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ABSTRACT This paper investigates the fault detection problem for two dimensional (2-D) continuous
discrete state-delay Roesser systems in finite frequency domains. Two performance indexes H∞ and H−
are used to measure the fault sensitivity and the disturbance robustness in finite frequency. Based on this,
the fault detection problem is converted into a filtering problem by designing a filter to generate a residual
signal. By the generalized KYP lemma, convex design conditions are obtained, which are expressed in terms
of linear matrix inequalities (LMIs). An example is provided to demonstrate the feasibility and effectiveness
of the proposed method.

INDEX TERMS Finite frequency, fault detection, 2-D continuous discrete systems.

I. INTRODUCTION
During the past decades, fault detection has attracted more
attention and a lot of detection approaches have been pre-
sented. Wherein, one of the main method for fault detec-
tion technology researches is the model-based fault detection
method [1], [2]. The main goal of fault detection is to dis-
tinguish faults from disturbances. It is common to construct
a residual signal by designing fault detection observer or
filter to minimize the influence of disturbances and maxi-
mize the influence of faults simultaneously [3], [4]. Then,
compare the residual signal with a predefined threshold, if
the residual exceeds the threshold, an alarm is generated.
Moreover, in practice, fault usually emerge in the low fre-
quency domain [5], e.g., actuator failures in flight control sys-
tems [6]. The generalized Kalman-Yakubivich-Popov (KYP)
lemma [7], which establishes an equivalence between the
finite frequency condition and LMIs, allows researchers to
better tailor specific frequency and solve the fault detec-
tion problems. For instance, the fault detection problem in
finite frequency for one-dimension (1-D) systemswas studied
in [2], [8].
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On the other hand, in recent years, a large attention
has been paid to two-dimension (2-D) systems, which can
be continuous-continuous, discrete-discrete or continuous-
discrete settings. The Roesser state-space model [9] is one of
the most representative one. Based on this model, a number
of methodologies and techniques have been developed for
analysis and synthesis of 2-D system [10]–[13]. Recently,
based on the generalized KYP lemma for 2-D Roesser system
model, the fault detection problem for 2-D systems has been
reported in the literature [14]–[20]. By the generalized KYP
lemma for 2-D discrete Roesser systems in [21], the fault
detection observer and filter design is formulated as a multi-
objective optimization problem in [14]–[16], respectively.
In [17], the problem of fault detection observer design for 2-D
continuous Roesser systems was studied. Similar problem
for 2-D continuous-discrete Roesser systems was discussed
in [20]. More recently, the fault detection observer design
method have been extend to 2-D continuous nonlinear sys-
tems and 2-D T-S fuzzy systems [18], [19].

As we all know, time-delay phenomenon, which usu-
ally cause system instability, is widespread in the practical
engineering. Therefore, the study of time-delay systems
fault detection problem has important theoretical signif-
icance. However, the time-delay phenomenon was not
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considered in [20]. Recentlly, a generalized KYP lemma
for 2-D continuous-discrete state-delay Roesser systems was
given in [22]. Based on this work, in the paper, we focus on
the fault detection filtering for 2-D continuous-discrete state-
delay Roesser systems. This fact motivates the present work.

This paper discuss the fault detection problem for a class
of 2-D continuous-discrete state-delay systems described
by the Roesser model. Different from existing results [20],
the state-delay is considered.Moreover, a fault detection filter
is designed to satisfy a finite-frequency H− index and a
finite-frequency H∞ index simultaneously. The remainder of
the paper is organized as follows. The problem statement and
preliminaries are presented in Section 2. Section 3 presents
the main results of the paper, where a finite-frequency fault
detection method is proposed for 2-D continuous-discrete
state-delay Roessor systems. Section 4 gives an exam-
ple to illustrate the effectiveness of the proposed method.
Section 5 concluded this paper.
Notation: Throughout this paper, we use Rm×n, Cm×n,

Hm×n, R, R+ and Z+ to represent the m × n real matrix
set, complex matrix set, Hermite matrix set, real numbers set,
positive real numbers set and positive integers set, respec-
tively. The superscript T , ∗ denote the real matrix transpose
and the complexmatrix transpose, respectively.

∏L
l=0 denotes

the Cartesian product of sets Al . 〈Xi〉 denotes the diagonal
matrix with diagonal entries X1, . . . , Xn, where Xi could be
numbers or matrices. The symbols σmax(·) and σmin(·) denote
the spectral norm of a matrix. In addition, He(A) indicates
A + AT . U⊥ denotes the orthogonal complement of U . I is
the identity matrix with appropriate dimension. %(G,5) is a
function defined as %(G,5) := [G∗ I ]5[G∗ I ]∗.

II. PRELIMINARIES AND PROBLEM FORMULATION
In this paper, we consider the 2-D continuous-discrete
state-delay systems with state-space equations

(E) :
[

∂
∂t xh(t, k)
xv(t, k + 1)

]
= A

[
xh(t, k)
xv(t, k)

]
+ Aτ

[
xh(t − τh, k)
xv(t, k − τv)

]
+Bf f (t, k)+ Bdd(t, k),

y(t, k) = C
[
xh(t, k)
xv(t, k)

]
+ Cτ

[
xh(t − τh, k)
xv(t, k − τv)

]
+Df f (t, k)+ Ddd(t, k).

where xh(t, k) ∈ Rnh and xv(t, k) ∈ Rnv are the horizon-
tal state and vertical state, respectively. y(t, k), f (t, k) and
d(t, k) are the external output, fault input and disturbance
input vectors. The exogenous disturbance d(t, k) is assumed
energy-bounded in the paper. τl (l = h, v) are the constant
state delays of the system which satisfying 0 < τl ≤ τ̄l
and τ̄h ∈ R+, τv, τ̄v ∈ Z+. τ̄l are the upper bound of state-
delays. In the following discussion, unless specifically noted
otherwise, the subscript ‘‘l" represents either the subscript h
or v. Matrices A, Aτ ∈ Rn×n (n = nh + nv), Bf ∈ Rn×nf ,

Bd ∈ Rn×nd ,C, Cτ ∈ Rny×n,Df ∈ Rny×nf andDd ∈ Rny×nd

are system matrices.

In the paper, we assume the frequency variables ωfl of
the fault input f (t, k) and the frequency variables ωdl of
disturbance input d(t, k) satisfy ωfl ∈ Ufl and ωdl ∈ Udl ,
respectively. The frequency ranges Ufl and Udl have the
following low frequency range:

Ufl :={ωfl : |ωfl | ≤ $fl }, Udl :={ωdl : |ωdl | ≤ $dl }, (1)

where$fh , $dh ∈ R+, $fv , $dv ∈ [0, π].
In this paper, we are interested in designing a fault detec-

tion filter in the following form:

(Ê) :
[

∂
∂t x̂h(t, k)
x̂v(t, k + 1)

]
= Â

[
x̂h(t, k)
x̂v(t, k)

]
+ B̂y(t, k),

ŷ(t, k) = Ĉ
[
x̂h(t, k)
x̂v(t, k)

]
,

where x̂h(t, k) and x̂v(t, k) are the system state estimations.
ŷ(t,k) is the output estimation. Matrices Â, B̂ and Ĉ are the
filter matrices to be determined.

Let r(t, k) = ŷ(t, k)− y(t, k) represents the residual signal
and

x̃l(t, k) = xl(t, k)− x̂l(t, k),

x̃h(t − τh, k) = xh(t − τh, k)− x̂h(t − τh, k),

x̃v(t, k − τv) = xv(t, k − τv)− x̂v(t, k − τv).

Then, we obtain the filtering error dynamic system:

(Ẽ) :
[

∂
∂t x̃h(t, k)
x̃v(t, k + 1)

]
= Ã

[
x̃h(t, k)
x̃v(t, k)

]
+ Ãτ

[
x̃h(t − τh, k)
x̃v(t, k − τv)

]
+B̃f f (t, k)+ B̃dd(t, k),

r(t, k) = C̃
[
x̃h(t, k)
x̃v(t, k)

]
+ C̃τ

[
x̃h(t − τh, k)
x̃v(t, k − τv)

]
+D̃f f (t, k)+ D̃dd(t, k),

where

Ã = T T
[
A 0
B̂C Â

]
Tn, Ãτ = T T

[
Aτ 0
B̂Cτ 0

]
T ,

B̃f = T T
[
Bf
B̂Df

]
, B̃d = T T

[
Bd
B̂Dd

]
, D̃d = Dd ,

C̃ =
[
C − Ĉ

]
T , C̃τ =

[
Cτ 0

]
T , D̃f = Df ,

T :=


Inh 0 0 0
0 0 Inv 0
0 Inh 0 0
0 0 0 Inv

 . (2)

Let x(t, k) = [x̃∗h (t, k) x̃∗v (t, k)]
∗ and X, F, D are the

Laplace−Z transform of x(t, k), f (t, k) and d(t, k), respec-
tively. Then, suppose d(t, k) = 0, by the Laplace − Z
transform [12], the transfer function from the fault f (t, k)
to residual output r(t, k) of the error dynamic system (Ẽ) is
given by

Grf =
(
C̃ + C̃τ3f

)(
�f − Ã− Ãτ3f

)−1B̃f + D̃f , (3)

where, for ωfh ∈ R, ωfv ∈ [0, π],

3f := 〈e−τl jωfl I2nl 〉, �f := diag{jωfh I2nh , e
jωfv I2nv}.
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Similarly, let f (t, k) = 0, the transfer function from the
disturbance d(t, k) to residual output r(t, k) of the error
dynamic system (Ẽ) can be written as

Grd =
(
C̃ + C̃τ3d

)(
�d − Ã− Ãτ3d

)−1B̃d + D̃d , (4)

where, for ωdh ∈ R, ωdv ∈ [0, π],

3d := 〈e−τl jωdl I2nl 〉, �d := diag{jωdh I2nh , e
jωdv I2nv}.

To formulate the fault detection problem, the following two
definitions are needed, which are similar to the definition of
H∞ index in [22] and H− index in [14].
Definition 1: TheH∞ index of the transfer functionGrd is

defined as

‖Grd‖Ud∞ := sup
ωdl∈Udl

σmax
(
Grd

)
, (5)

where Ud := Udh × Udv . Udl is defined in (1).
Definition 2: The H− index of the transfer function Grf is

defined as

‖Grf ‖
Uf
− := inf

ωfl∈Ufl
σmin

(
Grf

)
, (6)

where Uf := Ufh × Ufv . Ufl is defined in (1).
Then, the fault detection filter design problem to be

addressed in this paper can be expressed as follows.
Given a system (E) and γd > 0, γf > 0, the fault

detection observer described by (Ê) is defined such that the
error dynamic system (Ẽ) satisfies the following conditions:
(i) the system (Ẽ) is asymptotically stable;
(ii) ‖Grf ‖

Uf
− > γf , ∀ (ωfh , ωfv ) ∈ Uf ;

(iii) ‖Grd‖
Ud
∞ < γd , ∀ (ωdh , ωdv ) ∈ Ud .

The following lemmas will be used in the paper.
Lemma 1: (Finsler Lemma) Let x ∈ Rn,Q ∈ Rn×n,U ∈

Rn×m. For all U⊥ such that U⊥U = 0, the following state-
ments are equivalent.

1) xTQx < 0,∀U⊥x = 0, x 6= 0;
2) U⊥QU⊥T ≺ 0;
3) ∃µ ∈ R : Q− µUTU ≺ 0;
4) ∃Y ∈ Rm×n

: Q+ UY + YTUT
≺ 0.

III. MAIN RESULTS
Before presenting the main results of this paper, we first
present the following conclusions in this section. According
to Theorem 1 and Theorem 2 in [22], for system (E), let
f (t, k) = 0, we have the following Corollaries:
Corollary 1: Consider the system (E) with f (t, s) = 0.

Given finite frequency ranges Ufd and scalars τ̄h ∈ R+,
τ̄v ∈ Z+, for any delays τl satisfying 0 < τl ≤ τ̄l, if there
exist matrixes S = 〈Sl〉, Z = 〈Zl〉, P = 〈Pl〉,Q = 〈Ql〉 ∈ Hn

and Z � 0, Q � 0, such that

FT1 51F1 + diag{52, 0} + FT2 2F2 ≺ 0, (7)

where 2 is a given symmetric matrix with appropriate
dimension. 51 := T

〈
8l ⊗ Pl +9l ⊗ Ql +8τl ⊗ Zl

〉
T T ,

52 := 8s ⊗ S + T
〈
8zl ⊗ Zl

〉
T T with T in (2) and

F1 :=
[
A Aτ Bd
I 0 0

]
, F2 :=

[
C Cτ Dd
0 0 I

]
,

8h :=

[
0 1
1 0

]
, 8v :=

[
1 0
0 −1

]
, 9h :=

[
−1 j$+h
−j$+h −$h

]
,

9v :=

[
0 ej$

+
v

e−j$
+
v −2 cos$−v

]
, $+h :=

$h2 +$h1

2
,

$h = $h1$h2 , $
+
v :=

$v2 +$v1

2
, $−v :=

$v2 −$v1

2
,

0 < $v2 −$v1 < 2π, 8τh := diag{τ̄h, 0}, 8s := 8v,

8τv :=

[
τ̄v −τ̄v
−τ̄v τ̄v

]
, 8zl :=

[
−τ̄−1l τ̄−1l
τ̄−1l −τ̄−1l

]
.

Then the following finite frequency condition holds:

%(Gyd , 2) < 0, ∀ ωl ∈ Ul, (8)

where Gyd is the transfer function from d(t, k) to y(t, k).
Corollary 2: The system (E) is asymptotically stable,

if there exist matrices X = 〈Xl〉, Sτ = 〈Sτl 〉, Zτ = 〈Zτl 〉 ∈ Hn

with X � 0, Sτ � 0 and Zτ � 0, such that[
A Aτ
I 0

]T
X1

[
A Aτ
I 0

]
+ X2 ≺ 0, (9)

where X1 := T 〈8l ⊗ Xl +8τl ⊗ Zτl 〉T T , X2 := 8s ⊗ Sτ +
T 〈8zl ⊗ Zτl 〉T T with T , 8l, 8τl , 8s, 8zl are defined in (2)
and (7).

A. DISTURBANCE ATTENUATION CONDITION
For system (Ẽ), let f (t, k) = 0, we have

Ẽd :
[

∂
∂t x̃h(t, k)
x̃v(t, k + 1)

]
= Ã

[
x̃h(t, k)
x̃v(t, k)

]
+ Ãτ

[
x̃h(t − τh, k)
x̃v(t, k − τv)

]
+B̃dd(t, k),

r(t, k) = C̃
[
x̃h(t, k)
x̃v(t, k)

]
+ C̃τ

[
x̃h(t − τh, k)
x̃v(t, k − τv)

]
+D̃dd(t, k),

where Ã, Ãτ , B̃d , C̃, C̃τ and D̃d were given by (2).
Based on Corollary 1, filter design conditions satisfy-

ing disturbance attenuation performance (iii) are derived as
follows.
Theorem 1: Consider the error dynamic system (Ẽd ).

Given finite frequency ranges Udl , scalars αi > 0 (i =
1, . . . , 6), γd > 0 and τ̄h ∈ R+, τ̄v ∈ Z+, for any delays
τl satisfying 0 < τl ≤ τ̄l, the error dynamic system (Ẽd )
satisfies specification (ii), if there exist matrices A, V, Ydi ∈
Rn×n, Wd1 ∈ Rn×nr , Wd2 ∈ Rn×nf , B ∈ Rny×n, C ∈ Rnr×n,

Zdl2 , Sdl2 , Pdl2 , Qdl2 ∈ Rn×n, and symmetric matrices Zdl1 ,
Zdl3 , Sdl1 , Sdl3 , Pdl1 , Pdl3 , Qdl1 , Qdl3 ∈ Rn×n satisfying

Q̄d � 0, Z̄d � 0, (10)

diag{4̄d ,2d } + He
(
6d)
≺ 0, (11)
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where 2d = diag{Inr ,−γ
2
d Ind } and

4̄d := diag{5̄d , 0} + diag{0, ϒ̄d },

ϒ̄d :=
∑
l=h,v

(
8s ⊗ (S̄f Jl)+8zl ⊗ (Z̄f Jl)

)
,

5̄d :=
∑
l=h,v

(
8l ⊗ (P̄f Jl)+9l ⊗ (Q̄f Jl)+8τl ⊗ (Z̄dJl)

)
,

Jh := diag{Inh , 0nv , Inh , 0nv},

Jv := diag{0nh , Inv , 0nh , Inv},

P̄d :=
[
〈Pdl1 〉 〈Pdl2 〉
? 〈Pdl3 〉

]
, S̄d :=

[
〈Sdl1 〉 〈Sdl2 〉
? 〈Sdl3 〉

]
,

Q̄d :=
[
〈Qdl1 〉 〈Qdl2 〉
? 〈Qdl3 〉

]
, Z̄d :=

[
〈Zdl1 〉 〈Zdl2 〉
? 〈Zdl3 〉

]
,

6d
=



−Yd1 · · · − Yd6 −Wd1 −Wd2
−α1V · · · − α6V 0 0
6d

31 · · · 6d
36 ATWd1 − C

T ATWd2
ad1A · · · ad6A − CT 0
6d

51 · · · 6d
56 ATτWd1 − C

T
τ ATτWd2

0 · · · 0 0 0
0 · · · 0 − Inr 0
6d

81 · · · 6d
86 BTdWd1 − D

T
d BTWd2


,

6d
3i = ATYdi + αiC

TB, 6d
5i = ATτ Ydi + αiC

T
τ B,

6d
7i = BTd Ydi + αiD

T
d B, i = 1, . . . , 6.

Proof: For the matrix variables Pd = 〈Pdl 〉, 0 ≺ Qd =
〈Qdl 〉, Sd = 〈Sdl 〉 and 0 ≺ Zd = 〈Zdl 〉 with appropriate
dimensions, it is easy to verify

Pd = T T P̄dT , Qd = T T Q̄dT ,
Sd = T T S̄dT , Zd = T T Z̄dT .

Let 4d := diag{5d1 , 0} + diag{0,5d2}, where

5d1 := T
〈
8l ⊗ Pdl +9l ⊗ Qdl +8τl ⊗ Zfl

〉
T T ,

5d2 := 8s ⊗ Sd + T
〈
8zl ⊗ Zdl

〉
T T .

Denote T̄ := diag{T , T , T }, it is easy to prove that 4d =

T̄ T 4̄d T̄ . According to inequation (7), we have

FTd1 T̄
T 4̄f T̄ Fd1 + F

T
d22dFd2 ≺ 0, (12)

where

Fd1 =

Ã Ãτ B̃d
I 0 0
0 I 0

 , Fd2 = [C̃ C̃τ D̃d
0 0 I

]
.

Then, inequality (12) can be written as[
Md
I4n+nd

]T
T̄1diag{4̄,2d }T̄ T

1

[
Md
I4n+nd

]
≺ 0, (13)

where T̄1 = Tddiag{T̄ T , Inr+nd } and

Md =

[
Ã Ãτ B̃d
C̃ C̃τ D̃d

]
, Td =


I2n 0 0 0
0 0 Inr 0
0 I4n 0 0
0 0 0 Ind

 .

Using Lemma 1, condition (13) is equivalent to the exis-
tence of a matrix Y such that

T̄1diag{4̄,2d }T̄ T
1 + He

([
−I2n+nr
MT

d

]
Y
)
≺ 0. (14)

Let Y ∈ R(2n+nr )×(6n+nr+nd ) be the following specific
block form:

Y = T̄ T
2

Yd1 Yd2 W1 Yd3 · · · Yd6 W2
a1V a2V 0 a3V · · · a6V 0
0 0 Inr 0 · · · 0 0

 T̄3, (15)

where T̄2 = diag{T , Inr }, T̄3 = diag{T , Inr , T , T , Ind } and
ai ∈ R+, i = 1, . . . , 6.
Note that, T̄ T

1 T̄1 = I6n+nr+nd , pre-and post-
multiplying (14) by T̄ T

1 and T1 and substituting (2) and (15)
into (14) given (11). According to Corollary 1, specifica-
tion (ii) holds if inequations (10) and (11) holds. The proof is
completed.

B. FAULT SENSITIVITY CONDITION
For system (Ẽ), let d(t, k) = 0, we have

Ẽf :
[

∂
∂t x̃h(t, k)
x̃v(t, k + 1)

]
= Ã

[
x̃h(t, k)
x̃v(t, k)

]
+ Ãτ

[
x̃h(t − τh, k)
x̃v(t, k − τv)

]
+B̃f f (t, k),

r(t, k) = C̃
[
x̃h(t, k)
x̃v(t, k)

]
+ C̃τ

[
x̃h(t − τh, k)
x̃v(t, k − τv)

]
+D̃f f (t, k),

where Ã, Ãτ , B̃f , C̃, C̃τ and D̃f were given by (2).
Based on Corollary 1, filter design conditions satisfying

fault sensitivity performance (ii) are derived as follows.
Theorem 2: Consider the error dynamic system (Ẽ) with

d(t, k) = 0.Given finite frequency rangesUfl , scalars αi > 0
(i = 1, . . . , 6), γf > 0, β > 0, the vector η with ‖η‖2 = β
and τ̄h ∈ R+, τ̄v ∈ Z+, for any delays τl satisfying 0 < τl ≤

τ̄l, the error dynamic system (Ẽ) satisfies specification (ii), if
there exist matrices A, V, Yf1 , Yf2 , Yf3 , Yf4 , Yf5 , Yf6 ∈ Rn×n,

Wf ∈ Rn×nf , B ∈ Rny×n, C ∈ Rnr×n, Zfl2 , Sfl2 , Pfl2 , Qfl2
∈ Rn×n, and symmetric matrices Zfl1 , Zfl3 , Sfl1 , Sfl3 , Pfl1 ,
Pfl3 , Qfl1 , Qfl3 ∈ Rn×n (l = h, v) satisfying

Q̄f � 0, Z̄f � 0, (16)

β2 − Cη < 0, (17)

diag{4̄f , 0} + diag{0, 6̃f } + He
(
6f )
≺ 0, (18)

where Jl were given by (11) and

4̄f := diag{5̄f , 0} + diag{0, ϒ̄f },

ϒ̄f :=
∑
l=h,v

(
8s ⊗ (S̄f Jl)+8zl ⊗ (Z̄f Jl)

)
,

5̄f :=
∑
l=h,v

(
8l ⊗ (P̄f Jl)+9l ⊗ (Q̄f Jl)+8τl ⊗ (Z̄f Jl)

)
,

P̄f :=
[
〈Pfl1 〉 〈Pfl2 〉
? 〈Pfl3 〉

]
, S̄f :=

[
〈Sfl1 〉 〈Sfl2 〉
? 〈Sfl3 〉

]
,
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Q̄f :=
[
〈Qfl1 〉 〈Qfl2 〉
? 〈Qfl3 〉

]
, Z̄f :=

[
〈Zfl1 〉 〈Zfl2 〉
? 〈Zfl3 〉

]
,

6̃f =


−CTC CTC − CTCτ 0 − CTDf
CTC − β2I CTCτ 0 CTDf
−CT

τ C CT
τ C − CT

τ Cτ 0 − CT
τ Df

0 0 0 0 0
−DTf C DTf C − DTf Cτ 0 − DTf Df + γ

2
f I

 ,

6f
=



−Yf1 · · · − Yf6 −Wf
−α1V · · · − α6V 0
6
f
31 · · · 6

f
36 ATWf

α1A · · · α6A 0
6
f
51 · · · 6

f
56 ATτWf

0 · · · 0 0
6
f
71 · · · 6

f
76 BTf Wf


,

6
f
3i = ATYfi + αiC

TB, 6f
5i = ATτ Yfi + αiC

T
τ B,

6
f
7i = BTf Yfi + αiD

T
f B, i = 1, . . . , 6.

Proof: For the matrix variables Pf = 〈Pfl 〉, 0 ≺ Qf =
〈Qfl 〉, Sf = 〈Sfl 〉 and 0 ≺ Zf = 〈Zfl 〉 with appropriate
dimensions, it is easy to verify

Pf = T T P̄f T , Qf = T T Q̄f T ,
Sf = T T S̄f T , Zf = T T Z̄f T .

Let 4f := diag{5f1 , 0} + diag{0,5f2}, where

5f1 := T
〈
8l ⊗ Pfl +9l ⊗ Qfl +8τl ⊗ Zfl

〉
T T ,

5f2 := 8s ⊗ Sf + T
〈
8zl ⊗ Zfl

〉
T T .

It is easy to prove that 4f = T̄ T 4̄f T̄ . According to
inequation (7), we have

FTf1

(
diag{T̄ T 4̄f T̄ , 0} + FTf22f Ff2

)
Ff1 ≺ 0, (19)

where 2f = diag{−Inr , γ
2
f Inf } and

Ff1 =


Ã Ãτ B̃f
I 0 0
0 I 0
0 0 I

 , Ff2 = [0 C̃ C̃τ D̃f
0 0 0 I

]
.

Define Mf :=
[
Ã Ãτ B̃f

]
, U⊥ :=

[
MT

f I
]
and

Q := diag{T̄ T 4̄f T̄ , 0} + FTf22f Ff2
= T̃ T (diag{4̄f , 0} + diag{0, 6̄f }

)
T̃

where T̃ = diag{T̄ , Inf } and

6̄f =


−CTC CT Ĉ − CTCτ 0 − CTDf
ĈTC − ĈT Ĉ ĈTCτ 0 ĈTDf
−CT

τ C CT
τ Ĉ − CT

τ Cτ 0 − CT
τ Df

0 0 0 0 0
−DTf C DTf Ĉ − DTf Cτ 0 − DTf Df + γ

2
f Inf

.
Using Lemma 1, condition (19) is equivalent to the existence
of a matrix Y such that

Q+ He
([
−I2n
MT

f

]
Y
)
≺ 0. (20)

Let Y ∈ R(2n)×(6n+nf ) be the following specific block
form:

Y = T T
[
Yf1 · · · Yf6 Wf
α1V · · · α6V 0

]
T̃ . (21)

Let A := ÂTV, B := B̂TV, by substituting (2) and (21)
into (20), we have

Q+ T̃ THe
(
6f )T̃ ≺ 0. (22)

Note that T̃ T̃ T
= I6n+nf . Pre-and post-multiplying (29)

by T̃ gives

diag{4̄f , 0} + diag{0, 6̄f } + He
(
6f )
≺ 0. (23)

Let C := ĈT , for given β > 0 and vector η with
‖η‖2 = β, by inequation (17), we have CTC < β2I . Thus,
inequation (23) holds if inequation (18) holds. According to
Corollary 1, specification (ii) holds. The proof is completed.

C. STABILITY CONDITION
Based on Corollary 2, we have the following asymptotically
stable conditions.
Theorem 3: Consider the error dynamic system (Ẽ). Given

scalars αi > 0 (i = 1, . . . , 6), τ̄h ∈ R+, τ̄v ∈ Z+, for
any delays τl satisfying 0 < τl ≤ τ̄l, the error dynamic
system (Ẽ) is asymptotically stable, if there exist matrices
A, V, Yτi ∈ Rn×n, Zτl2 , Sτl2 , Xl2 ∈ Rn×n, B ∈ Rny×n and
symmetric matrices Zτl1 , Zτl3 , Sτl1 , Sτl3 , Xl1 , Xl3 ∈ Rn×n

satisfying

X̄ � 0, S̄τ � 0, Z̄τ � 0, (24)

4̄τ + He
(
6τ
)
≺ 0, (25)

where Jl were given by (11) and

4̄τ := diag{5̄τ , 0} + diag{0, ϒ̄τ },

ϒ̄τ :=
∑
l=h,v

(
8s ⊗ (S̄τ Jl)+8zl ⊗ (Z̄τ Jl)

)
,

5̄τ :=
∑
l=h,v

(
8l ⊗ (X̄Jl)+8τl ⊗ (Z̄τ Jl)

)
,

X̄ :=
[
〈Xl1〉 〈Xl2〉
? 〈Xl3〉

]
, S̄τ :=

[
〈Sτl1 〉 〈Sτl2 〉
? 〈Sτl3 〉

]
,

6τ =


−Yτ1 · · · − Yτ6
−α1V · · · − α6V
6τ31 · · · 6τ36
α1A · · · α6A
6τ51 · · · 6τ56
0 · · · 0

 ,
Z̄τ :=

[
〈Zτl1 〉 〈Zτl2 〉
? 〈Zτl3 〉

]
,

6τ3i = ATYτi + αiC
TB,

6d
5i = ATτ Ydi + αiC

T
τ B,

i = 1, . . . , 6.

Proof: For the matrix variables 0 ≺ X = 〈Xl〉, Sτ =
〈Sτl 〉 and 0 ≺ Zτ = 〈Zτl 〉 with appropriate dimensions, it is
easy to verify

X = T T X̄T , Sτ = T T S̄τT , Zτ = T T Z̄τT .
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Let 4τ := diag{5τ1 , 0} + diag{0,5τ2}, where

5τ1 := T
〈
8l ⊗ Xl +8τl ⊗ Zτl

〉
T T ,

5τ2 := 8s ⊗ Sτ + T
〈
8zl ⊗ Zτl

〉
T T .

It is easy to prove that 4τ = T̄ T 4̄τ T̄ . According to
inequation (9), we haveÃ Ãτ

I 0
0 I

T T̄ T 4̄τ T̄

Ã Ãτ
I 0
0 I

 ≺ 0. (26)

Define Mτ :=
[
Ã Ãτ

]
, U⊥ :=

[
MT

τ I
]
and Q :=

T̄ T 4̄τ T̄ . Using Lemma 1, condition (26) is equivalent to the
existence of a matrix Y such that

Q+ He
([
−I2n
MT

τ

]
Y
)
≺ 0. (27)

Let Y ∈ R(2n)×(6n) be the following specific block form:

Y = T T
[
Yf1 · · · Yf6
α1V · · · α6V

]
T̄ . (28)

Let A := ÂTV, B := B̂TV, by substituting (2) and (28)
into (27), we have

Q+ T̄ THe
(
6τ
)
T̄ ≺ 0. (29)

Note that T̄ T̄ T
= I6n. Pre-and post-multiplying (29) by

T̄ gives (25). Thus, inequation (26) holds if inequations (24)
and (25) holds. According to Corollary 2, the error dynamic
system (Ẽ) is asymptotically stable. The proof is completed.

D. DESIGN OF FAULT DETECTION FILTERS
Theorems 1-3 present a group of LMI conditions for the
fault detection filter design. By combining Theorems 1-3, an
algorithm is proposed to obtain the parameters of a desired
filter.
Algorithm 1: Given adjustable parameters αi (i =

1, . . . , 6), weighting factors p, q ∈ R+, which satisfying
p + q = 1, the upper bound of state delay τl ∈ Z+, finite
frequency ranges Ufl and Udl , β and vector η, solve the
following convex optimization problem

min γ = pγd + qγf
s.t. (10), (11), (16), (17), (18), (24), (25). (30)

Then, the filter parameter matrixes satisfying

Â = (AV−1)T , B̂ = (BV−1)T , Ĉ = C.

Remark 1: In Algorithm 1, a much better fault detection
filter can be designed by choosing different adjustable param-
eters αi (i = 1, . . . , 6) for inequations in 1-3. However, up to
now, there is no feasible method for optimizing these param-
eters [23]. Thus, we just choose same adjustable parameters
to simply show the efficacy of αi in the paper.

E. RESIDUAL EVALUATION FUNCTION AND THRESHOLD
Motivated by [15] and [17], we choose the following residual
evaluation function Jr (t, k) and the threshold Jth :

Jr (t, k) :=

√√√√√1

t̂

1

k̂

k̂∑
k=0

∫ t̂

0
rT (t, k)r(t, k)dt̃, (31)

Jth := sup
d 6=0,f=0

Jr (t, k), (32)

where Jr (t, k) is the residual evaluation function, t̂, k̂ are the
horizontal range and the vertical range of evaluation window,
respectively. Jth is the threshold.The occurrence of faults can
be detected using the following logic rules:

Jth < Jr (t, k) H⇒ with faults H⇒ alarm;

Jth ≥ Jr (t, k) H⇒ no faults H⇒ no alarm. (33)

IV. SIMULAIONS
Considering the 2-D continuous-discrete state-delay Roesser
system in the form of E with

A =
[
−0.5 0.2
0.3 − 0.1

]
, Aτ =

[
−0.1 − 0.1
0 0.1

]
, Bd =

[
0.1
0.1

]
,

Bf =
[
−0.1
−0.1

]
, C =

[
1.3 0.7

]
, Cτ =

[
0.1 0.1

]
,

Dd = 0.7, Df = 0.3.

Let p = 0.6, q = 0.4, finite frequency ranges Ufl = Ufl =

[−π3 ,
π
3 ], α1 = 2, α2 = 2, α3 = α4 = α5 = α6 = 1, β = 2,

η = [1 1]T , state delays τ̄h = 1 and τ̄v = 3. By solving the
optimization problem in Algorithm 1 with the Matlab LMI
Toolbox, we can obtain γ = 0.0483 and the following fault
detection filter gain

Â =
[
−1.5148 −0.6655
−0.0180 −0.1011

]
, B̂ =

[
−0.1307
0.0429

]
,

Ĉ =
[
1.3454 0.6566

]
.

As an example, let the fault input and the disturbance input
be

f (t, k) =

{
3.8 (t ≥ 10),
0 otherwise,

d(t, k) = 0.2 cos(0.3t)+ 0.2 sin(0.3k).

FIGURE 1. The residual evaluation function Jr (t, k) and the threshold Jth
in three-dimensional space.
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By (32), we can obtain the threshold Jth = 0.1538. The
simulation results are shown in Figs. 1-2. Fig. 1 depicts the
residual evaluation function Jr (t, k) and the threshold Jth in
three-dimensional space. Figs. 2 depicts the residual evalua-
tion function Jr (t, k) and the threshold Jth in two-dimensional
space. It can be seen from Fig. 2 that the fault can be detected
at 10.8.

FIGURE 2. The residual evaluation function Jr (t, k) and the threshold Jth
in two-dimensional space.

V. CONCLUSION
In the paper, by the generalized KYP lemma, the finite fre-
quency H− and H∞ indexes have been used to design the
fault detection filters for 2-D continuous-discrete state-delay
Roesser systems. Finite-frequency performance analysis con-
ditions are firstly obtained. Convex filter design conditions
are derived by constructing a hyperplane tangent combined
with matrix inequality techniques. Then, an algorithm is pro-
posed to construct a desired fault detection filter. The effec-
tiveness of the proposed fault detection method is illustrated
by an example. Furthermore, system parametric uncertainties
are frequently encountered in many practical systems and
often a primary source of instability and performance degra-
dation of a control system. Thus, it is a worthiness subject to
study system parametric uncertainties in the future.

REFERENCES
[1] S. Ding, T. Jeinsch, P. Frank, and E. Ding, ‘‘A unified approach to the opti-

mization of fault detection system,’’ Int. J. Adapt Control Signal Process,
vol. 14, pp. 725–745, Oct. 2000.

[2] J. L. Wang, G.-H. Yang, and J. Liu, ‘‘An LMI approach to H_ index
and mixed H/H∞ fault detection observer,’’ Automatica, vol. 43, no. 9,
pp. 1656–1665, Sep. 2007.

[3] J. Liu, J. L. Wang, and G.-H. Yang, ‘‘An LMI approach to minimum sen-
sitivity analysis with application to fault detection,’’ Automatica, vol. 41,
no. 11, pp. 1995–2004, Nov. 2005.

[4] A. Casavola, D. Famularo, and G. Franze, ‘‘Robust fault detection of
uncertain linear systems via quasi-LMIs,’’ Automatica, vol. 44, no. 1,
pp. 289–295, Jan. 2008.

[5] A. Baniamerian, N. Meskin, and K. Khorasani, ‘‘Geometric fault detection
and isolation of two-dimensional (2D) systems,’’ in Proc. Amer. Control
Conf., Washington, DC, USA, Jun. 2013, pp. 3541–3548.

[6] D. Ye and G.-H. Yang, ‘‘Adaptive fault-tolerant tracking control against
actuator faults with application to flight control,’’ IEEETrans. Control Syst.
Technol., vol. 14, no. 6, pp. 1088–1096, Nov. 2006.

[7] T. Iwasaki and S. Hara, ‘‘Generalized KYP lemma: Unified frequency
domain inequalities with design applications,’’ IEEE Trans. Autom. Con-
trol, vol. 50, no. 1, pp. 41–59, Jan. 2005.

[8] H. Wang and G.-H. Yang, ‘‘A finite frequency domain approach to fault
detection observer design for linear continuous-time systems,’’ Asian
J. Control, vol. 10, no. 5, pp. 559–568, Oct. 2008.

[9] R. Roesser, ‘‘A discrete state-space model for linear image processing,’’
IEEE Trans. Autom. Control, vol. AC-20, no. 1, pp. 1–10, Feb. 1975.

[10] X. Li, H. Gao, and C. Wang, ‘‘Generalized Kalman–Yakubovich–Popov
lemma for 2-D FM LSS model,’’ IEEE Trans. Autom. Control, vol. 57,
no. 12, pp. 3090–3103, Dec. 2012.

[11] H. Xu, Z. Lin, and A. Makur, ‘‘The existence and design of functional
observers for two-dimensional systems,’’ Syst. Control Lett., vol. 61, no. 2,
pp. 362–368, Feb. 2012.

[12] S. Knorn and R. H. Middleton, ‘‘Stability of two-dimensional linear sys-
tems with singularities on the stability boundary using LMIs,’’ IEEE Trans.
Autom. Control, vol. 58, no. 10, pp. 2579–2590, Oct. 2013.

[13] G. Chesi and R. H. Middleton, ‘‘Necessary and sufficient LMI conditions
for stability and performance analysis of 2-D mixed continuous-discrete-
time systems,’’ IEEE Trans. Autom. Control, vol. 59, no. 4, pp. 996–1007,
Apr. 2014.

[14] D.-W. Ding, H. Wang, and X. Li, ‘‘H_/H∞ fault detection observer
design for two-dimensional roesser systems,’’ Syst. Control Lett., vol. 82,
pp. 115–120, Aug. 2015.

[15] D.-W. Ding, X.-J. Li, Y. Ren, and F. Qiu, ‘‘Finite-frequency fault
detection for two-dimensional Roesser systems,’’ IEEE Access, vol. 4,
pp. 5818–5825, Sep. 2016.

[16] Y. Ren and D.-W. Ding, ‘‘Fault detection for two-dimensional Roesser
systems with sensor faults,’’ IEEE Access, vol. 4, pp. 6197–6203, 2016.

[17] G. Wang, H. Xu, and Z. Lin, ‘‘A finite frequency domain approach to
fault detection observer design for 2-D continuous systems,’’ in Proc. 10th
Int. Conf. Inf., Commun. Signal Process. (ICICS), Singapore, Dec. 2015,
pp. 1–5.

[18] Z. Duan, I. Ghous, S. Huang, and J. Fu, ‘‘Fault detection observer design
for 2-D continuous nonlinear systems with finite frequency specifica-
tions,’’ ISA Trans., vol. 84, pp. 1–11, Jan. 2019.

[19] Z. Duan, I. Ghous, and J. Shen, ‘‘Fault detection observer design for
discrete-time 2-D T-S fuzzy systems with finite-frequency specifica-
tions,’’ Fuzzy Sets Syst., vol. 392, pp. 24–45, Aug. 2020, doi: 10.1016/
j.fss.2019.05.004.

[20] W. Lanning, W.Weiqun, C. Weimin, and Z. Guangchen, ‘‘Finite frequency
fault detection observer design for 2-D continuous-discrete systems in
Roesser model,’’ in Proc. 34th Chin. Control Conf. (CCC), Hangzhou,
China, Jul. 2015, pp. 6147–6152.

[21] R. Yang, L. Xie, and C. Zhang, ‘‘Generalized two-dimensional
Kalman–Yakubovich–Popov lemma for discrete Roesser model,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3223–3233,
Nov. 2008.

[22] G. Wang, H. Xu, L. Wang, and J. Yao, ‘‘Robust H∞ filtering for
uncertain two-dimensional continuous-discrete state-delay systems in
finite frequency domains,’’ IET Control Theory Appl., vol. 12, no. 17,
pp. 2316–2327, Nov. 2018.

[23] J. Qiu, G. Feng, and J. Yang, ‘‘Improved delay-dependent H∞ filtering
design for discrete-time polytopic linear delay systems,’’ Trans. Circuits
Syst. II, Exp. Briefs, vol. 55, no. 2, pp. 178–182, Feb. 2008.

WEN QIN received the Ph.D. degree in con-
trol science and control engineering from Nankai
University, Tianjing, China, in 2015. She is
currently a Lecturer with Nanjing Technology
University, Nanjing, China. Her current research
interests include distributed coordination control
of multi-agent systems, robust control, and control
for nonlinear systems.

GUOPENG WANG received the Ph.D. degree
in operational research and cybernetics from the
Nanjing University of Science and Technology,
Nanjing, China, in 2017. He is currently a Lec-
turer with the Nanjing Institute of Technology,
Nanjing. His current research interests include
robust control and filtering, multidimension
systems, and fault detection.

VOLUME 8, 2020 103147

http://dx.doi.org/10.1016/j.fss.2019.05.004
http://dx.doi.org/10.1016/j.fss.2019.05.004


W. Qin et al.: Fault Detection for 2-D Continuous-Discrete State-Delayed Systems in Finite Frequency Domains

LIWEI LI received the Ph.D. degree in control
theory and control engineering from Northeastern
University, Shenyang, China, in 2019. She is cur-
rently an Associate Professor with Nanjing Tech-
nology University, Nanjing, China. Her current
research interests include Markov jump systems,
decentralized control, and fault detection.

MOUQUAN SHEN received the Ph.D. degree
in control theory and control engineering
from Northeastern University, Shenyang, China,
in 2011. He is currently a Professor with Nanjing
Technology University, Nanjing, China. His cur-
rent research interests include Markov jump sys-
tems, adaptive control, data-driven based control,
robust control, and iterative learning control.

103148 VOLUME 8, 2020


	INTRODUCTION
	PRELIMINARIES AND PROBLEM FORMULATION
	MAIN RESULTS
	DISTURBANCE ATTENUATION CONDITION
	FAULT SENSITIVITY CONDITION
	STABILITY CONDITION
	DESIGN OF FAULT DETECTION FILTERS
	RESIDUAL EVALUATION FUNCTION AND THRESHOLD

	SIMULAIONS
	CONCLUSION
	REFERENCES
	Biographies
	WEN QIN
	GUOPENG WANG
	LIWEI LI
	MOUQUAN SHEN


