
Received May 13, 2020, accepted May 28, 2020, date of publication June 3, 2020, date of current version June 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999608

Application of Quantum Genetic Optimization
of LVQ Neural Network in Smart City
Traffic Network Prediction
FUQUAN ZHANG1,2, TSU-YANG WU 3, YIOU WANG2,4, RUI XIONG 4,
GANGYI DING2, PENG MEI 2, AND LAIYANG LIU2
1Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350117, China
2School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
3College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
4Beijing Institute of Science and Technology Information, Beijing 100044, China

Corresponding author: Tsu-Yang Wu (wutsuyang@gmail.com)

This work was supported in part by the Research Program Foundation of Minjiang University under Grant MYK17021, Grant MYK18033,
Grant MJW201831408, and Grant MJW201833313, in part by the Major Project of Sichuan Province Key Laboratory of Digital Media
Art under Grant 17DMAKL01, in part by the Fujian Province Guiding Project under Grant 2018H0028, in part by the National Natural
Science Foundation of China under Grant 61772254 and Grant 61871204, in part by the Key Project of College Youth Natural Science
Foundation of Fujian Province under Grant JZ160467, in part by the Fujian Provincial Leading Project under Grant 2017H0030, in part by
the Fuzhou Science and Technology Planning Project under Grant 2016-S-116, in part by the Program for New Century Excellent Talents
in Fujian Province University (NCETFJ), and in part by the Program for Young Scholars in Minjiang University under Grant Mjqn201601.

ABSTRACT Accurate prediction of traffic flow in urban networks is of great significance for smart city
management. A short-term traffic flow prediction algorithm of Quantum Genetic Algorithm - Learning
Vector Quantization (QGA-LVQ) neural network is proposed to forecast the changes of traffic flow. Different
from BP neural network, Learning Vector Quantization (LVQ) neural network is of simple structure, easy
implementation and better clustering effect. Utilizing the global optimization ability of Quantum Genetic
Algorithm (QGA), it is combined with LVQ neural network to overcome some shortcomings of LVQ neural
network, including sensitive to initial weights and prone to local minima. In order to test the convergence
ability and the timeliness of QGA-LVQ neural network in short-term traffic flow, some contrast experiments
are performed. Experimental simulation results show that, QGA-LVQ neural network obtains excellent
prediction results in prediction accuracy and convergence speed. Besides, compared with GA-BP neural
network and wavelet neural network, QGA-LVQ neural network performs better in short-term traffic flow
prediction.

INDEX TERMS QGA, LVQ neural network, short-term traffic flow prediction, global optimization.

ABBREVIATIONS
GA Genetic Algorithm.
MAPE Mean Absolute Percentage Error.
QGA Quantum Genetic Algorithm.
MAE Mean Absolute Error.
LVQ Learning Vector Quantization.
RT Running Time.
BP Back Propagation.
RMSE Root Mean Square Error.
MTL-TCNN multitask learning time convolutional

neural network.
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HMMs Hidden Markov models.
ST-DTW spatio-temporal dynamic time warping.
CNN Convolutional neural network.
PVD probe vehicle data.
LSTM-NN long short-termmemory neural network.
LSTM Long Short-Term Memory.
MSE Mean Squared Error.
K-NN k-nearest neighbor.
ISM the industrial, scientific and medical.
MTL multi-task learning.
SOM Self-organizing Maps.
DEA differential evolution algorithms.
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I. INTRODUCTION
Along with the rapid development of the economy, people’s
travel patterns undergo tremendous changes. The number
of private car ownership increases greatly and continu-
ously, which leads to many traffic problems. Some experts
have already conducted a series of studies on traffic prob-
lems [1]–[3]. Among them, the traffic congestion is a very
serious traffic problem, which has caught the attention of the
public and government departments. Through investigation
and analysis, traffic congestion is closely related to traffic
flow. Fortunately, the development of artificial intelligence
technology provides a new way for smart cities to predict
traffic flow, so that regulators can take early action to prevent
or ease the congestion.

Artificial neural networks show good performance in
the analysis and prediction of complex nonlinear sys-
tems [4], [25]–[28], [33]. Many scholars at home or abroad
have put forward many kinds of traffic flow prediction
methods based on artificial neural networks. Fu et al. pro-
posed a short-term traffic flow prediction based on BP neu-
ral network, showing a certain nonlinear fitting ability [5].
Zheng et al. used Convolutional neural networks (CNN) to
capture spatial correlations [41]. Xu et al. proposed a traf-
fic flow prediction model based on adaptive particle swarm
neural network, which effectively improved the conver-
gence speed within the acceptable prediction error range and
enhanced the real-time performance to a certain extent [6].
Jin et al. proposed short-term traffic flow prediction based on
wavelet neural network [7], and Lu et al. proposed short-term
traffic flow prediction based on improved GA-optimized BP
neural network [8], both of which have advantages over the
traditional BP neural network in predicting accuracy because
they both overcome the sensitivity to the initial value.

Traffic flow prediction is a hot topic. Researchers have
achieved many results in this field. Jiang et al. utilize Hid-
den Markov models (HMMs) to present the statistical rela-
tionship between individual vehicle speeds and the traffic
speed [42]. Zheng et al. proposed an end-to-end multitask
learning time convolutional neural network (MTL-TCNN) to
predict short-term passenger demand at the multi-regional
level. The algorithm combined with the spatio-temporal
dynamic time warping (ST-DTW) feature selector. It can
solve the multi-task prediction problem well considering the
spatio-temporal correlation [39]. This method tends to rec-
ommend schemes for travel modes and is helpful for the
selection of travel routes. He et al. proposed a method based
on low-frequency probe vehicle data (PVD) to identify inter-
section traffic congestion in urban road networks [40]. Zheng
et al. proposed a traffic prediction model based on Long
Short-Term Memory (LSTM) network. Unlike traditional
prediction models, the LSTM network considers the spa-
tiotemporal correlation of the transportation system through
a 2D network composed of multiple memory units [35].
Bhatia et al. constructed a long short-term memory neural
network (LSTM-NN) architecture which overcomes the issue

of back-propagated error decay through memory blocks for
spatiotemporal traffic prediction with high temporal depen-
dency. They used Mean Squared Error (MSE) to explore the
potential to predict real-time traffic trends accurately [43].
Liang et al. proposed a method based on feature selection
for linear prediction to identify reasonable spatiotemporal
traffic patterns related to the target link [37]. However, linear
prediction has limited convergence, and the performance of
vector regression is not outstanding. Liu et al. proposed a
preprocessingmethod for the prediction process. Thismethod
can determine which features should be included in the input
vector [38]. However, this method does not improve the
prediction algorithm much. Zheng et al. proposed a tensor-
based k-nearest neighbor (K-NN) method that can maintain
the general trend of long-term traffic. This method has a good
effect on traffic prediction in the case of data loss [36]. It has
a certain effect on the prediction of the overall trend, but it
has defects in the accuracy at a specific time. Zhang et al.
proposed a multi-task learning (MTL) model based on deep
learning. The model detects the spatiotemporal causality
between links, and selects the most informative features for
the MTL model [34]. This leads to loss of information, and
the prediction results will be biased by other secondary infor-
mation without being noticed.

To some extent, artificial neural networks help to regulate
the traffic flow of the road network and improve the uti-
lization of the road network. But traffic flow data has some
special characteristics such as periodicity, nonlinearity and
uncertainty, which makes it difficult to predict accurately
and timely. Tanwar et al. used the industrial, scientific and
medical (ISM) radio band. to realize the real-time trans-
mission of data signals, which ensured the timeliness of
data [44]. Fan et al. proposed to use building sensors and
predict real-time traffic based on the relationship between
traffic and buildings., which ensure the accurateness of the
data [45]. Hence, in some cases, the existing network traffic
prediction methods cannot meet the actual demands. There is
an urgent need to explore a better method to predict traffic
flow. Learning Vector Quantization (LVQ) neural network
is an extension of Self-organizing Maps (SOM), with the
advantages of simple structure, good clustering effect and
simple calculation. Besides, the nonlinear fitting ability of
LVQneural network is also very strong. LVQ is a network that
combines supervised learning and competitive learning, and
has its own uniqueness compared with the above methods.
It services the weakness of the lack of classification informa-
tion brought about by the self-organizing network using unsu-
pervised learning algorithms. In view of the advantages of
LVQ neural network, we attempt to use LVQ neural network
to predict short-term traffic flow. At the same time, it also has
defects, such as the weight vector may not converge during
the training process, and the information of each dimension
attribute of the input sample is not fully utilized. In other
words, it assumes that the ‘‘contribution’’ of each dimen-
sion attribute to the classification is the same. In addition,
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Quantum Genetic Algorithm (QGA) is introduced to over-
come the disadvantages of LVQ neural network, including
sensitive to initial weights and easily falling into local minima
and so on. QGA is a kind of black box algorithm. As an
optimized LVQ pre-processing network, it has its unique
advantages. Bayesian optimization also is a kind of black box
optimization. Its important role is to find the fitting curve of
the function, which requires a lot of prior knowledge. The
traditional GA network passes the excellent chromosomes
and genes to the offspring and regroups them. Its advantage
is that it can jump out of the local optimal solution and reach
the global optimal solution. QGA represents chromosomes
with qubits, quantum revolving gates update chromosomes,
and quantum non-gate variant chromosomes. This method
converges the probability amplitude to 1 or 0. When the
value of LVQ is 0 or 1, the chance of obtaining an equal
probability will increase a lot, resulting in an increase in
the success rate of clustering. Then, an urban traffic flow
prediction method based on Quantum Genetic Algorithm -
Learning Vector Quantization (QGA-LVQ) neural network is
proposed.

The proposed QGA-LVQ neural network integrates the
advantages of QGA and LVQ neural network. It not only
has many excellent characteristics similar to LVQ neural
network, such as simple structure, few training steps and high
classification accuracy, but also uses QGA to have a better
global solution, which effectively overcomes the shortcoming
of LVQ neural network that is sensitive to initial weights
and prone to local minima. LVQ neural network has strong
ability of prediction and discrimination for complex nonlinear
systems, which is very important for short-term traffic flow
prediction.

The rest of this paper is organized as follows: In section 2,
the relevant theories (including QGA and LVQ neural net-
work) are analyzed. In section 3, an algorithm of Quan-
tum Genetic Algorithm - Learning Vector Quantization
(QGA-LVQ) neural network is proposed, and the application
of QGA-LVQ neural network in short-term traffic flow pre-
diction is analyzed. In section 4, in order to test the conver-
gence and optimization ability of the proposed QGA-LVQ
neural network, the contrast experiments of the QGA-LVQ
neural network, GA-BP neural network [8] and wavelet neu-
ral network [7] are performed on five short-term traffic flow
data sets. The experimental results show that the algorithm of
QGA-LVQ neural network has advantages over the other two
algorithms. In section 5, a brief conclusion is given.

II. RELATED WORK
A. QGA
In 1996, Ajit and Mark [9] first proposed Quantum Genetic
Algorithm (QGA) by integrating quantum computing theory
into Genetic Algorithm (GA). QGA represents chromosomes
in appropriate quantum states, and their update evolution
operations are accomplished by quantum gate rotation. QGA
gives full play to the characteristics of quantum computing

and inherits the advantages of GA [10]. The calculation pro-
cess of QGA is given below.

1) QUANTUM BIT CODING
Two different states of a qubit are defined as |0〉 and |1〉 in
the two-dimensional complex vector space. And the state of
a qubit can also be the superposition of the two states [11].
As the smallest unit of information, the state of a qubit can be
expressed as equation (1).

|ϕ〉 = α|0〉 + β|1〉 (1)

where α and β are complex numbers, respectively repre-
senting the relevant probability amplitudes, and satisfy the
condition |α|2 + |β|2 = 1.

In QGA, chromosomes are encoded using qubits and quan-
tum superposition states. The encoding of each quantum
chromosome is shown in equation (2) [12].

qtj =
[
αt1
β t1

∣∣∣∣ αt2β t2
∣∣∣∣ ......

∣∣∣∣ αtmβ tm
]
, (2)

where t is the population algebra, then the quantum pop-
ulation of the t-th generation is represented as Q(t) =
{qt1, q

t
2, . . . , q

t
n}, m is the quantum number, and n is the

population size. In addition, the normalization condition (as
shown in equation (3)) needs to be satisfied [13].

|αti |
2
+ |β ti |

2
= 1, i = 1, 2, . . . ,m (3)

2) QUANTUM REVOLVING GATES
Update evolution is the key step of QGA. The qubits utilize
quantum gates to perform matrix transformation to complete
the state migration, to realize the population evolution. Oper-
ations of qubits generally use quantum revolving gate, whose
definition is shown in equation (4) [14].

U (θ ) =
[
cos θ − sin θ
sin θ cos θ

]
(4)

The process of the population evolution is shown in equa-
tion (5). [

α′i
β ′i

]
=

[
cos θi − sin θi
sin θi cos θi

] [
αi
βi

]
(5)

where θi is the rotation angle. The angle and the direction
of θi are determined according to the adjustment rules. The
coordinate Schematic diagram of the quantum revolving gate
is shown in Fig. 1.

3) QUANTUM CROSSOVER AND MUTATION
Quantum crossover is a full interference crossover opera-
tion based on the coherent properties of the quantum. Each
quantum chromosome in the population needs to perform
a crossover operation. The Table 1 gives an example of a
crossover operational approach to diagonal permutation and
combination When the number of populations is 6 and the
length of chromosomes is 7.
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FIGURE 1. The Coordinate schematic diagram of the quantum revolving
gate.

TABLE 1. Full interference cross.

In the process of quantum mutation, the quantum mutation
operators U(ω(1θ i)) are used to achieve updating and opti-
mization [15].

U (ω (1θi)) =

∣∣∣∣ cos (ω (1θi)) − sin (ω (1θi))
sin (ω (1θi)) cos (ω (1θi))

∣∣∣∣ (6)

ω (1θi) = f (αi, βi) ∗1θi (7)

where f (αi, βi) is the direction of rotation, 1θi is the size of
the rotation, and 1 is the adjustment factor. The value of 1
is usually small.

Differential evolution algorithms (DEA) [16], [17] is
another population-based optimization algorithm. Neverthe-
less, there are still some weaknesses in DEA, e.g. (1)
improper control parameter adaptation schemes; and (2)
defect in each mutation strategy., existing in some state-of-
the-art DE variants, which may result in slow convergence
and worse optimization performance. Therefore, QGA is
adapted in the proposed algorithm.

B. LVQ NEURAL NETWORK
The LVQ neural network proposed by Kohonen in 1990 inte-
grates the competitive learning idea with the characteristics
of supervised learning algorithm [18]. LVQ neural network
has many excellent characteristics, including simple struc-
ture, few training steps and high classification accuracy. LVQ
neural network shows strong prediction and discrimination
ability for complex nonlinear uncertain systems, such as pro-
tein sequence prediction [11] and high-voltage circuit breaker
diagnosis [19].

The structure of LVQ neural network is divided into three
layers, namely the input layer, the competition layer and
the output layer, as shown in Fig. 2. The competition layer

FIGURE 2. The structure of LVQ neural network.

is mainly responsible for the classification of input layer
neurons relative to input vectors.

The concept of the competition layer is derived from the
SOM. The neurons in the competition layer compete with
each other by calculating distances between the input vec-
tor and the neurons themselves. The neuron whose pattern
closest to the input vector ‘‘wins’’, with the corresponding
weight changing to 1; and the other neurons fail, with the
weights changing to 0. The connections between input vector
and the neurons in the competition layer are full connections,
while the connections between the neurons in the compe-
tition layer and the neurons in the output layer are partial
connections. The neurons in the competition layer are only
connected linearlywith one neuron in the output layer, and the
weights is the same as the weights from the input layer to the
competition layer. If the connection exists, the corresponding
weight is 1; otherwise, the weight is 0.

LVQ neural network is developed into two types: LVQ1
neural network and LVQ2 neural network. The biggest dif-
ference between them is the number of winning neurons in
the competition layer. There is only one winning neuron in
LVQ1 neural network, while there are two winning neurons
in LVQ2 neural network. LVQ2 neural network introduces
secondary winning neurons based on LVQ1 neural network
to enhance the performance of network training and improve
the classification accuracy of the algorithm.

The calculation steps of LVQ1 neural network are shown
as follows [20]:
Step1: The weightWij between the input layer and the com-

petition layer is initialized, and the learning rate η (η > 0) is
set up.
Step2: The input vector X = (x1, x2, . . . , xR)⊥ (R is the

number of input elements) is imported into the input layer,
and the distance d between the competition layer neurons and
the input vector is calculated:

d =

√√√√ m∑
j=1

(Xj −Wij)2, i = 1, 2, . . . , S l (8)

where, S l is the number of competitive neurons [21].
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Step3: The competition layer neurons with the shortest dis-
tance from the input vector are selected. If dj is the smallest,
the category label of the output layer neurons that connected
is marked as Cj.
Step4: The category label corresponding to the input vector

is set toCx . IfCj = Cx , the weight is adjusted as equation (9).

Wij−new = Wij−old + η(x −Wij−old ) (9)

Otherwise, the weight is adjusted as equation (10).

Wij−new = Wij−old − η(x −Wij−old ) (10)

Step5: The program is jumped to Step2 and repeated until
the error precision ε reaches a satisfactory requirement or the
number of iterations reaches the maximum.

In LVQ1 neural network, only one neuron in the compe-
tition layer is activated. The weight of the winning neuron
is modified, while the weight of the other neurons remains
unchanged. In LVQ2 neural network, two neurons in the
competition layer are activated in network training process.
These two neurons are the closest to the input vector, and
they are denoted aswinning neuron a and sub-winning neuron
b, respectively. During a training process, the weights of the
winning neuron a and the second winning neuron b are both
modified.

LVQ2 can take advantage of updating the weight vector
to speed up the optimal solution. At the same time, this
method can ensure the timeliness of traffic flow prediction,
and correspond to the actual traffic space accurate clustering
to achieve the correspondence of the space-time relationship.

III. QUANTUM GENETIC OPTIMIZATION LVQ NEURAL
NETWORK FOR SHORT-TERM TRAFFIC
FLOW PREDICTION
A. QGA-LVQ NEURAL NETWORK
LVQ neural network, like BP neural network, is sensitive
to initial weights and prone to local minima [8]. Lu et al.
applied the improved GA to BP neural network and obtained
better prediction results of the short-time traffic flow. In view
of the similar characteristics of LVQ neural network and
BP neural network, we intend to apply GA to LVQ neu-
ral network. Lin et al. proposed a quantum heuristic genetic
algorithm to solve the problem of dynamic continuous net-
work design [22]. Compared with GA, the QGA has the
following advantages: 1) richer population diversity; 2) fewer
populations; 3) better search capabilities; 4) faster conver-
gence speed; 5) higher convergence accuracy. QGA shows
better performance in dealing with nonlinear systems. Since
QGA has a better global solution, it is used to effectively
overcome the shortcoming of LVQ neural network that easily
falls into local minima. At the same time, the introduc-
tion of QGA reduces the sensitivity of LVQ neural net-
work to initial weights and improves the convergence speed.
Combining QGA and LVQ neural network, an algorithm of
Quantum Genetic Algorithm - Learning Vector Quantization
(QGA-LVQ) neural network for short - time traffic flow
prediction is proposed.

The main idea of QGA-LVQ neural network is to firstly
select the initial value for LVQ neural network through QGA
method, and then make the population gradually converge
to the optimal solution to further improve the classification
accuracy. The accuracy of classification is the premise of
traffic prediction. Only if the classification is accurate and
the convergence of each clustering operation can be achieved,
the traffic flow value in a specific time and space can be
predicted.

The prediction steps of QGA-LVQ neural network are as
follows:
Step1: The genetic algebra t is set to zero, that is t = 0,

and the population Q(t0) is initialized. Each individual of the
initial population is observed once to obtain a state p(t).
Step2: The fitness function of QGA-LVQ neural network

is determined according to the distance. The average distance
between random individuals in the population and sample
points in the input layer is used, which is calculated as equa-
tion (11).

Dk,t =
1
Nk

∑
j⊂Ft

∥∥xj − Pk,t∥∥ (11)

where Ft is the set of elements belonging to Class k , Nk is the
number of elements of Class k , and xj is an input vector of the
training samples of LVQ neural network.

Then, the fitness of the individual is calculated as equation
(12).

fitness =
1

1+ Dk,t
(12)

Step3: The termination condition of the iterative calcula-
tion is shown in equation (13).

D =
N∑
k=1

Dk,t −
N∑
k=1

Dk,t−1 (13)

where N is the number of input vectors for the samples.
If |D| < ε, the iterative calculation is over.
Step4: t = t + 1, and each individual in population Q(t) is

observed once. The fitness for each state is calculated. After
that, the population is updated with quantum revolving doors
to record the best individuals and their fitness. Then, go back
to Step 2.

B. APPLICATION OF QGA-LVQ NEURAL NETWORK IN
SHORT-TERM TRAFFIC FLOW PREDICTION
Short-term traffic flow has the characteristics of time varia-
tion, non-linear and periodic stability, which is susceptible
to many factors in the actual environment. The proposed
QGA-LVQ neural network provides a good idea for short-
term traffic flow prediction. First, the short-time traffic flow
data set is constructed, and then the QGA-LVQ neural net-
work is generated through training the sample data, so as to
achieve efficient prediction.

The short-time traffic flow prediction process based on
QGA-LVQ neural network is described in Fig. 3, which
includes the schematic diagram.
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FIGURE 3. The schematic diagram of short-term traffic flow prediction process based on QGA-LVQ neural network.

The short-term traffic flow signal is input to the learning
network, and the data is classified and converged to 0 or 1
through the QGA network preprocessing mode. These clas-
sification data are then subjected to cluster processing of the
LVQ network to solve the global optimal solution, so as to
achieve the goal of predicting short-term traffic flow values.
Step1: The traffic flow data collected by ground monitors

are denoised by wavelet analysis in order to remove the
interference signals. In the process of data monitoring, some
encryption technologies [23], [24], [29]–[32] are considered
to use for the sake of security of the monitor network
Step2: The data that denoised are divided into training data

and test data.
Step3: Both training samples and test samples are

normalized.
Step4: LVQ neural network parameters and QGA parame-

ters are initialized.
Step5: The weights are optimized by QGA method.
Step6: Test samples are used to test the short-term predic-

tion performance of QGA-LVQ neural network.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DESCRIPTION OF EXPERIMENTAL DATA SET AND
EXPERIMENTAL ENVIRONMENT
For sake of assessing the feasibility of the proposed method,
five urban short-term traffic flow datasets are used for simu-
lation experiments. Dataset 1, Dataset 2 and Dataset 3 are all
from the traffic data research laboratory at the University of
Minnesota Duluth of USA, where Dataset 1 is 1,440 sets of
data, Dataset 2 is 1,440 sets of data and Dataset 3 is 864 sets
of data. Dataset 4 and Dataset 5 are from PeMS system, and
both of them are 864 sets of data. The time interval of all the
short-term traffic flow data is 5minutes, and all the short-term

TABLE 2. Environment configuration of the simulation experiment.

TABLE 3. Experimental parameter configuration.

traffic flow data are normalized. The environment configura-
tion of the simulation experiment is shown in Table 2, and the
experimental parameter configuration is shown in Table 3.

B. ANALYSIS OF EXPERIMENTAL RESULTS
Five evaluation indicators [6]–[8] are used for comparative
analysis of the experimental results. Among them, the Mean
Absolute Percentage Error (MAPE), the Equal Coefficient
(EC), the Mean Absolute Error (MAE) and the Root Mean
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FIGURE 4. Short-term traffic flow prediction results based on QGA-LVQ
neural network on the Dataset 1.

Square Error (RMSE) are used to test the convergence and
optimization ability of the algorithm, and Running Time (RT)
is used to test the convergence rate. Running Time (RT) is
based on counting seconds. The other evaluation indicators
are calculated as follows.

The Mean Absolute Percentage Error (MAPE) is shown in
equation (14).

MAPE =
1
N

∑
t

∣∣∣∣Yp(t)− Yr (t)Yr (t)

∣∣∣∣× 100% (14)

The Equal Coefficient (EC) is shown in equation (15).

EC = 1−

√(
Yp(t)− Yr (t)

)2∑
t
(
Yp(t)

)2
+
∑

t (Yr (t))
2

(15)

The Mean Absolute Error (MAE) is shown in equa-
tion (16).

MAE =
1
N

∑
t

∣∣Yp(t)− Yr (t)∣∣ (16)

The Root Mean Square Error (RMSE) is shown in equa-
tion (17).

RMSE =

√∑
t
(
Yp(t)− Yr (t)

)2
N

(17)

where N is the number of test samples, Yp(t) is the predicted
output value of the QGA-LVQ neural network at Time t and
Yr (t) is the actual traffic flow value at Time t .
Fig. 4 shows the short-term traffic flow prediction results

based on the QGA-LVQ neural network on the Dataset 1.
Table 4 shows the evaluation results of short-term traffic
flow prediction based on the QGA-LVQ neural network that
runs 10 times. It can be seen from Fig. 4 and Table 4 that the
predicted results of the proposed QGA-LVQ neural network
is almost consistent with the actual traffic flow, which verifies
its feasibility.

TABLE 4. Evaluation results of QGA-LVQ neural network that runs 10
times.

TABLE 5. Comparative analysis of three neural networks.

TABLE 6. Prediction results of QGA-LVQ neural network on five data sets.

In addition, the experiments are conducted to compare
the proposed QGA-LVQ neural network with GA-BP neural
network [8] and wavelet neural network [7] on the dataset1,
and the comparison results are shown in Table 5. As can be
seen from Table 5, compared with the other two neural net-
work prediction algorithms, the proposed QGA-LVQ shows
better prediction performance. In particular, the MAPE of
QGA-LVQ is approximately 25% lower than that of GA-BP.
Though the running time of QGA-LVQ neural network is
longer than that of wavelet neural network. This is because
the basis and the whole structure of wavelet neural network
are determined based on wavelet analysis theory, which leads
to faster convergence speed. However, the running time of
QGA-LVQ neural network is still about 7 seconds shorter
than that of GA-BP, with stronger real-time performance.
By comparing with the LVQ network, the input data pro-
cessed by the QGA network makes the LVQ network have
better convergence and reduces the error. It is worth mention-
ing that the prediction effect is better.

Table 6 shows the prediction results of the QGA-LVQ
neural network on five data sets, each of which was
run 10 times to average. It can be seen from Table 6,
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FIGURE 5. Real-time traffic data (blue) and forecast data (red) on a certain day.

FIGURE 6. Comparison of real-time traffic congestion with predicted value.

QGA-LVQ neural network obtains good prediction results
on all the five data sets in terms of convergence speed
and prediction accuracy. Therefore, it can be concluded
that the proposed QGA-LVQ neural network has stability
and reliability to some extent, and QGA-LVQ neural net-
work performs well in convergence speed and prediction
accuracy.

The experimental process tested the prediction of traf-
fic congestion on a certain road during one day and com-
pared it with the real-time traffic situation. As shown
in Figure 5, blue is real-time traffic data, and red is
model prediction data. The two data can basically match
with each other. The model can predict traffic congestion
one hour in advance, which provides early warning for
preventing traffic congestion. As shown in Figure 6, the
running speed of the vehicle in the real-time road condi-
tion information is counted, and a comparison test is per-
formed on the predicted value. The predicted value can
better reflect the traffic congestion is lower than the aver-
age commute, which is basically consistent with the actual
situation.

V. CONCLUSION
A method for predicting urban traffic network traffic based
on QGA-LVQ neural network is proposed. By using the
QGA with better global solution, the problems that LVQ
neural network is sensitive to initial weights and easy to
fall into local minimum are solved, and the convergence
speed is improved. On five general short-term traffic flow
data sets, the contrast experiments of QGA-LVQ neural net-
work, GA-BP neural network and wavelet neural network
are conducted. The experimental results show that, compared
with GA-BP neural network and wavelet neural network,
short-term traffic flow prediction based on QGA-LVQ neu-
ral network has better accuracy and real-time performance.
In particular, theMeanAbsolute Percentage Error (MAPE) of
QGA-LVQ is approximately 25% lower than that of GA-BP.
Besides, the experimental results on multiple data sets also
verify the stability and reliability of QGA-LVQ. By com-
paring with real-time data, the model prediction results can
realize real-time prediction of traffic congestion, and there is
a small deviation between the prediction results and the actual
situation.
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