well as effective communications among the users in which
personal tools are the significant devices to sense and point
regarding an inconvenient atmosphere. Massive numbers of
smart phone users could form a versatile sensing devise,
by giving a local data such as noise levels [4], traffic con-
ditions and so on. These sensed data could be collected and
realized by processes of cyber world. Improving numbers of
individuals share the data to nearby real-time, city-related
events or earthquakes which can be done through the online
social media which refers that, it can be treated as corrob-
orative information source [5]. Hence, the related model is
named as CSS. It applies a data on social nature as well
as association to offer related data services, for instance,
to identify the neighborhoods as well as communities from
a city or from urban regions. This method which assumes the
human and social dynamics as a core portion of CPS is named
as CPSS [6].

CPSS undergo characterization with the application of
deep interplay from sensors, actuators and smart things
which are applied in the external environment; ‘‘richer
technology-mediated social interactions” [7] as well as latest
reasoning has been used to collective intelligence. Modern
cities are CPSS, which has the possibility to deploy inexpen-
sive sensing devices, sensors, administration primitives on the
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city-centric data as well as citizens sharing and interchanging
city relevant messages on social media. The massive number
of data can be attained by sensing external phenomena with
shared sensor and supplied with city inhabitants using sensor
embedded smart phones which is capable of providing closer
real-time settings.

Extraction of knowledge from the data can be processed by
applying big data analytics that helps in developing a struc-
ture of urban area, where it activates the smart applications as
well as services, also to assist making decision for city author-
ities and inhabitants [8]. Executions of CPSS developments
are evolving the routine smart urban systems, which differs
from a command and control, modern applications, smart
vehicle, smart social producing systems, etc. These domains
were based on productive observation of urban physical struc-
ture and harsh platform to be combined with a data collected
by a smart cyber processes for delivering the enhanced ser-
vices to users, deploying an applicable waste management
models and suggested methods which depends upon citizen
priorities, approximate, road and pollution status. Therefore,
the final outcome of urban big data system meets the ability
of developing maximum sustainable as well as eco-friendly
environment [9].

Resource provisioning is a main technology involved in
fog computing. This paper devises a novel fuzzy cluster-
ing with flower pollination algorithm called FCM-FPA as a
resource provisioning technique for fog computation. At the
earlier stage, the resource attributes are standardized and
normalized. Next, the fuzzy clustering with FPA is developed
for partitioning the resources and the scalability of resource
searching has been minimized. At last, the new resource
provisioning model that depends upon optimized fuzzy clus-
tering has been devised. The performance of the proposed
FCM-FPA model has been tested using a set of two bench-
mark Iris and Wine dataset. The experimental results illustrate
that the developed technique is capable of improving user
satisfaction and efficiency of resource provisioning.

Il. RELATED WORKS
CPS growth tracks the foundation of development to mecha-
tronic system that integrates the strategies of mechanical,
and electrical engineering regarding the industrial process-
ing. With respect to abstraction, the development processes
support the conversion of the developed patterns as physical
systems [10].

In embed methods, the main aim is to process the system
induced inside an external system, for example, thermostat.

CPS techniques were developed to be successors of embed-
ded systems [11], combine the communication model, col-
lectively with control mechanism. CPS is associated with
sensing and management of external criteria by networks of
interlinked devices to attain the predefined goals. The appli-
cation which has been initiated from an engineering factor
acts with a management as well as tracking of outer environ-
ments by a tightly fixed shared system of sensors as well as
actuators [12]. These systems are triggered to the direction
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of disseminating the data predicted with mobile CPS with
smaller latency to offer realistic services [13]. Instances of
CPS execution such as adaptive air ventilation modules [14]
as well as MediaCup [15] that predicts the temperature of
contents alerts the users with respect to abstraction as well as
correlation among the physical and cyber portion. The model
of IoT is connected with CPS in several literature works on
distinctions among 2 models.

Few researches work [16] illustrates that, CPS aims on
connecting a physical and cyber worlds, IoT mostly deals
with an exclusive recognition of heterogeneous tools as well
as smart objects and also link to Internet. Reference [17]
states that, if there are identity among CPS and IoT, where
device relation to attain the predetermined goals, IoT is com-
prised with a horizontal view of hardware units which com-
municates with one another, while CPS assumes the vertical
method encompassing networked hardware, processing the
controlling mechanisms. An alternate study [18], the varia-
tions of system structures of CPS as well as IoT signifies an
interchanging ability. The improved abstraction level in [oT is
related to many unknown factors with respect to contribution
to system task.

In [19], a Fuzzy Clustering Algorithm with Particle Swarm
Optimization (FCAP) is proposed for Resource Scheduling
Algorithms in Fog Computing environment. Initially, the
standardization and normalization of the resource attributes
takes place. Next, the fuzzy clustering with the particle swarm
optimization (PSO) for resource provisioning and the scal-
ing of the resource searching is minimized. At last, a new
resource scheduling algorithm is derived using optimized
fuzzy clustering. The simulation results indicated that the
FCAP algorithm has attained maximum user satisfaction and
better scheduling results.

ill. PROPOSED METHOD

A. PROBLEM FORMULATION

In fog computation resource provisioning operation, if users
provide the tasks, then it has been divided as massive opera-
tion to numerous subtasks. Later, the subtasks would be given
to a task scheduler at fog platform in which a task provi-
sioning principle as well as QoS suggest to make decisions
in a task scheduler. It is capable of gathering provisioning
data from customers, resource tracking as well as cloud gate-
ways, and declares every task to corresponding fog resource.
Hence, it is proposed with a resource provisioning technique
for discovering an optimized matching of tasks as well as
resources. The main objective of resource monitor is to verify
the fog resource pools, such as memory resources, processing
resources, as well as bandwidth resources. If requisition of
tasks for terminal users which are capable of processing
additional computation of fog computing, such tasks might
be provided with cloud servers to future computation. As a
result, based on the definite provisioning pattern, resources
as well as user requests attains the relative match, and last
provisioning outcome would be submitted to the users.
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Initially, let n tasks and m resources be a task set
T = {t,t,t3,---, ty}, and the fog resources set is R =
{ry,rp, 13, -+, rm}, and rational resource provisioning has
been accomplished based on a definite provisioning prin-
ciple. When compared with other models, the task and
resource techniques were expressed as given in the follow-
ing: The tasks set which are provided by users are con-
strained with n fog tasks. The p-th task can be presented
with T,, and features are defined as 1D vector T, =
{tid, tien, tcomps tetws tstors tdat}; Where tig represents a task
value; tien denotes a task length; teomp, thetw, and tgor, are
task’s computational power, bandwidth limit, as well as
memory requirements of a resource, correspondingly; and
tgae implies that data should be computed by a task. In fog
computation, external resources could be allocated using
virtualized resources. By considering that m resources are
present is a collection of fog resources, the qth resource
is implied with Ry, and features are defined as 1D vector
Ry = {rid, Tcomps Tnetws rsmr}. In this approach, rjg denotes
a resource value; and reomp, Inetw, and Iseor are processing
energy, bandwidth utilization, and memory potential of a
resource, correspondingly [19]. In order to report the connec-
tions of entities in a method, it is provided with a resource
provisioning network structure in fog computation.

For provisioning process, the following rules have been
applied. The constraints of processing nodes in a resource
pool: the processing resources as well as memory space are
applied by the tasks should be inside a scope of fog computing
nodes. Every computing node is capable of handling a single
task simultaneously; but, every computational node could be
implemented at a same time. User task execution limitation:
every task has to be allocated to particular fog computing
nodes and implemented through 1 fog computing node. Here,
QoS has been assumed as validation index that is applied for
determining the efficiency of resource provisioning. It can
be significant procedure to measure the service satisfaction.
Each user is comprised with diverse resource requirements.
For better facility users, the QoS has to be enhanced.

B. FUZZY C-MEANS ALGORITHM

FCM is generally applied to group instances where the appli-
cation of the FCM is based on the guarantee of opening
bunch focus or participation incentive to the features of
reviews. It offers a mechanism of assembling of information
concentrates that populate some multidimensional space to
a specific number of different clusters. The basic favored
standpoint of fuzzy c — denotes that the clustering offers
permission to the continuous enrollment of information con-
centrates on clusters determined as degrees. It is figured out
that the cluster focuses on the utilization of Gaussian weights,
exploits expansive introductory approaches, and comprises
procedures for taking out, bunching. The basic target of iter-
ative bunching and fuzzy c-Means determination is to restrict
the weight inside clustering entirety of squared blunder target
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capacity and is represented as follows.

d ¢
Oc =YY millfi — ¢II? M

i=1 j=I

where O, represnets the Objective function and Fuzziness
Index, d, m, ¢ as Membership of i data to j** cluster center,
feature vector and j™ cluster center. The FCM allows every
element vector holds a position with every bunch with a truth
esteem (in the vicinity of 0 and 1.

C. FLOWER POLLINATION ALGORITHM (FPA)

The biotic pollination, cross-pollination, abiotic pollination
and self-pollination modules were described in a field opti-
mization as well as induced in a flower pollination tech-
nique [20]. The pollination task encloses a sequence of
tedious operations in plant generation principles. A flower
and the corresponding pollen gametes tend to provide a reli-
able solution for the optimization issue. The advantages of
FPA are listed here. FPA provides a simpler flower anal-
ogy with lightweight computation based on only one control
parameter (i.e., switch condition, p) unlike GA, HS, and PSO.
It also offers a balanced intensification and diversification
of solutions through the adoption of 1évy flight (i.e., random
walks that are interspersed by long jumps) and switch condi-
tion, which can be employed to change among global search
and intensive local search.

Flower constancy has been decided as accurate solution
which may be a perceptible one. In case of global pollination,
the pollinator transmits pollen from longer distances to high
fitting. In other cases, local pollination is carried our inside
a small region of an exclusive flower has been carried out
in a shading water. Global pollination takes place with a
possibility which is named as switch probability. When the
phase has been eliminated, local pollination can be replaced.
In FPA method, there are 4 rules as given in the following:

« Live pollination as well as cross-pollination is termed as
global pollination and the carriers of pollen pollinators
apply the levy fight.

« Abiotic as well as self-pollination are referred as local
pollination.

« Pollinators are insects, which is capable of developing
flower constancy. It is defined as the production proba-
bility to 2 applied flowers.

o The communication of global as well as local pollination
could be managed with switch possibility.

Hence, the 1%t and 3" rules are represented as:
A = x4y XL () (g* —x;) @)

where xI’7 = pollen vector at iteration ¢; g, is a current best
solution from other current producing results; y = a is the
scale factor for controlling step size; and L denotes strength
of pollination that has been related to a step size of levy
distribution. Levy flight is defined as a set of random com-
putation which has the length of every jump that applies levy
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Determination parameters FPA: the size initial population
and the maximum number of iteration and the amount of p

I
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FIGURE 2. Flowchart of the FPA.

probability distribution function with infinite variance. Then,

L is a levy distribution as provided with:
L )»xl"()»)xsin%)‘ 1 S S0 3)
~ X s

P ST+ 0

where I' (1) = standard gamma function.

In case of local pollination, the 2nd and 3rdrules are
expressed as:

xl’,H =x,+¢ (x; — x}{) 4)

where x/ and x; = 2 pollens from diverse flowers from a
similar plant. In arithmetic format, when x; and x,i comes
from the similar species are chosen from homogeneous pop-
ulation, which is referred as a local random walk and ¢ is
comprised with a uniform distribution in [0, 1]. Fig. 2 depicts

the flowchart of the FPA [21].

D. HYBRIDIZATION OF FUZZY C-MEANS WITH FLOWER
POLLINATION ALGORITHM (FCM-FPA) FOR RESOURCE
ALLOCATION

According to the conventional Fuzzy C-Means (FCM) clus-
tering model and Flower Pollination Algorithm (FPA), it is
presented with FCM-FPA method to reach resource provi-
sioning in fog computing. The key objective is to apply
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FPA model in FCM technique. The FCM clustering model
from [22] is used to computes the degree of every sample
point comes under the cluster with the application of mem-
bership function (MF). Assume the cluster sample set as X =
{X1,X2,X3...,X} C RY, where Xp implies a d dimension
vector. There is basic requirement to classifier the sample set
as c classes. Fix the cluster centeras V. = {vy, vp, v3..., v¢},
and describe the degree where sample points come under the
j-th class as ;. Also, the fuzzy matrix of sample space X
is U = (ujj). The FCM method is signified as subsequent
objective function for extremum problem:

szinzzﬂij ”XP_VQHZ o)

p=1g=1

such that, Z;Zl ppg =1, ppq € [0,11,9 = 1,2, ,n,
q=1,2,...,c.InEq. (6), upq implies the degree of belong-
ingness to g-th d ata point of p-th cluster, vq represents g-th
cluster, ||xq — vqll denotes a Euclidean distance from sample
points X, to a cluster center vg, and m signifies a fuzzy index.
Additionally, U and V is represented as:

Zgzl FpgXp
Vo= =1 (6)
2p—1 Hpy
e = I 1 NG @
c Xp—V, m—1
Yiet (1)

This mechanism is named as local optimization technique
that approaches for optimal solution by applying hill climb-
ing. The key objective is to improve the affinity among
objects divided as similar cluster as well as to reduce the
similarity from diverse clusters. The fuzzy method is an
enhancement of normal C-Means technique. The ordinary
C-Means technique is in separating data, whereas FCM is
said to be more suitable fuzzy division. The FCM method
computes the degree where every sample point comes under
a definite cluster with an application of MF. Also, there is
lack of threshold values in this model. The major aim of
soft partitioning has been applied as membership matrix, and
final outcome of result becomes more complex. Hence, the
model lies within a local minimum value as well as sensitive
to primary value. The FPA technique is named as heuristic
method comprised with the merits of fast convergence as
well as global optimization, thus it is integrated with FCM
method to resolve the merits and demerits of FCM technique
as named as FCM-FPA model.

In FCM-FPA technique, the key objective of FCM
approach is to compute the cluster centre, and x, =
(Vpl, Vp2, +++ 4 Vpg, =+ » Vpc) shows a cluster centre set with a
single pollen in FPA, where v;,q depicts g-th cluster center in
p-th clustering technique. When a population size is N, then
it has N clustering techniques.

The fitness level of every pollen denotes the superiority of
clustering effect which can be chosen with clustering centre.
In order to estimate every pollen, this approach utilizes the
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above FF value:
f(xp) =Q (3

The smaller Q is, the smaller the single pollen fitness where
clustering effect would be far better.

Based on the FF score, the local positions as well as global
position were estimated, and velocity and location of all
pollens should be upgraded. By applying the above phases,
the FCM-FPA model could attain a global approximate result.
The FCM has been implemented to reach a global optimal
solution repeatedly. Here, it has been applied with FCM-FPA
method for completing the fog resources clustering.

In case of fog computation, the resource attributes
as 3 classes: computation, storage, and bandwidth. Diverse
operations are comprised with various resources. Only few
types of computational tasks and computation resources are
highly effective whereas some bandwidth tasks, bandwidth
resources are considered to be essential. Hence, to face the
needs of different users, the resources are clustered into
groups. Because of the dynamicity as well as heterogeneity
of fog resources, it can be very hard to define the unique
resources. Here, it is applied with FCM-FPA model to cluster
the resources on the basis of multidimensional attributes. The
collection of fog resources R = {r, 12,13, -+, 1} shows
that m fog resource nodes as well as every fog resource node
consists n features. In Eq. (6), rpq is g-th feature attribute of
resource ryp.

In advance to fuzzy clustering, it is essential to normalize
the data for diverse process indicators. The step for clustering
fog resources has been provided in the following. In a fog
computing platform, because of the existence of diverse fog
resources, actual data can be processed in a straight forward
manner, as the impact of clustering outcome which are meant
to be irregular. Hence, to resolve the immediate effects which
are caused due to the case of translation, SD conversion has
to be applied to standardization the resource matrix data.

;_ Tpg —Tpq

l n
=— > 1y (10)
q=1

]}
|

(11

where maximum value of resources in g-th dimension feature
is T, Tpq indicates the maximum value of the g-th feature
attribute of resource rp and SD of every resource in g-th
dimension feature is Sq. The computed data satisfies a stan-
dard normal distribution that refers mean as zero and SD as
one. A reputed resource data is not capable of satisfying the
planning of fuzzy matrix. Hence, translation-range has been
applied for converting data in matrix to be attained from the
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interval of [0, 1].

r. — min ir’ }
Pq Pq
rgq = (12)
max {rpq} — min {rijq}

: / : / J
where, min {rpq} shows a lower value in {r’lq, Tgo v o rmq},

and max r;q depicts a higher value in {1/ iy r’zq, e, r;nq .
The projected fuzzy clustering model that depends upon
FPA has been applied for clustering the computed resource
matrix data. The process involved in the FPA is given below.
In the first step, initialization of pollen population takes place
where each pollen comprises arbitrarily generated cluster
centers that portions the resources as 3 classes, and collective
numbers of cluster centers are mentioned to be 3. In the
second step, the membership matrix jipq is determined and
estimated the cluster center c¢q based on Eq. (13). Hence,
FF valued has been applied for calculating the fitness mea-
sure as well as compute the single extreme score and global
extreme score. If higher values of iterations are satisfied, then
it has been terminated to reach the desired cluster center.
cq = Zgzl MpgXp
> p=1 HpeXp
Next, in the third step, the local and global pollution of pollens
are constantly upgraded using Eqs. (1) and (3). When there
are a higher number of iterations, then it is terminated to
get a collection of cluster centers. In the fourth step, the
attained simulation outcome is considered as initial value
of FCM model and implemented to reach the global opti-
mal solution repeatedly. Finally, in the fifth step, once the
clustering functions are completed, the fog resources have
been portioned as 3 units namely, computing, storage, and
bandwidth resources. Once the fog resources were divided,
then the resource scale of a provisioning process has been
limited. User needs should be classified as diverse classes.
The proper resource category has been found where user
requirements were mapped with the resources from a class.
In order to complete the resource provisioning, it is applied
with simple weight matching.

13)

IV. RESULT ANALYSIS

In order to the efficiency of this model, it has been employed
with MATLAB. The resource nodes as well as user requests
has been declared in a random manner. The resource nodes
were classified as 3 features such as computing power, band-
width ability, as well as storage potential. The FCM-FPA
model has been applied for clustering the fog resources. This
implementation can be applied with a produced resource
dataset as well as Iris dataset of a UCI ML database. Addi-
tionally, it is examined and compared with 2 models interms
of convergence of objective function.

Figs. 3 and 4 show the difference of objective functions
in conventional FCM, FCAP techniques [19] as well as
FCM-FPA models by means of iterations for 2 data sets.
As mentioned in the 2 figures, it has been pointed that,
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FIGURE 4. Objective function value curve for the Wine dataset.

FCM-FPA method is comprised with faster convergence
speed when compared with existing FCM approach.

The major cause for this task is FPA method which is capa-
ble of finding cluster centre rapidly and to process the global
search for resolving a problem in fuzzy clustering which lies
in local minimum value. Once the clustering resources are
divided, the values of matching resources in users’ require-
ments are limited as resource provisioning might be carried
out in an effective manner.

To validate the accuracy of clustering model, it has been
employed with Iris and Wine datasets to examine the func-
tion of this method. These 2 approaches have been imple-
mented 20 times per iteration, and the maximum analyses
of indicators were assumed. The simulation outcomes are
depicted in Table 1 and Figs. 5 and 6.

While assessing the results of the FCM-FPA method
interms of correct and error clustering samples on Iris dataset,
it is shown that the FCM-FPA method shows enhanced results
over the existing models. It is noted that the FCM method
correctly clusters a set of 134 samples and a set of 16 samples
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FIGURE 6. Correct and Error analysis of Wine dataset.

undergo error clustering. At the same time, the FCAP model
shows slightly better performance, which correctly clusters
a set of 138 samples and a set of 12 samples undergo error
clustering. Along with that, it is exhibited that the FCM-FPA
model has shown optimal results by correctly clusters a max-
imum of 142 samples and a set of 86 samples undergo error
clustering.

During the application of results attained from FCM-FPA
algorithm with respect to correct as well as error clustering
instances on Wine dataset, it is illustrated that FCM-FPA
model exhibits the improved outcome when compared with
previous techniques. It is evident that the FCM approach
exactly clusters a collection of 122 samples and a group
of 56 samples are error clustering. Simultaneously, the FCAP
method depicts a moderate function, that accurately clusters
a set of 129 samples as well as a collection of 49 samples
undergo error clustering. In line with this, it is executed that
the FCM-FPA scheme has illustrated best results by optimally
clusters a higher number of 146 samples and a set of 32 sam-
ples undergo error clustering.
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TABLE 1. Comparison of the clustering accuracy for exiting with
proposed method.

Correctly Error Correct
Method Dataset Clustered Clustered Value
Samples Samples
Iris 134 16 89.33
FCM -
Wine 122 56 68.50
Iris 138 12 92.00
FCAP -
Wine 129 49 72.50
Iris 142 8 94.66
FCM-FPA -
Wine 146 32 82.02
100 - ‘- FCM [ |Fcar I FCM-FPA |
95 1
90 r 1
S
" 851 1
]
F]
~ 80 J
>
751 1
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FIGURE 7. Correct rate analysis.

Fig. 7 and Table 1 shows the correct rate analysis of the pro-
posed and existing models under two datasets. On the applied
Iris dataset, the proposed FCM-FPA method shows optimal
results with a maximum correct rate of 94.66% whereas
the FCM and FPAP models results in lower correct rates of
89.33% and 92% respectively. On the applied Wine dataset,
the proposed FCM-FPA method offers better performance
by attaining a maximum correct rate of 82.02% whereas
the FCM and FPAP models results in lower correct rates
of 68.50% and 72.50% respectively. These values ensured
that the FCM-FPA model offers effective performance by
attaining maximum correct rate over the compared methods.

As shown from Table 1, the FCM-FPA model is comprised
with maximum clustering accuracy value when compared
with existing FCM method. The FCM clustering technique
simply lies into local minimum, and clustering effect is
comparatively better. The FCM-FPA approach is capable of
attaining global optimal solution which becomes relatively
good. Once the fog resource is clustered, the operations could
be mapped with diverse resources, and, to a limited level, the
effectiveness of resource maintenance is enhanced.

In this experiment, the user needs are portioned as comput-
ing, bandwidth, and storage based on diverse requirements.
Various kinds of user requirements would be chosen to map
the diverse classes of resources, and last matching outcome
would be returned again to users. Consequently, the user
satisfaction examining is shown in Table 2 and Fig. 8.
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TABLE 2. Comparison of user satisfaction.

No. of Tasks FCM-FAP RSAF MIN-MIN
30 2.8 25 1.8
60 3.6 32 2.0
90 3.7 3.5 2.3
120 4.1 3.7 2.4
150 45 4.0 2.6
180 4.8 4.4 2.8
210 5.0 43 2.7

(I RsA-FCM-FAP [ RSAF I MIN-MIN|

User Satisfaction

30 60 90 120 150 180 210
No. of Tasks
FIGURE 8. User satisfaction analysis under varying number of tasks.

Under 30 tasks, the proposed FCM-MAP model has shown
maximum user satisfaction of 2.8 whereas the RSAF and
MIN-MIN models have resulted to a lower user satisfaction
of 2.5 and 1.8 respectively. Under the application of 60 tasks,
the deployed FCM-MAP method has implemented higher
user satisfaction of 3.6 while the RSAF and MIN-MIN
techniques have concluded in less user satisfaction of 3.2
and 2.0 correspondingly. By using 90 tasks, the presented
FCM-MAP approaches has exhibited best user satisfaction
of 3.7 while the RSAF and MIN-MIN frameworks have pro-
vided with minimum user satisfaction of 3.5 and 2.3 respec-
tively. Under 120 tasks, the projected FCM-MAP system has
given optimal user satisfaction of 4.1and the RSAF and MIN-
MIN schemes have shown a lesser user satisfaction of 3.7 and
2.4 respectively.

With respect to 150 tasks, the newly developed FCM-MAP
model has illustrated higher satisfaction of 4.5 while the
RSAF and MIN-MIN techniques have shown a less user satis-
faction of 4.0 and 2.6 correspondingly. Under the application
of 180 tasks, the applied FCM-MAP model has shown maxi-
mum user satisfaction of 4.8 while the RSAF and MIN-MIN
approaches have concluded in a minimum user satisfaction of
4.4 and 2.8 correspondingly. Under 210 tasks, the presented
FCM-MAP model has depicted higher user satisfaction of 5.0
while the RSAF and MIN-MIN approaches have concluded
in a lesser user satisfaction of 4.3 and 2.7 respectively. The
proposed method finds applicable in real time scenarios like
healthcare sector. The proposed method can be applied for
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resource provisioning of the IoT devices attached to the
patient body, which needs to transmit the sensed data to the
cloud. In such a situation, the proposed FCM-FPR model can
be applied to allocate the resources.

V. CONCLUSION

This paper has devised an effective resource provisioning
method for fog computing in CPSS called FCM-FPR model.
The proposed model involves a set of three stages. In the
beginning, the resource attributes are standardized and nor-
malized. Next, the fuzzy clustering with FPA is developed to
partition the resources and the scalability of resource search-
ing has been minimized. Then, devised resource provisioning
model relied on optimal fuzzy clustering has been devised.
The performance of the proposed FCM-FPA model has been
tested using a set of two benchmark Iris and Wine dataset. The
experimental outcome illustrates that the deployed technique
has the ability to boost the user convenience and the efficiency
of resource provisioning.
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