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ABSTRACT In recent years, researches are concentrating on the effectiveness of Transfer Learning (TL)
and Ensemble Learning (EL) techniques in cervical histopathology image analysis. However, there have
been very few investigations that have described the stages of differentiation of cervical histopathological
images. Therefore, in this article, we propose an Ensembled Transfer Learning (ETL) framework to
classify well, moderate and poorly differentiated cervical histopathological images. First of all, we have
developed Inception-V3, Xception, VGG-16, and Resnet-50 based TL structures. Then, to enhance the
classification performance, a weighted voting based EL strategy is introduced. After that, to evaluate the
proposed algorithm, a dataset consisting of 307 images, stained by three immunohistochemistry methods
(AQP, HIF, and VEGF) is considered. In the experiment, we obtain the highest overall accuracy of 97.03%
and 98.61% on AQP staining images and poor differentiation of VEGF staining images, individually. Finally,
an additional experiment for classifying the benign cells from the malignant ones is carried out on the Herlev
dataset and obtains an overall accuracy of 98.37%.

INDEX TERMS Cervical cancer, differentiation stages, histopathology images, transfer learning, ensemble

learning, classification.

I. INTRODUCTION

Cervical cancer is one of the malignant tumors, with a high
incidence in women. It is also the fourth leading cause of
cancer-related deaths. It poses a serious risk to women’s
health and can spread through direct or distant metastasis [1].
In developing countries, it is the second most prevalent malig-
nancy after breast cancer and the third dominant cause of
cancer-related deaths after breast and lung cancer [2]. More-
over, developing countries are more vulnerable to prevent
cancer deaths because of a lack of awareness and adequate
medical facilities, which leads to nearly 90% of cervical
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cancer-related deaths [3]. Though the occurrence of cervical
cancer in developing nations has decreased in current times,
the percentage among young women grows [4]. Therefore,
it is essential to make a precise diagnosis for the detection
of early-stage cancer, as well as reliable techniques, which
are primarily demand [5]. Even though there are some pre-
liminary tests and non-invasive methods for detecting cancer
in various organs, studies of histopathological images for
detecting the cancer are inevitable. Therefore, accurate and
rapid analysis of histopathological images plays a vital role
in medical research [6]. A pathologist who can analyze the
histological images needs to go through a rigorous training
process and demands full concentration, including the time
to analyze the samples. Besides, the accuracies are greatly
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FIGURE 1. Workflow of the proposed ETL framework for the CHIC task. The blue box denotes the training process; the yellow box shows the test

process.

varied from person to person. Additionally, the investigation
is a very subjective and uncertain process, which brings unsta-
ble diagnostic efficiency [7]. In this regard, a Computer Aided
Diagnosis (CAD) system can help the doctor to track the
cancer of histopathological images with significant accuracy
and efficiency.

As discussed earlier, the histopathological study in the
field of cervical cancer is considered as the “gold standard”
in clinical diagnosis [8]. However, the applications of CAD
techniques for cervical cancer are still emerging and require
in-depth development of research [9]. To this end, this article
focuses on the Cervical Histopathology Image Classifica-
tion (CHIC) problem by using CAD systems to solve three
distinct stages of classification using an Ensembled Transfer
Learning (ETL) framework. The workflow of the suggested
ETL method is shown in Fig. 1.

In Fig. 1, the acquired microscopic images for cervical
cancer are employed as training samples. Notably, the images
are stained using three immunohistochemistry approaches
(AQP, HIF, and VEGF). Then, due to the inadequate
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dataset for deep learning training, augmentation operation
is performed to enhance the classification performance.
Thirdly, four Transfer Learning (TL) approaches are built
up for the classification, including Inception-V3, Xception,
VGG-16, and Resnet-50 networks. Fourthly, an Ensemble
Learning (EL) technique, is further implemented to obtain
a more accurate classification result with a weighted voting
approach. Finally, the test images are utilized to evaluate the
effectiveness of the proposed method, where we calculate the
accuracy, precision, recall, and F1-score.
The main contributions with novelties of this study are
given as follows:
(1) A state of the art approach for analyzing the cervi-
cal histopathological images is presented in this study.
To the best of our knowledge, besides our previous
work [10]-[13], there have been very few studies on the
differentiation stage of cervical histopathology images
exist.
(2) A new EL approach is introduced: In order to prevent
the unicity and limitation of the classification results by a
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single learner, we use four Convolution Neural Network
(CNN) for experiments, and then adopt the weighted
voting based EL method. Through multiple comparison
experiments, we find that precision is an optimal choice
for weighting in this work.

(3) A series of valuable data is achieved: We do the compara-
tive experiments of the individual TL and the EL, proving
the feasibility of our method.

The structure of the paper is as follows: Sec. II introduces
the related work about the CHIC. Sec. III gives an overview
of the proposed EL method, including TL using the Xception,
Inception-V3, VGG-16 and Resnet-50 networks, and the pro-
posed weighted voting based approach. Sec. IV elucidates the
experimental results, including the evaluation and analysis
of the proposed method. Sec. V concludes this paper and
discusses the future work.

Il. RELATED WORK

A. RELATED WORK IN MEDICAL FIELDS

In [14], an overview on the staging diagnosis of uterine
tumors on MRI images is described. The paper of [15] finds
that the discrete compactness is a reproducible parameter
for a computer assisted quantification of the invasion front
pattern and it may be a phenotypic feature of cervical cancer
cells. In [16], a research on feature quantification and abnor-
mal detection of cervical cells is proposed, which realizes
the detection and identification of individual cancer cells.
First, normal and abnormal cells are distinguished by the
differences in the shapes of cytoplasm and nuclei. After that,
affinity propagation algorithm is implemented for further
analysis on the detected abnormal cells. Finally, the grading
accuracy of abnormal cells is 76.47%. In [17], a method
for automatic detection of images of cervical cancer cells
captured from thin liquid based cytology slides is proposed,
a two-level cascade classifier is developed to obtain the
dimensional features in morphology and texture. The system
classifies 20000 cells, where the final recognition rate is
95.642%, and the false negative rate and false positive rate
are 1.44%, respectively. In [18], a machine learning model
with a cross-validation algorithm for the cervical cytology
image is created. In clinical practice, the examinations for
diagnosing cervical cancer include medical imaging exami-
nations, tumor biomarker detection, and HPV DNA testing.
The diagnosis of cervical cancer depends on the analysis
of pathologists by observing pap smear or biopsy samples,
which is an expensive method. This involves examining the
abnormal cell level of samples and determining the spread of
abnormal cells [19]. In [20], cancer is classified according to
the spread of abnormal cells, which is a tedious, subjective,
and time-consuming process.

B. RELEVANT CLASSICAL WORKS IN THE CAD FIELD

In [21], CAD techniques for tissue slice image analysis
are summarized. The paper of [22] carries out automatic
nuclei detection, segmentation, and feature calculation of the
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cervical images. In [23], the functions of the envisioned
CAD system for colposcopy are described, and modular and
suggests open system design for image analysis by providing
a framework and foundation for the CAD system of cervical
cancer. The paper of [24] proposes a prototype automated
CAD system for the diagnosis of CIN using ultra-large virtual
slides of cervical cancer, the segmentation achieves an aver-
age accuracy more than 94.25%. The work of [25] reports on
methodologies and outcomes of a study aiming at developing
robust tool to evaluate and classify histology images of cervi-
cal cancer, by using the histology images acquired from the
pathology laboratories in an Indonesian hospital to classify
cervical biopsy images based on four well known discrimi-
natory features. The paper of [26] uses k-means clustering,
Gabor wavelet transform, graph cutting, color segmentation
algorithms, cellular morphological methods, and binary tree
algorithms are used to classify epithelial cells and stromal
cells in the histopathological images of cervical cancer. At the
same time, a computer aided decision support system tool is
presented to help pathologists in their examination of cervical
cancer biopsies. The main aim of the proposed system is
to identify abnormalities and quantify cancer grading in a
systematic and repeatable manner. The result shows that the
specificity of k-means, Gabor wavelet, and Hybrid Graph cut
and colour segmentation methods in CAD is 80%, 87%, and
97%, respectively. The paper of [27] develops an automated
CIN grade classification of vertical segmented epithelium
regions, and explores a Particle Swarm Optimization (PSO)
and Receiver Operating Characteristic curve (ROC) for CIN
classification showing exact grade labeling accuracy as high
as 90%. In [28], an automated approach for detecting cervical
cancer is proposed. The Gray Level Co-occurrence Matrix
(GLCM) is used to divide the image into ten vertical images to
extract texture features. Then, using k-means clustering and
Marker control watershed algorithm to segment the image.
Finally, based on the texture and lesion area features, the Sup-
port Vector Machine (SVM) method is used to recognize
cervical cancer, and 90% accuracy is obtained. In our pre-
vious work [10], a TL framework for Inception-V3 network
is proposed. First, the images are augmented by using data
rotation and mirroring. Then, a TL method based on the
Inception-V3 network is constructed to extract deep learning
features. Finally, the extracted features are designed for the
final classification. In the result, an average accuracy of
77.3% is achieved. In another work [11], we suggest a multi-
layer hidden conditional random fields (MHCRFs) to classify
well, moderate and poorly differentiation stages of cervical
cancer, and an accuracy of 88% is obtained on a practical
histopathological image dataset with more than 100 AQP
stained samples. Meanwhile, in [12], a novel MHCRFs based
cervical histopathology image classification model is pro-
posed to classify well, moderate, and poorly differentiated
stages of cervical cancer using a weakly supervised learning
strategy. In [29], we utilize graph and unsupervised learning
methods in a tissue structure clustering task, and divide the
histopathological images of cervical cancer into sparse areas
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and viscose areas to predict the risk of the tissues. For more
information, please refer to our previous survey papers [30].

C. RELEVANT DEEP LEARNING WORKS IN THE CAD FIELD
In recent years, deep learning approaches show a robust
development trend in the cervical cancer image classification
field. For instance, the paper of [31] introduces a method for
the diagnosis of histopathological images of cervical cancer
using SVM and Artificial Neural Network (ANN). In [32],
a superpixel and CNN based segmentation method for cer-
vical cancer cells is proposed with an accuracy of 94.50%.
In [33], the author introduces a computerized technique to
distinguish normal and abnormal cervical cells using deep
ANN and a learning vector quantization algorithm. As a
development of [33], an ANN algorithm to extract new fea-
tures of cervical cells is proposed, providing a classifica-
tion method for cervical smear examination using the ANN,
and comparing it with k-means and Bayesian classifiers.
In our recent work [13], we propose an ETL framework
to classify well, moderately and poorly differentiated cervi-
cal histopathology images based on VGG-16 and Inception-
V3 networks followed by an early fusion approach, using a
practical dataset with 100 VEGF stained cervical histopathol-
ogy images, an average accuracy of 80% is finally achieved.
Meanwhile, in [34], we introduce ensemble learners of mul-
tiple deep CNNs for pulmonary nodule classification using
CT images obtained from the Lung Image Database Consor-
tium and Image Database Resource Initiative (LIDC-IDRI)
database, and achieve prediction accuracy of 84.0%. Based
on the methods mentioned above, we carry out a series of
contrast experiments in Sec. IV-F, Table. 6.

Over the last few years, CAD techniques for cervical
histopathological images are focusing on practicing classical
and machine learning feature extraction approaches for seg-
mentation and pathologic abnormality screening. However,
there has been a minimal contribution to the differentiation of
cervical histopathological images. At the same time, our ETL
approach has shown an average performance on pulmonary
CT and histopathological image analysis. Hence, based on
these research points, we develop a new ETL method in this

paper.

lll. METHOD
A. TRANSFER LEARNING
ANN is one of the primary tools employed in machine learn-
ing. It consists of input and output layers, as well as (in most
cases) hidden layers consisting of units that transform the
input into something that the output layer can use. The input
data enters the neural network and comes to the hidden layer.
After the activation function, we get the final output. The deep
ANN usually refers to an ANN with more than two hidden
layers [35].

Transfer Learning (TL) is a method that uses ANNs
pre-trained on a large annotated image database (such as
ImageNet) to complete various tasks. TL focuses on storing
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TABLE 1. The parameter settings for four TL networks.

Parameters| = R . X . L.
Initial input size [Initial learning rate{Batch-size|Epoch|Optimizer
Networks

Inception-V3 299 x 299 x 3 0.0001 64 100 | Adam
Xception 299 x 299 x 3 0.0001 64 100 | Adam
VGG-16 224 x 224 X 3 0.001 64 100 | Adam
Resnet-50 224 x 224 x 3 0.001 64 100 | Adam

knowledge gained in solving a problem and applying it to
different but related problems. It essentially uses additional
data so that ANNs can decode by using the features of past
experience training, after that the ANNs can have better gen-
eralization ability [36]. With TL technology, we can directly
use pre-trained deep learning models that are trained through
a large number of readily available datasets. Then, find out
the layer that can be reused. Finally, we can use the output of
these layers as the input to train a network with fewer param-
eters and smaller scales. This small-scale network only needs
to understand the internal relationships of specific problems,
and learns the patterns contained in the data through the
pre-trained models [37].

In this paper, we have compared the VGG series, Incep-
tion series, and Resnet series. The final selection is based
on the comprehensive classification performance and num-
ber of parameters. We finally apply Inception-V3 [38],
Xception [39], VGG-16 [40] and Resnet-50 [41] networks for
the TL process, where the parameters are pre-trained on the
ImageNet dataset [42]. For these four networks, the settings
of the hyperparameters are shown in Table. 1. Among them,
the learning rate uses decay learning rate, and the decay_steps
is 5, the decay_rate is 0.1. Fig. 2 shows an example of the
feature maps extracted by these four TL networks, where the
TL method can obtain some representative information from
the images.

B. ENSEMBLE LEARNING

Ensemble learning (EL) is the strategic generation and com-
bination of multiple models, such as classifiers or experts,
to solve particular computational intelligence problems [43].
EL is primarily used to improve the performance (e.g., classi-
fication, prediction, and function approximation) of a model,
or reduce the likelihood of an unfortunate selection of a poor
one. Other applications of EL include assigning confidence
to the decision made by the model, selecting optimal (or near
optimal) features, data fusion, incremental learning, nonsta-
tionary learning, and error-correcting [44].

The combination of learners may provide benefits in terms
of statistics, computation and representation. In this paper,
the EL adopts the weighted voting based method. Its integra-
tion includes T base learners {h, ho, h3, ..., hy}, where the
output of A; on example x is k;(x). Particularly, in this paper,
we select four TL methods, so T = 4. The learner h; pre-
dicts a label from the set of category labels {c1, c2, ..., cn},
the predicted output of h; on example x is represented as
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(c) VGG-16 feature maps.

(d) Resnet-50 feature maps.

FIGURE 2. An example of the feature maps by different TL approaches. All the feature maps are extracted from the third

convolutional layer of each network, respectively.

a N dimensional vector (hl-l(x); hlz(x); ,hfv (x)), where
hﬁv (x) is the output of /; on the category labels [45]. Lastly,
the whole EL process is defined refer to (1).

H(x) = Cargjmax ZLI wihi:(x)' )
where H(x) is the final EL result, w; is the weight of A;,
usually, w; > 0 and Zszl w; = 1. Furthermore, we pre-
test four evaluation indexes as the candidates of the weight,
including classification accuracy, recall, precision, and
F1-score. Finally, as the recall to be the weight achieves the
best classification result, we select it as the weight in this

paper

IV. EXPERIMENTS AND ANALYSIS

A. IMAGE DATASET

To test the effectiveness of the proposed ETL method in this
paper, a practical histopathology image dataset of cervical
cancer tissue sections is applied. The detailed information
about this dataset is as follows.

Data source: Two practical medical doctors from
Shengjing Hospital of China Medical University provide
image samples and give image-level labels;

Staining method: Immunohistochemical (IHC) Staining,
including AQP, HIF, and VEGF approaches;

Magnification: 400x;

VOLUME 8, 2020

Microscope: Nikon (Japan);

Acquisition software: NIS-Elements F 3.2;

Image size: 1280 x 960 pixels;

Image format: *.png;

Image bits per pixel depth: 3 x 8 = 24.

Image category and morphological characteristics: There
are 307 images in the dataset, where 33 are well differ-
entiated, 35 are moderate differentiation, and 28 are poor
differentiation of AQP staining; 39 are well differentiation,
38 are moderately differentiation, and 34 are poor differen-
tiation of HIF staining; 29 are well differentiation, 33 are
moderately differentiation, and 38 are poor differentiation of
VEGEF staining.

o Well differentiation: The tumor cells are closer to normal
cells, cell heteromorphism is relatively small, cell size
and morphology are similar.

o Moderate differentiation: Most cancer cells are concen-
trated in moderate differentiation. The characteristic is
between well differentiation and poor differentiation of
cervical cancer cells.

o Poor differentiation: The cell structure is not visible, and
the parts are disordered.

Among them, the well differentiated tumor cells are the least
malignant, the poorly differentiated tumor cells have the
highest degree of malignancy, and the moderately
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Well Moderate Poor

(a) AQP staining.

Moderate

(b) HIF staining.

Well Moderate Poor
(c) VEGF staining.

FIGURE 3. An example of the cervical IHC image dataset. Each row shows the images of an IHC staining method.

differentiated tumor cells are moderately malignant [46].
An example of this dataset is shown in Fig. 3.

B. DATA AUGMENTATION

Data augmentation adds value to the underlying data by trans-
forming the information inside the dataset. Since the total
number of sample datasets is too small (only 307), the neural
network trained on the small dataset is prone to over-fitting.
So, we use the data augmentation technique to enhance the
original data set. The increasing training set can improve
the generalization ability of the neural networks, as well as
help the neural networks to learn some features with scale,
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rotation, and color invariance, thus improving the prediction
performance of the classifier.

‘We use data rotation and mirroring to augment our images.
For each sample picture x;, i = 1, 2, .. ., n, nis the total num-
ber of pictures in a sample set X, we first divide it into 9 equal-
sized sub-images z(; 5, i =1,2,...,n,j=1,2,...,9. Then
we use the mirror edge padding to fill in the sub-images of
equal length and width, and obtain the image zE,-, i For each
Zzi’ i we apply two data augmentation operations: In the first
operation, we rotate each image into 0°, 90°, 180° and 270°;
In the second operation we do the horizontal flipping, vertical
flipping, and channel flipping. So that each sub-image zéi’j)
can generate 16 images, where the image labels are the same
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TABLE 2. The experimental data setting of the IHC cervical
histopathology image dataset. The first row indicates the staining
methods. The second row indicates three differentiation stages. The third
to the last rows indicate training, validation and testing datasets for each
stage and staining method, respectively.

AQP HIF VEGF
Well Moderate Poor | Well Moderate Poor | Well Moderate Poor
Training {3802 4032 3226|4493 4378 3917|3341 3802 4378
Validation| 475 504 403 | 562 547 490 | 418 475 547
Test | 475 504 403 | 561 547 489 | 417 475 547

Dataset

as the original image x;. Hence, each sample image x; is
augmented to 144 images. Finally, the size of the data set is
increased from 307 to 44208 after data augmentation. Our
images have a small field of view, and most of them are
cancer regions with a single stage of differentiation when they
are prepared. Therefore, we make the patch label inherit the
image-level label.

C. EXPERIMENTAL SETTING

Histopathological images are usually noisy. However,
the proposed technique is a deep learning based approach,
which provides feature detection and extraction automat-
ically [47]. Therefore, the proposed method does not
need a noise reduction step. In the experiment, the aug-
mented 44208 images are applied to examine the proposed
EL method. The training set, validation set, and test set
are divided according to the ratio of 8 : 1 : 1 as shown
in Table. 2. In order to make full use of the dataset, we ran-
domly select 80% of the data set as the training set, and
then randomly select 50% from the remainder of the dataset
as the validation set, and the rest of the data as the test
set.

D. EXPERIMENTAL EVALUATION

The performance of the classifiers is evaluated using accu-
racy, precision, recall, and F1-score metrics. The accuracy
is the ratio of the number of samples correctly classified by
the classifier to the total number of samples. The precision
reflects the proportion of the positive samples that are deter-
mined by the classifier to be positive samples. The recall rate
reflects the positive case of correct judgment accounting for
the proportion of the total positive samples and the F1-score is
an indicator that comprehensively considers the accuracy and
the recall [48]. Table. 3 describes these performance metrics.
In this paper, the samples of the categories studied at this time
are positive samples, and the samples of other categories are
negative samples.

As shown in Table. 3, TP is the True Positive (positive
sample is predicted to be positive), TN is the True Negative
(negative sample is predicted to be negative), FP is the False
Positive (negative sample is predicted to be positive), and
FN is the False Negative (positive sample is predicted to be
negative).

VOLUME 8, 2020

TABLE 3. Evaluation metrics.

Assessments Formula
, TP+TN
Accuracy TPITN+EFPLFEN
co TP
Precision TPLiFP
TP
Recall TPLFN
. 2T P
F1-score STPLFPIFN

E. EXPERIMENTAL RESULTS

1) EVALUATION OF THE TL AND ETL RESULT

We use accuracy, precision, recall, and F1-score to evaluate
the TL and the proposed ETL method. Especially, we carry
out 9-fold cross-validation to obtain an overall balanced eval-
uation on the IHC dataset (each staining method 3-folds), and
the results are shown in Table. 4. The results are analyzed
in three aspects: differentiation stage (well, moderate, and
poor differentiation), staining method (AQP, HIF, and VEGF
staining), and experimental method (TL and ETL method).

For the first aspect: Differentiation stage (well, moderately,
and poor differentiation). It can be seen from Table. 4 that
the poor differentiation stage achieves the best classification
accuracy on all TL methods and the ETL method. Further-
more, this stage also achieves the best classification results on
precision and F1-score among others. For recall, the moderate
differentiation stage achieves the best classification results
on all TL methods and the ETL method except the VGG-
16 TL approach. As for the VGG-16 TL method, the poor
differentiation stage achieves the best classification results.
Moreover, all evaluation indexes of the proposed ETL method
have higher values than those of the individual TL method.
On the whole, the poor differentiation stage achieves the best
classification results among the three differentiation stages,
and the proposed ETL method has the best classification
performance.

For the second aspect: The staining method (AQP, HIF, and
VEGF staining). Itis observed from Table. 4 that for accuracy,
the VEGF staining method obtains the best classification
results among all TL methods and the ETL method except
Resnet-50 network. As for the Resnet-50 network, the HIF
staining technique achieves the best classification results. For
precision, the VEGF staining algorithm achieves the best
classification results compared to other TL methods and the
ETL method. Furthermore, the VEGF staining method also
achieves the best classification results on F1-score of all. For
recall, the AQP staining technique achieves the best classifi-
cation results on Inception-V3 and Xception TL methods and
the ETL method. As for VGG-16 TL approach, the VEGF
staining algorithm achieves the best classification results, and
the HIF staining technique achieves the best classification
results for ResNet-50. Moreover, the proposed ETL method
has a higher value than those of the individual TL method.
Overall, the VEGF staining system achieves the best distri-
bution results among the three staining approaches.

104609



IEEE Access

D. Xue et al.: Application of TL and EL Techniques for CHIC

TABLE 4. The TL and ETL results. The third to the last columns in the first
row denote four evaluation indexes, respectively. The second to the last
rows in the first column denote TL and ETL methods, respectively.

The second to the last rows in the second column denote three staining

TABLE 5. The overall accuracy of De-novo trained CNNs, TL methods and
ETL method. The first row shows three staining methods. (In [%].)

methods, respectively. The second to the last rows in the third column AQP HIF VEGF
denote three differentiation stages, respectively. (In [%)].) Tnception-V3 7381 7577 73.97
Result Accuracy [Precision|Recall|F1-score Xception 79.59 78.77 81.31
Well 81.84 | 73.24 |7432| 73.77 VGG-16 88.28 90.17 91.38
AQP |Moderate| 87.55 82.81 |83.13| 74.19 Resnet-50 90.88 91.86 90.69
Poor | 85.60 | 75.89 |74.19] 75.03 Inception-V3 TL 7750 | 7927 77.62
Well | 84.10 | 7946 |73.80] 76.52 Xception TL 8408 | 8278 85.62
Inception-V3 TL| HIF |Moderate| 86.10 | 78.07 [82.63| 80.28 VGG-16 TL 0408 9404 94.86
Poor | 8835 | 8048 |8180) 81.14 Resnet-50 TL 9493 | 9568 | 9479
Well 83.32 | 69.71 [75.06| 72.29 .
Our ETL method in this paper 97.03 96.31 96.94

VEGF|Moderate| 83.04 74.63 |73.68| 74.15
Poor 88.88 87.14 |83.00| 85.02
Well 87.63 86.19 |76.21| 80.89
AQP |Moderate| 89.80 82.35 [91.67| 86.76
Poor 90.74 84.29 |83.87| 84.08
Well 87.54 87.87 |74.87| 80.85
Xception TL | HIF |Moderate| 86.35 | 74.74 |90.86| 82.01
Poor 91.67 89.21 [82.82| 85.90
Well 89.65 84.01 [79.38| 81.63
VEGF|Moderate| 89.02 80.08 |88.84| 84.23
Poor 92.56 92.47 |87.57| 89.95
Well 95.44 93.83 |92.84| 93.33
AQP |Moderate| 96.45 94.00 |96.43| 95.20
Poor 96.67 95.19 |93.30| 94.24
Well 95.87 95.08 [93.05| 94.05
VGG-16 TL HIF |Moderate| 95.93 93.35 |94.88| 94.11
Poor 96.68 94.31 |94.89| 94.60
Well 96.11 94.13 |92.33| 93.22
VEGF|Moderate| 95.55 92.37 |94.32| 93.33
Poor 98.05 97.61 |97.26| 97.44
Well 95.95 96.45 |91.58| 93.95
AQP |Moderate| 96.96 | 93.92 [98.02| 95.92
Poor 96.96 94.57 195.04| 94.80
Well 96.43 97.37 92.34| 94.78
Resnet-50 TL | HIF |Moderate| 96.68 92.88 |97.81| 95.28
Poor 98.25 97.14 |97.14| 97.14
Well 96.04 94.33 |91.85| 93.07
VEGF|Moderate| 95.34 91.46 |94.74| 93.07
Poor 98.19 98.15 |97.07| 97.61
Well 97.61 98.46 |94.53| 96.46
AQP |Moderate| 98.19 95.62 |99.60| 97.57
Poor 98.26 97.26 |96.77| 97.01

Our ETL method Well 97.18 | 99.05 |92.87| 95.86
HIF |Moderate| 97.00 | 92.65 |99.09| 95.76
in this paper Poor 98.43 97.74 |97.14| 97.44

Well 97.78 97.77 |94.48| 96.10
VEGF|Moderate| 97.50 93.81 |98.95| 96.31
Poor 98.61 99.25 |97.07| 98.15
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For the third aspect: Experimental method (De-novo
trained CNNs, TL and ETL method). Table. 5 exhibits the
overall performance of the proposed techniques. It can be
seen from the table that the accuracy of each TL algo-
rithm is about 1% to 3% higher than the method of training
models from scratch (De-novo trained CNNs). At the same
time, each transfer training process saves about 4 hours than
the De-novo trained CNNs. This understanding recommends
training CNNs using TL. Finally, it is observed that the
advanced ETL technique has higher correctness than any of
the single TL methods, which proves that the sophisticated
ETL approach has the best classification performance.

2) VISUALIZED ANALYSIS
In order to show the classification performance of the pro-
posed model more intuitively, we exhibit confusion matrix
and loss curve for a visualized analysis. As shown in Fig. 4
and Fig. 5, the ETL method has low probability of error
classification, and the ETL method has higher stability. The
accuracy and loss curve of training and validation sets are
shown in Fig. 6. It is clear to see from the curve that the
VGG-16 and Resnet-50 networks are more stable.
Moreover, the histogram of the individual TL and EL with
their accuracy is provided. As shown in Fig. 7, after EL,
the accuracy of well, moderate, and poorly differentiated
is increased. For well differentiation classification results,
the accuracy of AQP staining is improved by 1.66%, HIF
staining is increased by 0.75%, and VEGF staining is
increased by 1.74% compared with the highest accuracy
of single TL classification. For moderate differentiation,
the accuracy of AQP staining is risen by 1.23%, HIF staining
by 0.32% and VEGF staining by 2.16% compared with TL.
Similarly, for the poor differentiation, AQP staining, HIF
staining and VEGF staining improved by 1.3%, 0.18% and
0.42%, respectively. It is worth noting that compared with
the highest accuracy of single TL classification, the overall
accuracy of AQP staining increased by 2.10%, HIF staining
by 0.63%, and VEGEF staining by 2.15%. Above all, the effec-
tiveness of the EL strategy is proved.
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(g) VGG-16 AQP staining.

(h) VGG-16 HIF staining.

(i) VGG-16 VEGEF staining.

FIGURE 4. The confusion matrix of TL and ETL methods using different staining methods. (a)-(c) are confusion matrix of three staining methods
of Inception-V3 network, (d)-(f) are confusion matrix of three staining methods of Xception network, (g)-(i) are confusion matrix of three

staining methods of VGG-16 network.

Finally, Fig. 8 exhibits the output of our recommended
algorithms. It can be seen from the figure that the correctly
predicted images have full information about the stage of
differentiation, so they are easy to distinguish. The wrongly
predicted images contain little information about the stages
of differentiation of tumor cells. Furthermore, in the data
augmentation process, we use image padding, which may
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add redundant information. These reasons can disturb the
computer to classify the differentiation stages of cervical
cancer histopathology microscopic images.

F. COMPARISON WITH PREVIOUS WORKS
In our previous work, different methods are introduced to
classify well, moderate and poorly differentiated cervical
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FIGURE 5. The confusion matrix of TL and ETL methods using different staining methods. (a)-(c) are confusion matrix of three staining methods
of Resnet-50 network, (d)-(f) are confusion matrix of three staining methods of EL method.

histopathological images. In order to show the performance
of the proposed ETL method in this paper, we compare it
with the TL method based on Inception-V3, the ETL method
based on VGG-16 and Inception-V3, the method based on
multi-layer hidden conditional random field and the methods
combining classical features with SVM, ANN, and Random
Forests (RF) classifiers respectively. The classical features
include Scale-invariant Feature Transform (SIFT), GLCM,
Histogram of Oriented Gradient (HOG), and color histogram
features. In Table. 6, all the comparison methods and results
mentioned above are summarized.

As shown in Table. 6, the accuracy of the single TL
method [10] is about 30% higher than the average accuracy
of the classical method. The accuracy of the ETL method [13]
is 2.7% higher than the single TL method. However, our
proposed method achieves the highest accuracy of 98.61%
among all the methods, and the accuracy is 10.61% higher
than the second [11], [12], showing the effectiveness of our
ETL method in this paper.

G. COMPUTATIONAL TIME

Finally, we describe the computational time of our proposed
ETL method. In our experiment, we use a workstation with
Intel® Core™ i7-7700 CPU with 3.60 GHz, 32 GB RAM,
and GeForce GTX 1080 8GB. The training time for each
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staining method is about 8.5 hours, and the test time of each
staining method is about 5 seconds. Although the training
time takes more time, the test time costs only a few seconds,
showing the feasibility of our proposed ETL method.

H. ADDITIONAL EXPERIMENT

1) IMAGE DATASET

In order to evaluate the generalization ability of the proposed
ETL method, a publicly available Herlev dataset [49] is
employed, which is a cytopathological image set for cervical
cells. This dataset includes 917 single-cell images, where
242 images belong to a benign class and 675 images belong
to a malignant class. According to experimental setting of
the existing work, the training, validation, and test sets are
divided according to the ratio of 3: 1: 1. So, the number of
benign cells in these three datasets is 144, 49, and 49 respec-
tively, while the number of malignant cells in these three
datasets is 405, 135, and 135 respectively. To solve the prob-
lem of the unbalanced dataset, the benign cell images in the
training set and the validation set are augmented. First, each
original image is rotated by 180° and flipped by a mirror.
Then, the images of benign cells with the same number of
malignant cells are randomly selected as the training and
validation sets. An example of the Herlve dataset is shown
in Fig. 9.
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FIGURE 6. The accuracy and loss curve of TL methods. (a)-(c) are curves of three staining methods of Inception-V3 network, (d)-(f) are curves of
three staining methods of Xception network, (g)-(i) are curves of three staining methods of VGG-16 network, (j)-(I) are curves of three staining
methods of EL method.

2) PERFORMANCE COMPARISON BETWEEN TL
AND ETL METHODS
The TL and ETL methods are used for binary classification on is the best, and the highest value of all evaluation indicators
the Herlev dataset [49]. Their 3-fold cross-validation results is obtained. Among them, accuracy is 95.65%, which is
are shown in Table. 7.

VOLUME 8, 2020

From Table. 7 we can find that among the single TL meth-
ods, the classification performance of the Resnet-50 network

about 2.5% to 5.5% higher than other networks. Precision
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FIGURE 8. An example of the classification result. (a) and (b) are correctly classified images. (c) and (d) are wrongly classified images.

is 96.35%, which is about 1.5% to 2.5% higher than other
networks. Recall is 97.78%, which is about 3% to 5% higher
than other networks. F1-score is 97.06%, which is about 1.8%
to 3.8% higher than other networks. However, it is worth
noting that the ETL method performs better than all the single
TL methods, obtaining an accuracy of 98.37%, a precision
of 98.53%, a recall of 99.26%, and a F1-score of 98.89%.
It shows that the ETL method proposed in this paper can

104614

improve the performance of classification on Herlev dataset
effectively.

3) PERFORMANCE COMPARISON BETWEEN ETL AND
OTHER EXISTING METHODS

In order to evaluate the effectiveness of the proposed method,
a comparative analysis with existing work on Herlev dataset
is presented in Table. 8. For more details, please refer to our
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TABLE 6. A comparison of ETL method with other existing
methods. (In [%].)

TABLE 8. ETL comparative analysis with existing methods on Herlev
dataset. Adaptive Neuro Fuzzy Inference System (ANFIS), Least Square
Support Vector Machine (LSSVM). (In [%].)

-

(@ (b)

FIGURE 9. An example of cell images on Herlev dataset. (a) is benign cell,
(b) is malignant cell.

TABLE 7. TL and ETL classification results on Herlev dataset. (In [%].)

Accuracy | Precision | Recall | Fl-score
Inception-V3 TL 90.22 94.12 94.81 94.46
Xception TL 91.85 94.85 95.56 95.20
VGG-16 TL 92.93 93.99 92.59 93.28
Resnet-50 TL 95.65 96.35 97.78 97.06
ETL 98.37 98.53 99.26 98.89

previous survey paper about “Cervical Cytopathology Image
Analysis™ [50].

From the comparison Table. 8, we can find that our pro-
posed ETL method has a certain degree of competition in
accuracy and precision compared with the existing meth-
ods. These results validate the robustness of our proposed
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Method Accuracy
X Method Accuracy | Precision | Recall | F1-score
Color histogram features & RBF-SVM 34.62
TL based on AlexNet & Decision tree [51]| 99.30 - - -
Color histogram features & Linear-SVM 62.82
TL based on AlexNet & SVM [52] 99.19 | 9951 |9950| -
Color histogram features & ANN (6 layers) 71.30 Hybrid classifier (SVM & ANFIS) [53] 99.10 _ _ _
Color histogram features & RF (2”11 trees) 63.57 Hybrid ensemble technique 0857
SIFT features & RBF-SVM 34.62 (composed of 15 different classifiers) [54] .
SIFT features & Linear-SVM 45.16 TL based on CNN [55] 98.30 - - -
SIFT features & ANN (6 layers) 50.28 TL based on CNN & SVM [56] 95.10 - - -
SIFT features & RF (2211 trees) 47.61 AlexNet & classifiers 0461 . . .
GLCM features & RBF-SVM 34.62 (LSSVM/SoftMax Regression) [57]
- VGG16 and ResNet [58] 86.56 | 85.94 |79.04| 82.16
GLCM features & Linear-SVM 42.55
Our ETL method in this paper 98.37 98.53 [99.26 | 98.89
GLCM features & ANN (6 layers) 59.54
GLCM features & RF (2711 trees) 57.76
HOG features & RBF-SVM 45.33 algorithm, which is not only applicable for cervical
HOG features & Linear-SVM 40.14 histopathological image analysis, but also suitable for cervi-
HOG features & ANN (6 layers) 46.65 cal cytopathological images.
HOG features & RF (2711 trees) 45.73
TL framework based on Inception-V3 [10] 77.30 V. LIMITA."ONS I_'\ND FUTUBE WORK .
- In this paper, weighted voting based EL is proposed to
ETL framework based on Inception-V3 and VGG-16 [13] 80.00 . . . . . .
. : — classify cervical histopathological images. Especially, three
Multilayer hidden conditional random fields [11], [12] 88.00 cervical cancer differentiation stages are classified, where
Our ETL method in this paper 98.61 the highest overall accuracy of 97.03% is achieved on AQP

staining method. Meanwhile, the highest accuracy of 98.61%
is achieved on poorly differentiated of VEGF staining. How-
ever, this method presents some deficiencies worthy to be
pointed out. Firstly, we use four base learners, it requires
a very sophisticated computer for its implementation and
presents very high computational cost, and it adds to the
workload as well. Secondly, there is no patient-level label
for our current IHC dataset, so this paper does not do basic
studies based on patients. At the moment, we are collecting
more data and working in this direction. In the future, we plan
to develop more efficient and simple systems to do the clas-
sification of cervical histopathology images.
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