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ABSTRACT The total control range of asymmetric dual three-phase permanent magnet synchronous motor
(ADT_PMSM) is divided into three different segments by voltage modulation range and current control
dimensions and respective control strategies to get the injected voltages in harmonic subspace for three
segments are presented in this paper. The three segments are sinusoidal current modulation region, sinusoidal
voltage modulation region and overmodulation region. In sinusoidal current modulation region, resonant
controller is adopted in the harmonic subspace to calculate the injected voltages, which can compensate the
effect of six-phase voltage source inverter (VSI) dead time for two sets of three-phase windings and takes
the pole correction into consideration. In sinusoidal voltage modulation region, open loop control strategy
in harmonic subspace is adopted. Overmodulation region 1 and 2 are defined in overmodulation region,
and the harmonic voltages which are injected into harmonic subspace to extend the modulation index are
calculated based on superposition principle and VSD theory. In order to achieve smooth transition from
different regions, a novel space vector pulse width modulation (SVPWM) technique for ADT_PMSM is
proposed. The experimental results demonstrate the validity and feasibility of the suggested control approach.

INDEX TERMS Asymmetric dual three-phase permanent magnet synchronous motor, modulation index,
dimensions of current control, modulation region, space vector pulse width modulation.

I. INTRODUCTION
Multi-phase motors received considerable attention lately
thanks to the unique characteristics of higher fault tolerance,
smaller torque ripples, advanced control strategies and the
rapid development of the multilevel inverters [1]–[6]. Among
these multiphase motors, ADT_PMSM can have the advan-
tages of multi-phase machines [3]. They also make full use of
the modular structure of conventional three-phase machines
as shown in Fig.1, which consists of two identical sets of
three-phase windings shifted by 30 degrees with isolated
neutral points.

The vector space decomposition (VSD) is widely emp-
loyed for the vector control of ADT_PMSM because it
can take the advantages of multi-degree freedom of multi-
phase motors, which includes two kinds of current control as
follows.

1) Two-dimension current control [7]–[10] can only con-
trol the currents in α-ß subspace where the variables in this
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FIGURE 1. Phase winding diagram of ADT_PMSM.

subspace participate in electromechanical energy conversion.
While the reference voltages in x-y subspace is controlled
to zero by the appropriate pulse width modulation (PWM)
algorithm [7] or optimized switching-table-based direct
torque control (ST_DTC) strategies [8]–[10]. But the 5th
and 7th current harmonics because of the nonlinearities of
inverter are mapped into x-y subspace, which will produce
larger harmonic currents. Therefore, two-dimension current
control cannot achieve desired performances in practical
applications.
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2) Four-dimension current control can establish closed
loop control strategies in two subspaces simultaneously. The
harmonic currents in x-y subspace are suppressed to zero by
closed-loop controller in this subspace, which shows better
performances in harmonic current suppression [11]–[18].

Because of the advantages of four-dimension current con-
trol on the basis of the VSD theory, a lot research findings
set up closed current loop control in both subspaces in the
linear modulation region, which can make compensations
for dead time caused by the nonlinear characteristics of
inverter. PI controllers of parallel connection based on multi-
ple synchronous frames (MSF) scheme (one per harmonic)
are adopted in the harmonic subspace to suppress the har-
monic currents in multiphase motors, and zero steady-state
error can be achieved at different orders [11]. But it adds
complexity to the computation. Resonant controller can be a
perfect substitute for PI regulators based on MSF in parallel
connection [12]–[15]. The calculation complexity is reduced
in comparison with the implementation of PI controller in
MSF in parallel [14], [15]. Accordingly, an improved res-
onant controller in [16]–[18] on the basis of a novel syn-
chronous rotating matrix is employed in x-y subspace to
eliminate the harmonic currents. However, the results are not
as expected because they don’t take the pole errors at the
resonant frequency into account.

Extra voltages should be injected into the harmonic sub-
space so that the ADT_PMSM can operate in the over-
modulation region, so the currents cannot be controlled
in the harmonic subspace in the overmodulation region.
Two-vector space vector pulse width modulation (SVPWM)
technique can easily be extended to the overmodulation
region. But it injects large amount of harmonic voltages
into the harmonic subspace, which will lead to heavy har-
monic currents [19], [20]. Accordingly, four-vector SVPWM
is employed to reduce the injected harmonic voltage into
harmonic subspace [21], [22]. However, it cannot achieve
the minimum injected harmonic voltages. In [23], minimum
injected harmonic voltages into x-y subspace can be achieved.
But the modulation index can only reach 0.9883. Besides, the
PWM waveforms of the methods mentioned above are not
symmetric on condition that the switching device is guaran-
teed to turn-on and-off only once in each PWM period [19].
In [7], a simple classification algorithm is utilized and the
three-phase SVPWMalgorithm is employed to achieve PWM
implementation. It can achieve the maximum modulation
index, which is proved to be equal to the maximum modula-
tion index of three-phase motors [24], [25], but large current
harmonics arise because of the injected voltage harmonics
and small leakage inductance in harmonic subspace. For the
sake of minimizing the current harmonics in x-y subspace,
optimal PWM algorithm is adopted, which can synthesize the
voltage vectors in both subspaces at the same time. However,
the complexity to solve the optimization problem is very
heavy. Two methods of optimization are adopted for the
five-phase motors [26], [27], takes the commonmode voltage
into account.

TABLE 1. Comparison with other literature findings.

Besides, none of the research findings give the division
principle between the linear modulation region and the over-
modulation region to the knowledge of authors. This paper
gives the division principle for the full modulation range and
respective control strategies in the different modulations. And
other research findings cannot cover the whole modulation
range. References [7]–[13] only studied the linear modula-
tion region, while [19]–[28] only discuss the overmodulation
region as shown in Table 1. Besides, the performances in each
modulation region are not as expected.

This paper is structured in the following way. Section 2
gives PWM techniques and divisions of modulation regions
for ADT_PMSM in full modulation range. The control meth-
ods for the linear modulation region and overmodulation
region are presented in section 3 and section 4 respectively.
Section 5 gives the experimental results. Section 6 concludes
this paper.

FIGURE 2. Phase windings of ADT_PMSM fed by two three-phase VSIs.

II. PWM TECHNIQUES AND DIVISIONS OF MODULATION
REGION FOR ADT_PMSM IN FULL MODULATION RANGE
Fig.2 gives the structure of ADT-PMSM. It consists of two
sets of three-phase windings, which are identical and supplied
by two three-phase VSIs.

Based on the VSD theory [18], the motor variables (includ-
ing flux, voltage and current) are mapped into three subspaces
which are orthogonal to each other, i.e., α-ß (fundamental),
x-y (harmonic) and O1-O2 subspaces. The fundamental com-
ponent and the 12n±1 order harmonic components make
contributions to the electromechanical energy conversion and
are mapped into α-ß subspace. The x-y subspace contains
harmonics of the orders 6n±1, which only give rises to
losses and should be eliminated to get a higher efficiency of
ADT_PMSM. The zero sequence component and harmonic
orders of 3n exist in O1-O2 subspace, which are not taken into
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FIGURE 3. Current control block diagram for ADT_PMSM.

consideration since the neutral points are isolated and they
cannot flow. Therefore, the control system for ADT_PMSM
on the basis of VSD theory can be viewed as a four-order
system and it needs current controller in both α-ß and x-y sub-
spaces. The relation between the double dqmodelling scheme
and VSD modelling approach is discussed in [18]. The VSD
transformation based on themagnitude invariant principle can
be obtained in equation (1).
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The phase currents of ADT_PMSM after the VSD matrix
will be mapped into α-ß and x-y subspaces, which can be
expressed in equation (2). The other variables (flux, voltage)
can be derived in a similar way.[
iα iβ ix iy

]T
= TVSD ∗

[
iA iB iC iD iE iF

]T
(2)

Fig. 3 depicts the current control block diagram of
ADT_PMSM on the basis of VSD theory. In α-ß sub-
space, Uα and Uß can be acquired by the internal model
control (IMC) method which can be found in [16], [17].

In x-y subspace, Ux and Uy can be determined according
to the modulation region, which will be discussed in the
following sections.
Ux andUy can be determined in terms of the control strate-

gies in different modulation regions, which will be discussed
in the following sections. The reference voltage vectors in α-ß
and x-y subspaces are given in vector form as in equation (3).

−−→
Uαβ = Uα + jUβ

−→
Uxy = Ux + jUy (3)

The reference voltage vectors in both α-ß and x-y sub-
spaces are supposed to be modulated by the six-phase VSI
simultaneously. And they could be resolved into two groups
of voltage vectors for two three-phase VSIs shifted by
30 electrical degrees through the matrix TD as in equation (4).

TD =


1 0 1 0
0 1 0 −1
√
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 (4)

After employing the matrix TD, the voltage vectors for two
three-phase VSIs shifted by 30 electrical degrees can be given
in equation (5).[
Uα1 Uβ1 Uα2 Uβ2

]T
= TD ∗

[
Uα Uβ Ux Uy

]T (5)

The modulation section can be divided into 12 sectors as
depicted in Fig. 4.
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FIGURE 4. The division of modulation section for ADT_PMSM.

Assuming that the reference voltage vector resides in sec-
tor 1. The traditional SVPWM technique for three-phase
motors can be adopted, which can achieve the maximum
fundamental component 2Udc/π . Switching vectors (100) and
(110) are adopted for windingsABC,while thewindingsDEF
chooses the switching vectors (100) and (101). The following
equations can be derived in terms of the volt-second balance
principle.

−−→
Uαβ1Ts =

−−−−−→
U100ABCT100ABC +

−−−−−→
U110ABCT110ABC

−−→
Uαβ2Ts =

−−−−−→
U100DEFT100DEF +

−−−−−→
U101DEFT101DEF

−−→
Uαβ1 = Uα1 + jUβ1
−−→
Uαβ2 = Uα2 + jUβ2

(6)

So the on-durations for the switching vectors of two three-
phase windings can be given by

T100ABC =

√
3
∣∣∣−−→Uαβ1∣∣∣
Udc

Ts sin(
π

3
− α1)

T110ABC =

√
3
∣∣∣−−→Uαβ1∣∣∣
Udc

Ts sinα1

T100DEF =

√
3
∣∣∣−−→Uαβ2∣∣∣
Udc

Ts sin
(
α2 +

π

6

)
T101DEF =

√
3
∣∣∣−−→Uαβ2∣∣∣
Udc

Ts sin
[π
3
− (α2 +

π

6
)
]

(7)

where α1 and α2 are the vector angles of
−−→
Uαβ1 and

−−→
Uαβ2

respectively as depicted in Fig.4, which can be expressed as
α1 = arctan

∣∣∣∣Uβ1Uα1

∣∣∣∣
α2 = arctan

∣∣∣∣Uβ2Uα2

∣∣∣∣ (8)

The modulation index M for ADT_PMSM can inherit
the modulation index for three-phase motors, which can be

defined as

M =
π

2

∣∣∣−−→Uαβ ∣∣∣
Udc

(9)

where
−−→
Uαβ = Uα + jUβ

Linear modulation region and overmodulation region can
be defined according to the modulation index M . When
0≤ M ≤0.9069, ADT_PMSM operates in linear modula-
tion region. When 0.9069< M ≤1, ADT_PMSM operates in
overmodulation region.

According to the inverse transformation of VSD matrix,
the phase voltages of ADT_PMSM can be expressed as

UA =
∣∣∣−−→Uαβ ∣∣∣ cos γ + ∣∣∣−→Uxy∣∣∣ cos γz

UB =
∣∣∣−−→Uαβ ∣∣∣ cos(γ − 2π

3
)+

∣∣∣−→Uxy∣∣∣ cos(γz + 2π
3
)

UC =
∣∣∣−−→Uαβ ∣∣∣ cos(γ + 2π

3
)+

∣∣∣−→Uxy∣∣∣ cos(γz − 2π
3
)

UD =
∣∣∣−−→Uαβ ∣∣∣ cos(γ − π6 )+ ∣∣∣−→Uxy∣∣∣ cos(γz − 5π

6
)

UE =
∣∣∣−−→Uαβ ∣∣∣ cos(γ − 5π

6
)+

∣∣∣−→Uxy∣∣∣ cos(γz − π6 )
UF =

∣∣∣−−→Uαβ ∣∣∣ cos(γ + π2 )+ ∣∣∣−→Uxy∣∣∣ cos(γz + π2 )

(10)

where
−→
Uxy = Ux + jUy

The line voltage UAB can be calculated in equation (11).

UAB = −
√
3
∣∣∣−−→Uαβ ∣∣∣ sin(γ − π3 )+√3 ∣∣∣−→Uxy∣∣∣ sin (γz + π3 )

(11)

The other line voltages can be expressed in the similar
form as equation (11). The amplitude of line voltage must
be smaller than the bus voltage.

|UAB| ≤
√
3
∣∣∣−−→Uαβ ∣∣∣+√3 ∣∣∣−→Uxy∣∣∣ ≤ Udc (12)

where Udc denotes the bus voltage
Equation (12) can be simplified as follows.∣∣∣−−→Uαβ ∣∣∣+ ∣∣∣−→Uxy∣∣∣ ≤ Udc

√
3

(13)

Therefore, the voltage vectors in both subspaces can be
modulated on condition that the amplitudes of voltage vectors
satisfy equation (13). And closed current control loops are
designed in both subspaces, which can compensate for the
dead time of inverter and can be called the sinusoidal current
modulation area.

The maximal voltage vector that can be synthesized in
α-ß subspace is Udc/

√
3 in the linear modulation region.

So no current regulator is designed in x-y subspace when the
voltage vector satisfies equation (14). The command voltage
Ux and Uy are set to be zero without injecting extra harmonic
voltages, which is two-dimension current control and can be
called sinusoidal voltage modulation area.∣∣∣−−→Uαβ ∣∣∣+ ∣∣∣−→Uxy∣∣∣> Udc/

√
3 and

∣∣∣−−→Uαβ ∣∣∣ ≤ Udc/√3 (14)
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TABLE 2. The voltage modulation range of three vector control regions.

When the voltage vector satisfies equation (15), injecting
extra harmonic voltages into x-y subspace is necessary for
the synthesis of voltage vector in α-ß subspace, which can
be called overmodulation area and contains a lot of harmonic
currents.

Udc/
√
3 <

∣∣∣−−→Uαβ ∣∣∣ ≤ 2Udc/π (15)

The voltage modulation range of three vector regions is
illustrated in Table 2. It is remarked that equation (13) is a
sufficient but not necessary condition that the voltage vectors
can be synthesized at the same time, i.e., equation (13) corre-
sponds to an arbitrary value of angle between

−−→
Uαβ and

−→
Uxy.

The sum value of
∣∣∣−−→Uαβ ∣∣∣ and ∣∣∣−→Uxy∣∣∣ can still increase when

the angle between
−−→
Uαβ and

−→
Uxy satisfies a specific relation-

ship. But the angle between
∣∣∣−−→Uαβ ∣∣∣ and ∣∣∣−→Uxy∣∣∣ can be any

combination. It will be more complicated if all the cases are
judged. So equation (13) is simple and effective though it
is not absolutely correct to be used as the dividing principle
for sinusoidal current modulation area and sinusoidal voltage
modulation area.

III. CONTROL OF ADT_PMSM IN LINEAR
MODULATION REGION
A. CURRENT HARMONIC ANALYSIS
After the VSD transformation [5], the current vector are
expressed as follows.

−→
iαβ = iα + jiβ = iα1 + iα2 + j(iβ1 + iβ2) (16)
−→
ixy = ix + jiy = iα1 − iα2 − j(iβ1 − iβ2) (17)

The fifth and seventh current harmonics for two sets of
three-phase windings can be given by

−→
I h
αβ1 = k1Ie−5jwet + k2Ie7jwet

−→
I h
αβ2 = k3Ie−5jwet + k4Ie7jwet (18)

And the weights of fifth and seventh current harmonics in
phase windings ABC are represented by k1 and k2. k3 and
k4 denote the weights of fifth and seventh harmonic currents
of the other phase windings DEF.

Based on the equations (17),(18) and VSD theory, the cur-
rent harmonics in x-y subspaces can be expressed in the
following form.

−→
I h
xy = (k1 − k3)Ie5jwet + (k2 − k4)Ie−7jwet (19)

It is apparent that the fifth and seventh harmonic currents
become +5th and -7th in x-y subspace. A novel synchronous
rotating coordinate matrix is suggested here to transform
the +5we and −7we current harmonics to +6we and −6we
respectively as illustrated in equation (20).

TT =


cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 cos θ − sin θ 0 0
0 0 sin θ cos θ 0 0

 (20)

So the fifth and seventh harmonic currents after the trans-
formation in x1-y1 coordinate axis are given by[

I6x1
I6y1

]
=

[
Ixs sin(6wet)+ Ixc cos(6wet)
Iys sin(6wet)+ Iyc cos(6wet)

]
(21)

where x1-y1 coordinate axis being the anti-synchronous ref-
erence frame which rotates at -we.

B. RESONANT CONTROLLER IN X-Y SUBSPACE
Resonant controller allows good performances of tracking
of sinusoidal references of arbitrary frequency, which can
achieve zero steady state error and is a substitute for the
Proportional-Integral (PI) controllers carried out in positive
and negative synchronous reference frames (SRF) to suppress
the harmonic currents at the same time. It also has the merits
on reducing the calculation complexity because it lacks in
multiple coordinate transformations when it is compared with
the traditional PI controllers carried out in several SRFs [14].
Besides, it can avoid the independence on motor parame-
ters [11]–[18]. Therefore, it is a perfect option for the current
controller in x-y subspace.

The resonant controller that provides perfect tracking of
the harmonics of order h can be given as follows.

GCR (s) = KR
s cosφ − hwe sinφ

s2 + (hwe)2
(22)
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where h being the harmonic order, the gain for the resonant
controller can be represented by KR, ϕ is an extra degree
of freedom which gives a compensation angle at hwe. So it
can provide compensation for the phase delay induced by the
computational as well as PWM update delay and inductive
load [12], [13], [28] at hwe in order to avoid the instability of
the controller designed in x-y subspace. The Bode plot of the
resonant controller (taking the resonant frequency 100rad/s
for example) is depicted in Fig. 5.

FIGURE 5. Bode diagram for the resonant controller.

FIGURE 6. Block diagram of continuous resonant controller implemented
by two integrators.

As discussed in [12], [13], resonant controller can be
implemented with two integrators as illustrated in Fig. 6.
hwe is regulated online by means of the fundamental fre-
quency to be controlled, which can be calculated by the phase
locked loop (PLL) algorithm [29]. The method is employed
widely because it offers the merits of frequency adaption and
the integrators can be discretised separately.

As discussed before, two integrators should be discretised
in order to make the resonant controller implemented in
digital signal processor (DSP), since the expression is in
the continuous domain and cannot be implemented directly
in DSP. The good performance of tracking needs to place the
poles at ejweTs and e−jweTs accurately. The denominator of the

equation (22) after the product of both terms can be obtained
as follows.

1− 2z−1 cos(hweTs)+ z−2 (23)

In the process of discretization, the direct integrator adopts
the forward Euler method, while the feedback integrator
adopts the back Euler method is adopted, which can be shown
in Fig. 7.

FIGURE 7. Digital resonant controller implemented with two integrators.

The denominator after the discretization depicted in
Fig. 7 is

1− 2z−1(1− h2w2
eT

2
S

/
2)+ z−2 (24)

One can see that the actual resonant frequency is not placed
at the desired resonant frequency exactly when equation (23)
is compared with equation (24).

Calculating the trigonometric function online will cost
large amounts of resources. A substitute for this is Taylor
series, which can make approximations of trigonometric
function. And coshweTs is approximated as in equation (25).

cos hweTs

= 1−
(hweTs)2

2!
+

(hweTs)4

4!
− · · · +

(−1)n(hweTs)2n

(2n)!︸ ︷︷ ︸
k=2n

(25)

Therefore, the Taylor series can be used as a substitute
for trigonometric function for the implementation of resonant
controller in z-domain as shown in Fig. 8.

FIGURE 8. Block plot for digital resonant controller including the
proposed resonant pole corrections.
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FIGURE 9. Current regulation system in x-y subspace.

C. STABILITY ANALYSIS IN X-Y SUBSPACE
Fig. 9 gives the current regulation system in x-y subspace
which includes the plant model and resonant controller.

In order to avoid the instability of resonant controller in
x-y subspace, ϕ should be accurately calculated. Here a ZOH
equivalent model is established, where the effects of PWM
can be reflected. Besides, it contains one sample control delay
because of computational delay aswell as PWMupdate delay.
The plant model can be expressed as in equation (26).

P(z) =
IZ (z)
UZ (z)

= z−1 ∗ Z
{
L {Latch}

1
Lzs+ R

}
= z−1 ∗

(
1− z−1

)
∗ Z (

1
s(Lzs+ R)

)

=
z−2

R
1− e−RTS/LZ

1− z−1e−RTS/LZ
(26)

where Z() being the Z transform, z = ejweTs .
It is noteworthy that LZ and R represent the leakage induc-

tance and resistance respectively, which differs from α-ß
subspace. For the purpose of making compensation for the
phase delay, equation (27) is supposed to be fulfilled.

φ=−6 P(z)=− arctan(
e−RTS/Lz sin(hweTs)−sin(2hweTs)
cos(2hweTs)−e−RTS/Lz cos(hweTs)

)

(27)

λ denotes the slope of equation (27) at the resonant fre-
quency hwe.

λ = −
∂ 6 P(z)
∂(hwe)

= Ts
2+ e−2RTs/Lz − 3e−RTs/Lz cos(hweTs)
1+ e−2RTs/Lz − 2e−RTs/Lz cos(hweTs)

(28)

Because Ts is 0.00005s in this research, equation (29) is
derived as follows.

e−2RTs/Lz ≈ 1−
2RTs
Lz
≈ 1

e−RTs/Lz ≈ 1−
RTs
Lz
≈ 1 (29)

λ can be calculated based on the equations (28) and (29),
which is about 3/2.
ϕ is 0 at the origin when we takes the value of 0. There-

fore, the angle ϕ to be compensated can be approximately
linearized in equation (30).

φ = 1.5hweTs (30)

Therefore, Ux and Uy can be determined in the sinusoidal
current modulation area, which is four-dimension current
control. While Ux and Uy are 0 in sinusoidal voltage mod-
ulation area, which is two-dimension current control.

IV. CONTROL OF ADT_PMSM IN
OVERMODULATION REGION
Six basic voltage vectors of the three-phase voltage source
inverter (VSI) can form a regular hexagon as depicted
in Fig. 4. Three basic voltage vectors

−→
Usin,

−−→
Uhex and

−−→
Usix

are defined in this paper.
−→
Usin defines the voltage vector

corresponding to the maximal linear modulation index and
the trajectory is the inscribed circle of the regular hexagon.
The trace of

−−→
Uhex is on the regular hexagon and the trace of

−−→
Usix is on the vertex of the regular hexagon. The expressions
of
−→
Usin,
−−→
Uhex and

−−→
Usix are given by

−→
Usin =

Udc
√
3
ejθ (31)

−−→
Uhex =

Udc
√
3 cos(θ− (2n−1)π

6 )
ejθ ,

(n−1)π
3
≤θ≤

nπ
3

(32)

−−→
Usix =

2Udc
3

ej
(n−1)π

3 ,
nπ
3
−
π

2
≤ θ ≤

nπ
3
−
π

6
(33)

n =
[
θ/600

]
+ 1 (34)

where θ represents the angle between the voltage vector
−−→
Uαβ and switching vector (100) of phase windings ABC,
and

[
θ/600

]
takes the largest integral value smaller than

θ/600 ·
−→
Usin and

−−→
Uhex share the same phase angle with

−−→
Uαβ ,

and
−−→
Usix is the closet voltage vector to

−−→
Uαβ . The fundamental

amplitude of
−→
Usin,

−−→
Uhex and

−−→
Usix are 0.577Udc, 0.606Udc

and 0.637Udc respectively, corresponding to the modulation
index (M ) 0.9096, 0.9514 and 1.

A. OVERMODULATION REGION 1 (0.9069<M≤0.9514)
The modulation section is divided into 12 sectors as depicted
in Fig. 4. Overmodulation region 1 is defined as follows.
When the reference voltage vector exceeds the inscribed
circle corresponding to

−→
Usin of the hexagon and is within the

circular trajectory of
−−→
Uhex . In this case, the part of reference

voltage exceeding hexagon cannot be synthesized by the
switching vectors. So the amplitude or the phase angle of
reference voltage vector

−→
Uαß should be modified in order to

make the average voltage of output equal to the reference
voltage vector

−→
Uαß in a switching period.

Take sector 1 for example and other sectors can be
derived in a similar way. According to the superposition
principle, a linear combination of

−→
Usin and

−−→
Uhex will be

used to reconstruct reference voltage vector
−→
Uαß as depicted

in Fig.10.
The principle is that the phase of

−→
Usin and

−−→
Uhex is consistent

with the reference voltage vector
−→
Uαß. The weight coefficient

of k1 can make the fundamental amplitude of the synthesized
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FIGURE 10. Overmodulation region 1. (a) Phase windings ABC. (b) Phase windings DEF.

vector equal to that of the reference voltage vector
−→
Uαß,

which can be expressed in equation (35).

k1 =
M −M1

M2 −M1
(35)

The synthesized voltage vectors can be expressed as
follows.{−−−−−→

Uref _ABC = k1
−−−→
Uhex1 + (1− k1)

−−→
Usin 1

−−−−−→
Uref _DEF = k1

−−−→
Uhex2 + (1− k1)

−−→
Usin 2

(36)

whereM1 = 0.9069;M2 = 0.9514, andM can be calculated
based on equation (9). According to the VSD theory, Uα , Uß,
Ux and Uy in overmodulation region 1 can be given by

Uα =
∣∣∣−−−−−→Uref _ABC

∣∣∣ cos θ + ∣∣∣−−−−−→Uref _DEF
∣∣∣ cos θ

Uβ =
∣∣∣−−−−−→Uref _ABC

∣∣∣ sin θ + ∣∣∣−−−−−→Uref _DEF
∣∣∣ sin θ

Ux =
∣∣∣−−−−−→Uref _ABC

∣∣∣ cos θ − ∣∣∣−−−−−→Uref _DEF
∣∣∣ cos θ

Uy = −
∣∣∣−−−−−→Uref _ABC

∣∣∣ sin θ + ∣∣∣−−−−−→Uref _DEF
∣∣∣ sin θ

(37)

In terms of equations (7), (8) and (36), the dwell time of
each switching vector can be calculated.
In sector 1, in terms of equation (36), the amplitudes of the

synthesized voltage vectors of the two three-phase windings
in the fundamental subspace can be expressed as follows.

∣∣∣−−−−−→Uref _ABC
∣∣∣ = k1

Udc
√
3 sin(1200 − θ )

+ (1− k1)
Udc
√
3∣∣∣−−−−−→Uref _DEF

∣∣∣ = k1
Udc
√
3 cos θ

+ (1− k1)
Udc
√
3

(38)

The fundamental amplitude can be analysed by Fourier
Transform.{

f1(
−−−−−→
Uref _ABC ) = f1(

−−−−−→
Uref _DEF ) =

∣∣Uα + jUβ ∣∣
f1(
−−→
Uref ) =

∫ 2π
0

∣∣∣−−→Uref ∣∣∣ cos θdθ (39)

where f1(Uref ) is the fundamental component after the
Fourier Transform. The fundamental amplitude of the synthe-
sized voltage vector is equal to that of the reference voltage
vector

−→
Uαß in the overmodulation region 1.

B. OVERMODULATION REGION 2 (0.9514<M≤1)
If reference voltage vector

−→
Uαß exceeds the circular trajectory

corresponding to
−−→
Uhex , ADT_PMSM operates in overmod-

ulation region 2. For the purpose of increasing the voltage
output, a linear combination of

−−→
Uhex and

−−→
Usix is adopted

to reconstruct the reference voltage vector
−→
Uαß as depicted

in Fig.11 and also take sector 1 for example.
The phase angle of

−−→
Uhex is still the same as that of the

reference voltage vector
−→
Uαß.

−−→
Usix adopts the principle of

proximity, which takes the nearest voltage vector to reference
voltage vector

−→
Uαß. The adjusted voltage vector is{−−−−−→

Uref _ABC = k2
−−→
Usix1 + (1− k2)

−−−→
Uhex1

−−−−−→
Uref _DEF = k2

−−→
Usix2 + (1− k2)

−−−→
Uhex2

(40)

where k2 =
M−M2
1−M2

The phase of the adjusted voltage vector is different from
the original reference voltage vector

−→
Uαß after introducing

the voltage vector
−−→
Usix . But it increases the voltage output

capability.
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FIGURE 11. Overmodulation region 2. (a) Phase windings ABC. (b) Phase windings DEF.

According to the VSD theory [5], Uα , Uß, Ux and Uy in
overmodulation region 2 can be expressed as follows.

Uα = k2
∣∣∣−−→Usix1∣∣∣+ (1− k2)

∣∣∣−−−→Uhex1
∣∣∣ cos θ

+k2
∣∣∣−−→Usix2∣∣∣ cos 300 + (1− k2)

∣∣∣−−−→Uhex2
∣∣∣ cos θ

Uβ = (1− k2)
∣∣∣−−−→Uhex1

∣∣∣ sin θ
+k2

∣∣∣−−→Usix2∣∣∣ sin 300 + (1− k2)
∣∣∣−−−→Uhex2

∣∣∣ sin θ
Ux = k2

∣∣∣−−→Usix1∣∣∣+ (1− k2)
∣∣∣−−−→Uhex1

∣∣∣ cos θ
−k2

∣∣∣−−→Usix2∣∣∣ cos 300 − (1− k2)
∣∣∣−−−→Uhex2

∣∣∣ cos θ
Uy = −(1− k2)

∣∣∣−−−→Uhex1
∣∣∣ sin θ

+k2
∣∣∣−−→Usix2∣∣∣ sin 300 + (1− k2)

∣∣∣−−−→Uhex2
∣∣∣ sin θ

(41)

According to equations (7), (8) and (41), the on-durations
of switching vectors can be obtained.
In terms of equation (40) and Fig.11, the amplitudes of the

synthesized voltage vectors of the two three-phase windings
in the fundamental subspace can be expressed as follows.{−−−−−→

Uref _ABC = Uref _ABC_α + jUref _ABC_β
−−−−−→
Uref _DEF = Uref _DEF_α + jUref _DEF_β

(42)

Uref _ABC_α ,Uref _ABC_ß,Uref _DEF_α andUref _DEF_ß can be
expressed in equation (43).

Uref _ABC_α =
2Udc
3

k2 +
Udc cos θ

√
3 sin(1200 − θ )

(1− k2)

Uref _ABC_β =
Udc sin θ

√
3 sin(1200 − θ)

(1− k2)

Uref _DEF_α =
Udc
√
3

Uref _DEF_β =
Udc
3
k2 +

Udc
√
3
(1− k2) tan θ

(43)

According to Fourier Transform, it can also be proved that
the fundamental amplitude of the synthesized voltage vector

FIGURE 12. Fundamental amplitude of synthesized voltage vector as a
function of M.

FIGURE 13. Experimental set-up.

is equal to that of the reference voltage vector
−→
Uαß in the

overmodulation region 2.
From the above analysis, the proposed method which

calculates the injected voltages in harmonic subspace in
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FIGURE 14. Performances with the suggested resonant controller not employed. (a) Phase A and Phase D currents. (b) THD of
Phase A current.

FIGURE 15. Performances after adopting resonant controller in harmonic subspace. (a) Phase A and Phase D currents. (b) THD of
Phase A current.

TABLE 3. Machine parameters.

TABLE 4. Computational time in different modulation regions.

overmodulation region is independent of machine param-
eters. Fig. 12 gives the relationship between fundamental

TABLE 5. Performances of resonant controller with different orders.

amplitude of the synthesized voltage vector and modulation
index. The value of longitudinal axis is normalized by the bus
voltageUdc. From the above analysis, the fundamental ampli-
tude of synthesized voltage vector has a linear relationship
with modulation index in the full modulation range, which
can realize smooth transitions between different modulation
regions.

V. EXPERIMENTAL VERIFICATION
For the purpose of verifying the effectiveness of the suggested
strategy, experiments are carried out. The experimental plat-
form shown in Fig. 13 is composed of an ADT_PMSM
and two traditional two-level three-phase VSIs manufactured
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FIGURE 16. Performances under load transient state. (a) Without the suggested resonant controller in harmonic subspace. (b) With the
suggested resonant controller in harmonic subspace.

FIGURE 17. The waveforms of currents in sinusoidal voltage modulation
region. (a) Phase current. (b) Current in α-ß subspace. (c) Current in x-y
subspace.

by Infineon. They are supplied by a direct current (DC) power
and switching actions are performed under the control of
a DSP (Infineon TC 277), where the proposed strategy is
implemented. The switching frequency is 20kHz with 1µs

FIGURE 18. The waveforms of currents in sinusoidal voltage modulation
region under load transient condition. (a) Phase current. (b) Current in
α-ß subspace. (c) Current in x-y subspace.

set for the dead time. The phase currents are obtained by six
hall-effect sensors and the sensor information for the speed
is collected by a digital encoder. A BLDC motor gives the
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FIGURE 19. The waveforms of currents in overmodulation region 1.
(a) Phase current. (b) Current in α-ß subspace. (c) Current in x-y subspace.

load to the ADT_PMSM. And the load torque is dependent
upon the speed. The phase currents are obtained by Current
probe (CP150) and displayed by the Teledyne Lecroy oscil-
loscope (WaveSurfer 3024). The parameters of ADT_PMSM
are given in Table 3.

The computational time of ADT_PMSMoperating in three
modulation regions is illustrated in Table 4. It is obvious that
the computational load is acceptable.

A. ADT-PMSM OPERATING IN SINUSOIDAL CURRENT
MODULATION AREA
Fig. 14 illustrates the experimental results in the sinusoidal
current modulation area where resonant controller is not
adopted. And the phase current is 35A.

The ADT-PMSM operates under current control mode
and the mechanical speed is maintained at 400r/min by
dynamometer. Ux and Uy are set to be 0. It can be found
that the phase currents are severely distorted because of
the nonlinear characteristics of VSI. And the total harmonic
distortion (THD) is 16.65%. Besides, it is obvious that the
5th and 7th harmonic currents make up the majority part of
harmonic currents

Fig. 15 shows the experimental results in the sinu-
soidal current modulation area where the proposed resonant

FIGURE 20. The waveforms of currents in overmodulation region 2.
(a) Phase current. (b) Current in α-ß subspace. (c) Current in x-y subspace.

controller is adopted. For the purpose of obtaining an appro-
priate k value, the experimental results of different orders
for the pole correction are given in Table 5 where the phase
current takes the value of 35A. One can find that the imple-
mentation of pole correction can utilize the fourth-order
approximation (k = 4), since an even bigger value for k can
make little contributions to the reduction of harmonic cur-
rents, but this will increase the computational complexity.

Considerable reduction of harmonic currents can be found
as illustrated in Fig. 15. The phase currents have been
improved a lot after employing the proposed resonant
controller (k = 4) and the THD of phase A current value is
reduced to 4.66% as shown in Fig 15(b) through the proposed
resonant controller.

For the purpose of testing the performances under tran-
sient state, load step change is applied to ADT_PMSM and
corresponding experiments are carried out. Fig. 16 gives the
experimental results when the ADT_PMSMundergoes a load
step change. The phase current undergoes a change from
10 A to 40A and mechanical speed is still kept at 400r/min.
One can see that the phase currents have obtained significant
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FIGURE 21. The waveforms of currents in overmodulation region 1 under
load transient condition. (a) Phase current. (b) Current in α-ß subspace.
(c) Current in x-y subspace.

improvements after employing the proposed resonant con-
troller. Therefore, a conclusion can be made that the proposed
scheme can offer continuous and steady compensation with
no abrupt break under transient state.

B. ADT-PMSM OPERATING IN SINUSOIDAL VOLTAGE
MODULATION AREA
Fig. 17 shows the experimental performances when
ADT_PMSM operates in the sinusoidal voltage modulation
area under the current control loop. Fig.17 (a) shows the phase
A current, iα is the current inα-ß subspace and ix is the current
in x-y subspace which are depicted in Fig.17 (b) and Fig.17
(c) respectively.

According to the VSD theory [18], iA is equal to the sum
of iα and ix . In practice, iα and ix cannot be displayed by
the oscilloscope, so the phase currents are stored in order to
calculate iα and ix based on the VSD matrix. From Fig. 17,
one can see that current harmonics will appear in x-y subspace
owing to the dead time effects in sinusoidal voltage modula-
tion area. Nearly no current distortions exist in α-ß subspace,
which will not affect the torque output performance.

FIGURE 22. The waveforms of currents in overmodulation region 2 under
load transient condition. (a) Phase current. (b) Current in α-ß subspace.
(c) Current in x-y subspace.

In order to verify the transient performances, Fig. 18 gives
the experimental results when a load step change is applied
to ADT_PMSM in the sinusoidal voltage modulation region.
The phase current suffers from 20A to 35A. It is apparent that
nearly no current distortions exist in the α-ß subspace under
load transient state. So the output torque performance will not
be influenced even if the load changes.

C. ADT-PMSM OPERATING IN OVERMODULATION AREA
Fig. 19 and Fig. 20 show the current waveforms in the over-
modulation region 1 and overmodulation region 2 respec-
tively. Compared to the sinusoidal voltage modulation area,
more harmonic currents exist in x-y subspace due to the
extra voltage harmonics which are injected into x-y subspace.
Besides, the distortions of phase currents in overmodula-
tion region 2 are more severe than those in overmodulation
region 1, because more harmonic voltages are injected into
x-y subspace in overmodulation region 2. It is obvious that
nearly no current distortions exist in the α-ß subspace in
overmodulation regions. So the output torque performance
will not be influenced.
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In order to test the transient performances, Fig. 21 and
Fig. 22 give the experimental performances under a load step
change in the overmodulation region 1 and 2 respectively.
The phase current suffers from 20A to 35A. Although a lot
of current harmonics exist in the phase current, nearly no
current distortions exist in the α-ß subspace under load tran-
sient state, which means that the output torque performance
will not be influenced even under load transient state in the
overmodulation region.

VI. CONCLUSION
In this paper, the total modulation range of ADT_PMSM is
divided into threemodulation regions according to the dimen-
sions of current control and voltage modulation range, which
are sinusoidal current modulation region, sinusoidal voltage
modulation region and overmodulation region. In sinusoidal
current modulation region, resonant controller is adopted in
x-y subspace to eliminate harmonic currents, which takes
the pole correction into consideration. In sinusoidal voltage
modulation region, the command voltage Ux and Uy are set
to be zero in x-y subspace, which is two dimensional current
control. The reference voltage vectors in x-y subspace when
ADT_PMSM operates in the overmodulation regions are cal-
culated based on the VSD theory and superposition principle.
A novel SVPWM technique for ADT_PMSM is presented to
achieve the smooth transition from linear modulation region
to overmodulation region. And the fundamental amplitude of
the synthesized voltage vector is proportional to the modula-
tion index in the full modulation range. The experimental per-
formances validate the feasibility of proposed control strategy
in both steady and transient states.
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