
Received May 15, 2020, accepted May 30, 2020, date of publication June 3, 2020, date of current version June 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999572

StreamingCube: Seamless Integration of Stream
Processing and OLAP Analysis
SALMAN AHMED SHAIKH 1 AND HIROYUKI KITAGAWA2, (Member, IEEE)
1Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
2Center for Computational Sciences, University of Tsukuba, Tsukuba 305-0006, Japan

Corresponding author: Salman Ahmed Shaikh (shaikh.salman@aist.go.jp)

This work was supported in part by JSPS KAKENHI under Grant JP20K19806 and Grant JP19H04114, and in part by the Project
Commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

ABSTRACT Many organizations require real-time analysis of their business data streams to make instanta-
neous decisions. Data streams are often multidimensional and at the lowest level of abstraction, yet analysts
are interested in their multilevel interactive analyses across several dimensions. Online analytical processing
(OLAP) is a technique whose utility has been proven for such an analysis. Traditionally, OLAP over streams
has been achieved by coupling a stream processing engine (SPE) with an OLAP engine. However, for
many organizations, this is not an effective solution as it results in lower performance, resource wastage,
and increased complexity and maintenance costs. Hence, we present StreamingCube, which is a unified
framework for stream processing and OLAP analysis. The idea of a unified framework is supported by the
observation that the incremental computation in stream processing and the maintenance of the materialized
view of OLAP have many similarities. To seamlessly integrate the SPE and OLAP, as well as to maintain
the OLAP lattice vertices incrementally, a cubify operator is introduced. StreamingCube supports two types
of queries, namely, continuous queries (CQs) and OLAP queries. To demonstrate the effectiveness of the
proposed framework, a detailed experimental evaluation is presented herein.

INDEX TERMS Continuous queries, cubify operator, incremental computing, materialized views, OLAP
analysis, stream processing, unified framework.

I. INTRODUCTION
In the contemporary global economy, organizations cannot
survive without analyzing their business data, and different
analytic tools and techniques are being used. Online analyti-
cal processing (OLAP) is one technique used to perform the
multidimensional analysis of data, although it was initially
utilized for static data. With the recent increase in the amount
of stream data, the demand for their analysis and processing
is on the rise. Many modern applications are a mixture of
streaming and analytical workloads. For instance, 1)Multina-
tional wholesale and retail chains (e.g.,Walmart, Costco, etc.)
are interested in analyzing their sales stream across several
dimensions (e.g., product, store, customer, etc.) in real time
to make timely decisions; 2) Telecommunication companies
receive the call records and data usage information of their
subscribers in the form of data streams and are interested in
analyzing bandwidth usage trends across area, day, and time

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen Chen .

dimensions to improve service provision for their customers.
In these examples, several multidimensional stream data are
at the lowest level of abstraction; however, data analysts are
interested in analyzing data at different levels of abstraction
and across different sets of dimensions. OLAP is a state-of-
the-art technique for analyzing static data, and it has also been
recently employed for data streams.

Although independent solutions for processing data
streams exist [1]–[9], as well as their OLAP analysis (drill-
down, roll-up, slice, and dice) [10], [11], few solutions are
viable for both applications. Traditionally, OLAP analysis
over data streams is achieved by coupling a stream process-
ing engine (SPE) with an OLAP engine. For instance, [12]
coupled µCosminexus SPE [13] with a locally developed
OLAP engine to process and perform OLAP analysis over
data streams. Similarly, SnappyData [14] integrated Apache
Spark [15] as a computational engine and Apache GemFire
as an in-memory transactional store to support transaction
processing and approximate analytical queries on high speed
data streams. However, coupling of multiple systems results

104632 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2204-8561
https://orcid.org/0000-0002-3258-7278

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

in lower performance and resource waste. For instance,
the data needed to be transferred from one system to another,
which may also require transformation, causing performance
degradation as well as the need for the data to be replicated
for each coupled system, resulting in wastage of storage
resources. Furthermore, coupling increases complexity and
maintenance cost of the overall system. Thus, this work
proposes an integrated framework, StreamingCube, to enable
stream processing and OLAP analysis on a single platform
with the help of a novel cubify operator. The idea of a
unified framework is supported by the observation that the
incremental computation in stream processing and OLAP’s
materialized view/vertex (hereafter, view and vertex are
used interchangeably) maintenance have many similarities.
StreamingCube is built on an incremental data processing
framework and supports all the essential stream processing
operators. To support OLAP operations, a cubify operator is
introduced, which incrementally maintains materialized ver-
tices within a dedicated cubify-window (c-window). An end
user needs to specify which vertices to materialize with the
help of a configuration file. StreamingCube supports two
classes of queries over data streams: 1) Continuous queries
(CQs) and 2) OLAP queries. CQs in our framework do
not only maintain OLAP materialized views but also gen-
erate continuous aggregates corresponding to OLAP lattice
vertices.

Use case scenario (Retail Chain OLAP Analysis) –
A retail chain collects sales data of its stores at the granu-
larity of the individual product, store location, supplier, and
promotion (under which the product is sold) dimensions. The
data arrive continuously as an infinite data stream. The end
user is interested in executing a continuous query on the
stream and directing the output to some application program.
Furthermore, (s)he is interested in its real-time interactive
analysis across different dimensions. Traditionally, this is
achieved by coupling an SPE with an OLAP engine. Since
the business streams of retail chains and similar organiza-
tions are not so velocious (Walmart, one of the largest retail
chains, receives 17,000 online orders per minute, which is
approximately 283 orders per second [16]), they do not need
complex distributed solutions capable of handling millions of
tuples per second using dedicated SPEs and OLAP engines.
Although such solutions can handle huge data traffic, their
deployment and maintenance costs are too high and are use-
less to organizations with low to medium data processing
and analytical requirements. Hence, for such organizations,
a unified framework is more desirable.

This work is an extended version of our StreamingCube
demo paper [17]. In contrast to the demo paper, this
paper presents the technical details of StreamingCube and
its data structures. Furthermore, an extensive experimental
study is presented to evaluate the proposed framework. The
main contributions of this work are summarized below as
follows:
• An integrated framework StreamingCube, which sup-
ports the following:

1) All essential stream processing operators, includ-
ing windowing, select, join, etc., wherein the oper-
ators’ synopses are maintained incrementally.

2) Interactive OLAP analysis with the help of the
introduced cubify operator.

• A prototype system corresponding to the proposed uni-
fied framework.

• A detailed experimental evaluation to demonstrate the
effectiveness of the proposed framework and the cubify
operator.

The rest of the paper is organized as follows: Related
works are discussed in Section II, while some essential con-
cepts are presented in Section III. In Section IV, the Stream-
ingCube data processing framework is presented. Details of
the proposed cubify operator are given in Section V, while
in Section VI, the query specification of the proposed frame-
work is presented. Incremental processing to maintain syn-
opses and materialized views in the proposed framework is
presented in Section VII. The StreamingCube architecture is
discussed in Section VIII. The detailed experimental evalu-
ation is presented in Section IX, while Section X concludes
this work and discusses some future directions.

II. RELATED WORK
Since the focus of this work is multifold, i.e., stream pro-
cessing, OLAP analysis, and the maintenance of materialized
views, we divide this section into two.

A. STREAM OLAP
Stream processing has recently gained significant atten-
tion given the exponential growth in data stream sources.
Several SPEs have been proposed and developed by academic
researchers as well as industries whose primary objective
is to process high velocity data streams effectively. Apache
Storm [1], Apache Flink [2], STREAM [3], Aurora [4],
Borealis [5], Apache Samza [6], MillWheel [7], S4 [18],
etc., are some well-known and commonly used SPEs, most
of which employ incremental computation for processing
data streams. However, these systems do not support OLAP
analysis over data streams, which is an essential requirement
of many organizations nowadays.

However, OLAP over static relational data and the main-
tenance of materialized views have been intensively stud-
ied by database researchers for decades. [19] investigated
the issue of nodes materialization when it was expensive
to materialize all the OLAP lattice nodes. They presented
a greedy algorithm that determined a good set of nodes to
be materialized. Aouche et al. in [20] proposed to couple
materialized views and index selection to consider view-
index interaction and achieve efficient storage space sharing
in OLAP. [21] proposed a systematic study of the OLAP
view and index-selection problem. C. Joslyn et al. [22] made
used of statistical techniques for effective view maintenance.
However, the focus of these works was OLAP analysis over
static data rather than data streams. Hence, they are unsuitable
for data streams.

VOLUME 8, 2020 104633

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

One of the earliest studies on stream OLAP was conducted
by J. Han et al. [10]. They proposed an architecture to facili-
tate OLAP for streams. To reduce the query response time and
the storage cost, their system keeps distant data and very new
data at coarser and finer granularities, respectively, and pre-
computes some OLAP queries at coarser, intermediate, and
finer granularity levels. E. Lo et al. in [23] presented anOLAP
solution for sequential data, i.e., for data streams that exhibit
logical ordering among their data items. However, their solu-
tion is a good fit for sequence data rather than general data
streams. A framework to support the OLAP-style interac-
tive exploration of Twitter data by the hierarchical spatio-
temporal hashtag clustering of Twitter streams was proposed
by W. Feng et al. [24]. However, their solution is extremely
specific and targets clusters of textual data (hashtags) based
on the time and locations of tweets, and thus, cannot be
used for general OLAP analysis over data streams. These
frameworks are beneficial in the maintenance of materialized
views over data streams; however, they all require a dedicated
SPE to process data streams, i.e., they do not support gen-
eral stream processing capability as our unified framework
does. Similarly, high performance analytical systems, such
as MemSQL [25] and Apache Cassandra [26] both require an
external stream engine for OLAP analysis over data streams.

In addition to the above-mentioned solutions, which may
be used for stream OLAP by either integrating them with an
SPE or an OLAP engine, there exists a few solutions that
couples multiple engines to achieve streamOLAP over evolv-
ing data streams. For instance, [12] coupled an SPE with an
OLAP engine to perform OLAP analysis over data streams.
Similarly, SnappyData [14] integrated Apache Spark [15] as a
computational engine and Apache GemFire as an in-memory
transactional store to support transaction processing and
approximate analytical queries on high-speed data streams.
However, it does not intrinsically support OLAP operations,
for instance, drill down, roll up, etc., and therefore, does
not maintain materialized views at multiple granularity levels
as ours does herein. Besides, these hybrid solutions require
deployment, integration, and maintenance of multiple inde-
pendent engines. Although these hybrid/distributed solutions
are useful to organizations with heavy data loads, our pro-
posed solution is more desirable for organizations with low
to medium workloads.

Besides the above-statedworks, there exists a few solutions
that deal with the integration of SPE and OLAP engines. For
instance, M. Sadoghi et al. in [27] presented a lineage-based
data store that combined real-time transactional and analyt-
ical processing within an engine with the help of lineage-
based storage. However, their focus entailed the improvement
of general analytics through the use of lineage-based storage
rather than core OLAP, i.e., their work did not discuss the
materialized view maintenance for OLAP queries as we do
herein. Interactive analysis over data streams can also be
achieved by utilizing Python or Scala over Spark shell [28].
However, such approaches do not support incremental view
maintenance for interactive OLAP analysis. In contrast to the

aforementioned works, an integrated framework for stream
processing and OLAP analysis for organizations with low
to medium data processing and analytical workloads is pre-
sented herein.

B. MATERIALIZED VIEW MAINTENANCE
Materialized view maintenance, which has been studied by
many researchers, is a mature database area. Several works
have discussed techniques for efficient materialized view
maintenance for databases with high update rates and data
streams. For instance, [29] presented a view maintenance
approach viewlet transforms for databases that change at
exceptionally high rates. Viewlet transforms materializes a
query and a set of its higher-order deltas (views), which sup-
port each other’s incremental maintenance, thereby resulting
in reduced overall view maintenance costs by trading space.
Phantoms are intermediate materialized queries (views) to
accelerate user queries. Zhang et al. [30] proposed the use
of phantoms to reduce the overall cost (query answering and
data transfer costs) within the extremely limited memory of
a network interface card. M. Nikolic et al. [31] presented
an incremental view maintenance technique called domain
extraction, which enabled an incremental maintenance of
views based on complex Structured Query Languages (SQL)
queries with nested aggregates for batch updates. They stud-
ied the trade-offs between single-tuple and batched incremen-
tal processing and identified the cases where batching could
improve the performance of the incremental view mainte-
nance. G. Luo et al. in [32] proposed a content-based method
for detecting irrelevant updates to the base relations of a
materialized view. Their proposed approach can reduce the
view maintenance processing cost at the expense of memory
space. Fegaras [33] presented an incremental stream process-
ing approach of nested-relational queries capable of convert-
ing the latter to the former programs automatically. Authors
in [34] presented theViewDelta Function (ViewDF), a frame-
work for the incremental maintenance of materialized views
over streaming data. The main component of the proposed
framework is the ViewDF, which declaratively specifies how
to update a materialized view when a new batch of data
arrives. Although the works of [33] and [34] help incremental
view maintenance in streaming workloads, their solutions do
not support general stream processing as ours does.

Data warehouses use materialized views intensively
to answer user queries. DataDepot [35], Everest [36],
Moirae [37], latte [38], and Truviso [39] are some of the earli-
est stream warehouse systems. DataDepot [35] is a streaming
warehouse designed to automate the ingestion of streaming
data from a wide variety of sources and to maintain mate-
rialized views over these sources. Furthermore, the authors
in [35] discussed the issue of an out-of-order streaming tuple.
They extended their work in [40] and presented a mecha-
nism for managing and exploiting the multilevel consistency
of materialized views in a stream warehouse. The consis-
tency problem in their work entailed the synchronization
delays caused by the late and out-of-order arrival of stream

104634 VOLUME 8, 2020

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

tuples (temporal consistency) rather than transactional con-
sistency. Their proposed consistency model focuses on query
and update consistencies. Everest [36] is a relational data
warehouse engine on commodity hardware, which utilizes a
column storage system and supports distributed query pro-
cessing for effective analytical query processing. In contrast
to DataDepot and Everest, which maintain streaming and
transactional warehouses in underlying relational databases,
respectively, for efficient analytical query response, our pro-
posed framework supports OLAP analysis in addition to tra-
ditional stream processing by maintaining materialized views
on the primary memory.

Moirae [37] integrates continuous monitoring with the
querying of a historical log to enable history-enabled mon-
itoring. The Moirae architecture is based on hierarchical log
partitioning and query execution, where the recent past is
stored at a higher cost but can be queried faster than older
data. Latte [38] employs the Niagara internet query sys-
tem [41] to answer analytical queries that combine live data
streams with data archives. Truviso [39] proposes a query-
processing approach that runs SQL continuously and incre-
mentally over relational tables, streams, and combinations of
the two before the data are stored in the database.

In contrast to the above-mentioned works on the effective
maintenance of materialized views, an integrated framework
for stream processing and incremental materialized view
maintenance is presented herein.

III. PRELIMINARIES
A continuous query in StreamingCube follows the Con-
tinuous Query Language (CQL) specification [42]. In this
section, we briefly present the CQLmodel and its incremental
computation, which is essential to understand the proposed
framework. For details on CQL, please refer to [42].

A. CQL MODEL
The CQL model is based on streams and relations. Each
stream and relation has a fixed schema consisting of a set of
named attributes. Let 0 be a discrete, ordered time domain,
then a time instant is any value from 0. A stream S is an
unbounded multiset of tuples [〈e〉, t], where e is a tuple
belonging to the schema of S and t ∈ 0 is the timestamp
assigned to e by the system on its arrival, while a relation R
is a time-varying (updatable) mapping from 0 to a finite but
unbounded multiset of tuples belonging to the schema of R.
A relation R at a time instant t ∈ 0 is denoted by R(t) and is
called an instantaneous relation. CQL semantics is based on
three classes of operators over streams and relations. 1) The
relation-to-relation operator takes one or more relations as
the input and produces a relation as the output. 2) The stream-
to-relation operator takes a stream as the input and produces
a relation as the output. 3) The relation-to-stream operator
takes a relation as the input and produces a stream as the
output.

CQL is defined by instantiating the operators of the three
classes. For the relation-to-relation operators, CQL uses

existing SQL constructs. All the stream-to-relation operators
in the CQL, which are specified using the window specifi-
cation language derived from SQL-99, are based on sliding
window over stream. A window at any point in time holds a
historical snapshot of a finite portion of the stream. Herein,
two classes of sliding window operators are used, i.e., tuple-
based and time-based. 1) The Tuple-based window operator
on a stream S is specified using an integer n. At any time t ,
it returns a relation R of n most recent tuples from stream S.
2) The Time-based window takes a parameter τ and at any
time t returns a relation R containing tuples with timestamps
between t − τ and t from a stream S. The CQL has three
relation-to-stream operators, which are also adopted in our
framework: insert (i)-stream, delete (d)-stream, and relation
(r)-stream. At a time t , the i-stream applied to a relation R
results in a stream tuple [〈e〉, t] whenever tuple e is in R(t)−
R(t − 1). The d-stream returns a stream tuple [〈e〉, t] from
R whenever tuple e is in R(t − 1) − R(t), while the r-stream
applied to R, results in a stream tuple [〈e〉, t] whenever tuple
e is in R(t). A sample CQL query is shown in Query 1, which
performs binary join between two streams S1 and S2.

Query 1. A Simple CQL query.

B. CQL IMPLEMENTATION AND
INCREMENTAL COMPUTATION
STREAM [3] is a well-known implementation of the CQL
model. In STREAM, once a CQL query is registered, it is
compiled into a query plan and is executed continuously.
Query plans are composed of operators, queues, and syn-
opses. Operators perform the actual processing on data
streams. The data arrive at an operator as a sequence of
elements, and each operator reads from one or more input
queues, processes the input, and writes any output to the
output queue. A Queue, which buffers the elements as they
move between operators, connects its input operator to its
output operator. Synopses store the intermediate state needed
by continuous query plans. A synopsis is owned by a sin-
gle operator O, and the state contained by the synopsis is
needed to evaluate O in future. In STREAM SPEs, query
operator synopses are maintained incrementally. To achieve
incremental computing, STREAM uses+/− flags embedded
in elements. When a stream tuple 〈e〉 enters the STREAM
SPE at timestamp t , it is assigned a ‘‘+’’ lag by its respective
window operator. This tuple-timestamp-flag triple [〈e〉, t,+],
also called element, is sent to the query downstream opera-
tors. The query operators use this element to update their syn-
opses. Similarly, on the expiration of an element due to win-
dow size, a corresponding ‘‘−’’ flagged element, [〈e〉, t,−],
is sent to the query downstream operators. On receiving
‘‘−’’ flagged elements, the query operators update their
synopses by removing the corresponding ‘‘+’’ elements.

VOLUME 8, 2020 104635

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

More precisely, inside STREAM, streams and relations are
represented uniformly as sequences of elements. A stream
is represented as a sequence of timestamped-element ‘‘inser-
tions’’ (a timestamped-element with a ‘‘+’’ flag). A relation
is also represented as a sequence of timestamped-elements,
except that a relation has both ‘‘insertion’’ and ‘‘deletion’’
(a timestamped-element with a ‘‘−’’ flag) elements to capture
the changing state of the relation.

FIGURE 1. Query 1 query plan.

A query plan for Query 1 is shown in Fig. 1. The query
plan consists of four operators: two instances of window
operators, a binary join operator, and an i-stream operator.
Note that the projection is performed as part of the binary
join, so no separate projection operator is needed. Queues
q1 and q2 hold the elements of the input streams S1 and S2,
respectively. Queues q3 and q4 hold elements corresponding
to the relations S1[Rows n] and S2[Range τ Seconds], respec-
tively. Queue q5 holds output elements from the binary join
operator, while queue q6 holds stream elements as generated
by the i-stream operator. The query plan has five synopses,
synopsis1∼ synopsis5. Each window operator has a synopsis
to maintain its current state. The binary join operator has
two synopses to materialize its relational inputs, whereas the
i-stream operator has a synopsis to generate the output stream.

IV. OLAP AND MATERIALIZED VIEWS MAINTENANCE
IN STREAMINGCUBE
OLAP is a technique for interactive analysis of multidimen-
sional data. It makes use of a partially-normalized star schema
(Appendix B) for efficient analysis. The data in a star schema
are represented as a data cube consisting of several dimension
tables and a fact table. Dimension tables contain descriptive
attributes, while fact tables contain business facts, also called
measures, and foreign keys referring to the primary keys in
the dimension tables. Some dimension attributes are hierar-
chically connected, and they comprise a cube lattice where
each lattice vertex corresponds to different combinations of
attributes at different hierarchy levels and an edge between
two vertices represents a subsumption relation between them.
Hence, vertices in a lattice are combinations of dimension

attributes and represent OLAP queries. In practice, only a
few lattice vertices are materialized, while queries related to
non-materialized vertices are computed from thematerialized
vertices on an ad-hoc basis. Typical OLAP operations, includ-
ing roll-up, drill-down, slice, and dice, are implemented using
one of the aggregation operations, i.e., sum, min, max, etc.,
and are defined as follows:
• Roll-up: This is also known as aggregation, and it can
be performed by reducing the dimensions or moving up
in the dimension hierarchy.

• Drill-down: This is the reverse operation of roll-up.
It is performed by either moving down in the dimension
hierarchy or by introducing a new dimension.

• Slice: This operation selects one particular dimension
from a given cube and provides a new sub-cube.

• Dice: This operation creates a sub-cube by performing
a selection on two or more dimensions.

OLAP over data streams allows fact tables to be streams.
This is different from static data as the stream data arrive
continuously and at high velocities, thereby requiring the
materialized vertices to be updated continuously. Hence,
OLAP materialized vertices are usually maintained on a
primary memory and are always updated incrementally.
StreamingCube proposes a novel operator cubify to gener-
ate an OLAP lattice structure and maintain its materialized
views incrementally. Herein, it is assumed that only the
fact table is the data stream, while the dimension tables are
static.

A database materialized view is a derived relation defined
on top of one or more finite-base relations. Since data
streams are infinite, the maintenance of materialized views
over them requires a mechanism to bound data stream
tuples. Conventional SPEs utilize windows to bound stream
tuples for blocking operators. A window is used to execute
queries only over the recent contents of data streams [43].
One could use windows for bounding the contents of the
stream-based materialized views. In this case, the duration of
OLAP queries is limited by the window size, which usually
contains very recent data only. To support OLAP analy-
sis over larger time durations, this work presents a cubify-
window (c-window), which is a dedicated window for the
lattice-materialized vertices and is maintained by the cubify
operator.
Definition 1 (Cubify-window (c-window)): The c-window

is a time-based window with size 1, whereof the material-
ized vertices are maintained. This corresponds to the finest
lattice vertex and is maintained at the lowest time granularity
level, which enables the cubify operator to answer the OLAP
queries at any time granularity.

In StreamingCube, unlike the ordinary window operator,
the c-window size is supplied as a parameter in a configu-
ration file (Appendix A). The size of a c-window is usually
kept larger than the ordinary window to enable analysis over
historical data as well. However, the user is free to choose any
size for it.

104636 VOLUME 8, 2020

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

FIGURE 2. Query plan tree of a Query with two dimension tables and a cubify operator.

V. THE CUBIFY OPERATOR
This section presents the cubify operator, which is the core of
StreamingCube. In the following, we present its logical and
physical representations, along with an example.

A. LOGICAL REPRESENTATION
Cubify is a stream-to-relation operator. It takes a stream S as
the input, updates one or more OLAP materialized vertices
v1, . . . , vn (1 ≤ n ≤ l, where l is the number of OLAP lattice
vertices), and produces zero or more relations R0, . . . ,Rm
(0 ≤ m ≤ l) as the output. The granularities and schemas
of Ri can be different from S and depend on the lattice
vertices selected for output generation. At any time instant
t , vi contains aggregated tuples within [t −1, t].

On its initial execution, the cubify operator materializes n
(1 ≤ n ≤ l) lattice vertices, where each materialized vertex is
associated with a synopsis. The schema of each materialized
vertex vi depends on the grouping of dimensional attributes
and the time granularity (δi), where ψ ≤ δi ≤ 1. ψ is the
time granularity wherein the cubify operator receives stream
tuples. Please note that δi depends on vi and δ0 denotes the
lowest time granularity whereof the finest lattice vertex is
maintained. The user must specify the corresponding lattice
vertices to get relational outputs from the cubify operator.
The output can be processed by the query downstream opera-
tors or sent to the user via the i-stream, r-stream, or d-stream
operator. It is not necessary for a lattice vertex to be materi-
alized to generate output. A relational output corresponding
to a non-materialized vertex is generated using the nearest
materialized vertex on an ad-hoc basis.
Definition 2 (Nearest Vertex of vq (NV (vq))): Let Vn be

the set of materialized vertices, which can respond to the non-
materialized vertex query vq (i.e., contain all the attributes
of vq). Assuming that |vi| denotes the number of rows in
vertex vi, then the nearest vertex of vq is a vi ∈ Vn, such that
|vi| is minimum among all the vertices of Vn.

In addition to continuous output generation, the cubify
operator can answer ad-hoc OLAP queries corresponding
to any lattice vertex. If the queried vertex (vq) is not
materialized, the cubify operator utilizes NV (vq) to answer
it. Note that the cubify operator always materializes the
finest lattice vertex to answer all possible OLAP queries.
Algorithm 1 presents how a vq can be answered from a mate-
rialized or non-materialized vertex. The cubify operator treats
time as part of all the lattice vertices as it is assigned to all
incoming stream tuples by the system. Hence, we can always
aggregate a vertex with respect to time, i.e., s, min, h, etc.

Algorithm 1 OLAP Queries Computation
Input: Queried vertex vq, Time granularity τ
Output: vτ : Queried vertex aggregated w.r.t. τ
1: V : Set of OLAP lattice’ vertices
2: Vm: Set of materialized vertices
3: Vn: V − Vm
4: if vq ∈ Vm then
5: vτ ← vq aggregated w.r.t. τ
6: else
7: Find the nearest vertex v′ ∈ Vn which can answer vq
8: v′′← v′ aggregated w.r.t. queried vertex dimensions
9: vτ ← v′′ aggregated w.r.t. τ
10: end if
11: return vτ

B. PHYSICAL REPRESENTATION
Since cubify is a stream-to-relation operator, it can either
directly accept stream inputs or follow any relation-to-stream
CQL operator in a CQL query plan, as shown in Fig. 2.
Queries with the cubify operator require a configuration file
specifying the following: 1) Dimension attributes along with
their hierarchies to create lattice structure, 2) Lattice vertices
to materialize along with their time granularities, δi, 3) Low-
est time granularity, δ0, wherein the finest lattice vertex is

VOLUME 8, 2020 104637

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

maintained, 4) Size of the c-window,1, and 5) cubify output
vertices (R0, . . . ,Rm (0 ≤ m ≤ l), where l is the number of
OLAP lattice vertices). Appendix A shows a sample config-
uration file.

The cubify operator, like other CQL operators, reads from
an input queue, processes the input by updating its associated
synopses (materialized vertices), and writes any output to the
output queue. In contrast to other CQL operators, it maintains
a variable number of synopses depending on the number of
materialized lattice vertices. Although there exists an array of
research on how to select the best set of vertices to materialize
for static OLAP [20], [44]–[46], only a few exist for stream
OLAP [10], [12], [34]. While some are interested in minimiz-
ing the OLAP-querying cost, others focus on materializing
the maximum number of vertices within a given memory.
In [12], we presented an optimization algorithm to select the
best set of vertices to materialize, which can minimize the
OLAP-querying cost within a given memory. StreamingCube
supports the optimization algorithm proposed in [12]. In addi-
tion, the user can explicitly specify which vertices to materi-
alize through the configuration file (Appendix A).

1) DATA STRUCTURE
The cubify operator’s materialized vertices are based on the
c-window, which corresponds to the finest lattice vertex of
size1 and slide step δ0, as shown in Fig. 3. Othermaterialized
vertices are maintained at coarser granularity levels. Each
materialized vertex maintains a dedicated relational synopsis,
m-synopsis. In contrast to the ordinary synopsis, the elements
in the m-synopsis do not contain +/− flag; hence, we call
them rows. A row contains dimensional keys, one or more
facts, and a timestamp corresponding to its schema. In con-
trast to the ordinary synopses, the rows in them-synopsis may
be aggregated.

FIGURE 3. The cubify-window (c-window) synopsis.

The m-synopsis is implemented as a doubly linked list in
which the rows are ordered by timestamp. The rows in the m-
synopsis are partitioned into timestamps T1,T2, . . . ,Tm and
aremaintained at a δi time granularity level. Hence, the stream
elements, which arrive at the cubify operator during the
jth timestamp are assigned to the Tj timestamp partition,
as shown in Fig. 3. At any time instant, the m-synopsis con-
sists of m timestamps. A timestamp partition is called active
if stream elements can still be assigned to it. For instance,

let δi = min, then a timestamp partition Tj ∈ vi remains
active and can accept stream elements for a span of 60 s.
After that partition, Tj+1 becomes active. This work assumes
that the cubify operator receives elements in a timestamp
order. Hence, each arriving element either updates an existing
row or is appended as a new row in the m-synopsis active
partition. Namely, if the dimensional keys of the incoming
element ε matches the keys of an existing row ρ in the vi
active timestamp partition Ta, ρ is updated with ε. Otherwise,
ε is added as a new row in vi with Ta. Hence, only the rows
in the active partition are checked for updates rather than the
entire m-synopsis.
Example 1: Assuming that a cubify operator receives

stream elements at a ψ time granularity with timestamps
t1, t2, The finest m-synopsis maintains rows at the δ0 time
granularity with timestamps T1,T2, Let δ0 =min, ψ = s,
and the active partition be T9, as shown in Fig. 3. On receiving
the stream elements consisting of two dimensional attributes,
a fact value, a timestamp, and a flag, [<P3, C9, 21>,
t951, +] and [<P8, C9, 18>, t952, +], the cubify operator
updates the m-synopsis rows in the active timestamp parti-
tion T9. Assuming sum as an aggregation operation of the
m-synopsis, after the update, the active partition will contain
the rows: [<P3, C9, 32>, T9], [<P1, C7, 35>, T9], and [<P8,
C9, 18>, T9]. Here, the fact value ‘‘32’’ in the row [<P3,
C9, 32>, T9] is the sum of the fact values ‘‘11’’ and ‘‘21’’ of
the existing row [<P3, C9, 11>, T9] and the newly arrived
element [<P3, C9, 21>, t951, +], respectively.
Thematerialized verticesmaintained by the cubify operator

are based on the c-window, which is checked for expired
rows after each δ0 time unit. After the detection of expired
rows, i.e., the rows with timestamps older than t − 1, they
are deleted from the finest lattice vertex v0. In addition,
the expired rows need to be deleted from other materialized
vertices. To achieve this in an incremental fashion, the expired
rows from v0 are communicated to all the materialized ver-
tices vi as deletion ‘‘−’’ elements. On receiving the ‘‘−’’ ele-
ments, the materialized vertices update the oldest timestamp
partitions in their synopses. Similarly, on the reception of a
new stream element by the cubify operator, the active partition
of v0 is updated and a corresponding insertion ‘‘+’’ element
is communicated to all the materialized vertices to update
their synopses. To communicate the effect of these insertions
and deletions to the downstream operators, ‘‘+/−’’ elements
corresponding to R0, . . . ,Rm (0 ≤ m ≤ l) are generated
and sent downstream as the c-window moves. For instance,
consider the movement of the c-window from [t − δ0 − 1,
t − δ0] to [t −1, t] in Fig. 3. As the c-window moves, ‘‘+’’
elements ([<P3, C9, 11>, T9, +] and [<P1, C7, 35>, T9,
+]) are generated and sent to the downstream operators cor-
responding to the rows in timestamp partition T9. Similarly,
‘‘−’’ elements ([<P3, C1, 30>, T1, -] and [<P2, C2, 40>,
T1, -]) corresponding to the elements in the timestamp parti-
tion T1 are sent to the downstream operators.
Note that the effect of the cubify operator cannot be

achieved by a continuous query with multiple aggregation

104638 VOLUME 8, 2020

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

operators because in addition to aggregation, the cubify oper-
ator supports the following: 1) OLAP queries, 2) generation
of aggregates related to non-materialized vertices, and 3) the
use of a dedicated window (c-window) for analysis.

2) COMPUTATIONAL COMPLEXITY
Consider a materialized vertex vi with a time granularity
δi. Let ni and mi denote the size and the total number of
timestamps maintained in vi synopsis, respectively. An inser-
tion operation in the m-synopsis checks only the rows in the
active partition; hence, the worst and average cases of inser-
tion complexities are O(ni/mi) and O(ni/2mi), respectively.
Similarly, a deletion operation in the m-synopsis checks only
the rows in its oldest timestamp partition; thus, the worst
and average cases deletion complexities are O(ni/mi) and
O(ni/2mi), respectively. Theworst case and average case time
complexities of insertion for the finest vertex v0 with time
granularity δ0 are same as those of vi. However, the deletion
complexity of v0 is O(1) because when the c-window slides,
all the rows in the oldest partition of the v0 synopsis are
expired and deleted. To support the efficient insertion and
deletion at the top and bottom of the m-synopses, respec-
tively, doubly linked lists are used. Querying cost differs
for the materialized and non-materialized vertices. The com-
plexity of querying a materialized vertex, i.e., retrieving ni
rows from the m-synopsis of vi, is O(ni). Querying a non-
materialized vertex involves a small additional hashing cost
to aggregate the retrieved rows, keeping the querying com-
plexity at O(ni).

VI. QUERY SPECIFICATION
StreamingCube supports two types of queries: 1) CQs and
2) OLAP queries. CQs can be further subdivided into two
types i.e., 1.1) Ordinary CQs, and 1.2) Cubify CQs. Ordi-
nary CQs are supported by most SPEs. A user can reg-
ister Ordinary CQs to perform typical stream processing
operations, including select, filter, aggregate, join, group-
by, etc. Cubify CQs are introduced herein to support OLAP
operations over data streams. Cubify CQs utilize the cubify
operator in addition to regular CQL operators. Since the
cubify is a stream-to-relation operator, within the Cubify CQ,
it can appear at the beginning of the query (accepting stream
input directly) or can follow any relation-to-stream CQL
operator.

A sample Cubify CQ written in Jaql [47] is shown in
Query 2. Since StreamingCube supports JavaScript Object
Notation (JSON) data [48], Jaql is an evident query format
for it. Notably, StreamingCube can process any JSON streams
internally. However, in this paper, we focus on the relational
streams represented in the JSON format for simplicity; how-
ever, its discussion is outside the scope of this work. The
query reads a stream source LINEORDER and four dimension
tables CUSTOMER, PART, SUPPLIER, and STORE, corre-
sponding to TPC-H schema (Appendix B), and performs join
among them. Finally, the query makes use of an i-stream
operator followed by a cubify operator, which employs

Query 2. Continuous query over synthetic data.

a configuration file as a parameter. The configuration file
contents are discussed in Sec. V. The initial execution of the
cubify operator results in the formation of a lattice structure,
while its latter execution updates the materialized lattice ver-
tices with the incoming elements and generates output. Once
a Cubify CQ is registered and is under execution, the user
can submit OLAP queries to StreamingCube. OLAP queries
involve different OLAP operations, including the request of
a particular lattice vertex, drill down, roll up, slice, and dice.
At the time of writing this paper, StreamingCube can accept
OLAP querying with the following aggregate functions:
1) Sum, 2) Count, 3) Maximum, and 4) Minimum.

VII. INCREMENTAL STREAM PROCESSING AND
VIEW MAINTENANCE
Computation, which updates the output incrementally rather
than re-computing everything from scratch for successive
runs of a job with input changes, is called incremental. Simi-
larly, algorithms that compute changes to a view in response
to changes to the base relations are called incremental view
maintenance algorithms [49]. In StreamingCube, incremental
computation is used to update the synopses and materialized
vertices of the query operators. A continuous query (CQ) in
StreamingCube is translated into a query plan and is exe-
cuted continuously. Data streams enter StreamingCube as a
sequence of tuples, where each tuple is additionally assigned
a timestamp and flagged as either an insertion ‘‘+’’ or dele-
tion ‘‘−’’ to achieve incremental computation, as explained
in the previous section.

Consider a Cubify CQ similar to Query 2; although, with
two dimension tables, PART and CUSTOMER, as well as a
fact stream, SALES. Its query plan tree is shown in the rectan-
gular boundary in Fig. 2. The sales stream tuples with part ID
(first value), customer ID (second value), and sales amount

VOLUME 8, 2020 104639

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

FIGURE 4. StreamingCube Architecture.

(last value) (< 1, 3, 25 >, < 2, 4, 10 >, < 2, 2, 40 >,
< 3, 1, 30 >) are appended with a timestamp and ‘‘+’’ flag
on their arrival by StreamingCube, thus, creating elements
of the form [< 1, 3, 25 >, t2,+], [< 2, 4, 10 >, t1,+],
[< 2, 2, 40 >, t1,+], [< 3, 1, 30 >, t1,+]. The arriving
elements are inserted into the window operator’s synopsis
and are also forwarded to the synopses of the downstream
operators. Assuming that the window operator size (n) is
4 rows; hence, the next arrival of tuple causes the expiration
of the oldest element, i.e., [< 3, 1, 30 >, t1,+]. The window
operator then deletes the oldest element from its synopsis and
sends a corresponding ‘‘−’’ element, i.e., [< 3, 1, 30 >,

t1,−], to the downstream operators causing the deletion of
the oldest element from the downstream operator synopsis.
After the join operations between the SALES stream and the
two dimension tables PART and CUSTOMER, the resultant
elements consist of PartName (denoted by Px) and Cus-
tomerName (denoted by Cx) of the dimensions PART and
CUSTOMER, respectively. The join output is forwarded to
the cubify operator via an i-stream operator. The i-stream
operator generates a stream of elements: [< P1,C3, 25 >,
t2,+], [< P2,C4, 10 >, t1,+], [< P2,C2, 40 >, t1,+],
and [< P3,C1, 30 >, t1,+], which are received by the cubify
operator. The elements are maintained as rows in the finest
latex vertex synopsis at the δ0 time granularity and are also
used to update other materialized vertices. In the example of
Fig. 2, the finest latex vertex is: {Part, Customer}, whereas
the other materialized vertex is: {Part}.

To incrementally maintain the Cubify CQ operators’ syn-
opses following the cubify operator, the c-window is used.
The c-window shares its synopsis with the lattice finest
vertex. As the c-window moves, ‘‘+’’ and ‘‘−’’ elements
corresponding to the rows in the c-window are generated
and sent to the downstream operators that utilize these inser-
tion (+) and deletion (−) elements to update their synopses
incrementally, just like ordinary CQL operators. The only
difference entails that the insertion and deletion elements are

now being generated by the c-window operator rather than
the ordinary window operator.

VIII. PROTOTYPE SYSTEM ARCHITECTURE
This section presents the prototype system architecture of
StreamingCube. Figure 4 shows the main components of
the unified framework StreamingCube. The I/O Manager is
responsible for all the input and output in StreamingCube,
including the registration of CQs, OLAP queries, getting
streams input, dimension tables, configuration files, sending
out query results, etc. On receiving a CQ in the Jaql format,
the I/O Manager forwards it to the Query Manager that
gets the query parsed/translated into the query intermediate
representation via the Query Parser. The Query Parser
employs the streams and dimension table schema information
to parse the CQ. The schema information is available to the
Query Parser via the Schema Interpreter, which is supplied
by the user. The schema information, herein referred to as
wrappers, is also used by theWrapperManager for reading
data streams and dimension tables. Once the query is parsed,
it becomes available to the Query Plan Manager, which is
responsible for the generation of a query execution plan that
includes the assignment of synopses to the query operators
and the connection of operators through queues. The query
execution plan is in the form of a directed acyclic graph
(DAG) of query operators and is sent toOperator Scheduler.
The Operator Scheduler executes DAG operators continu-
ously by selecting one operator at a time.

If the registered query is an Ordinary CQ, the query result
is available to the user or application program via the I/O
Manager. On the other hand, if the registered query is a
Cubify CQ, the OLAP Manager receives a configuration
file through the Configure Manger for the construction of
the OLAP lattice and the materialization of selected lattice
vertices. Furthermore, in Cubify CQ, the result of the cubify
operator execution is available to the OLAP Manager, and
it is used to incrementally maintain the materialized views.

104640 VOLUME 8, 2020

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

Once the Cubify CQ is under execution, the user can reg-
ister OLAP queries as HttpRequest, which are handled by
the Command Manager. Upon receiving the OLAP query,
theOLAPManager checks if the queried vertex is material-
ized or not. The OLAP queries corresponding to the mate-
rialized vertices are answered directly, while in the other
case they are computed from the nearest materialized vertex.
In Figure 4, vertices with rectangular boundaries are materi-
alized. In the figure, the vertex {Supplier} is being queried,
which is not materialized. Therefore it is computed from the
nearest materialized vertex {Supplier, Part} and the results
are returned to the user via the I/O Manager.

IX. EXPERIMENTAL EVALUATION
This section presents the experimental evaluation of our
proposed unified framework StreamingCube and the cubify
operator.

A. EXPERIMENTAL SETUP
1) PLATFORM
For experiments, the prototype system explained in Sec. VIII
has been developed in C++ and is named as Stream-
ingCube [17]. StreamingCube is available as open source
at Github.1 The experiments are performed on one of the
nodes of an HP BladeSystem c7000 server, where each
node is equipped with an Intel Xeon 20 core processor
(ES-2650 v3 @ 2.3GHz), 6 GB RAM, and 10 Gbps Ethernet
networking card. Each node is operated by Ubuntu 14.10 OS.

2) COMPARATIVE METHODS
To prove the effectiveness of StreamingCube, we compared
it with the StreamingCube deployed as two separate engines/
processes, i.e., SPE and OLAP on a single machine, here-
after called the SPE+OLAP framework. Both the SPE and
OLAP engines are locally developed. In the SPE+OLAP
framework, the SPE processes data streams and sends them
to the OLAP engine via sockets. The OLAP engine generates
lattice-materialized views and responds to OLAP queries.
To keep the comparison fair, equal hardware resources are
allocated to both frameworks.

3) DATA STREAM
Since it is extremely difficult to obtain real sales or similar
datasets suitable for OLAP analysis due to data ownership
and privacy issues, the following two datasets are used for
the experiments: 1) Synthetic and 2) TPC-H2 benchmark.
Both datasets are multidimensional, where the dimensions
are supplied as static tables and the fact tables are fed as
continuous data streams to the two frameworks. The synthetic
stream schema consists of six dimension tables, a fact table,
and its lattice structure contains 64 vertices. The fact table
SALES tuple is of the form < ProductID, SupplierID, Pro-
motionID, CustomerID, StoreID, SalesPersonID, Timestamp,
SalesAmount >, where the IDs are generated randomly to

1https://github.com/salmanahmedshaikh/StreamingCube
2TPC-H. http://www.tpc.org/tpch/

reflect the IDs in the dimension tables PRODUCT, SUP-
PLIER, PROMOTION, CUSTOMER, STORE, and SALES-
PERSON. Timestamp (system time), which is part of all the
lattice vertices and is not treated as a separate dimension,
is appended to all the generated tuples by the respective
frameworks.

TPC-H is a well-known benchmark dataset for testing
OLAP systems. For the sake of experiments in this work, its
schema is modified according to the Star Schema Benchmark
(SSB) [50]. Furthermore, we added a store dimension, result-
ing in a four dimensional star schema with dimensions, CUS-
TOMER, PART, SUPPLIER, and STORE, as well as a fact
table, LINEORDER, as shown in Fig. 15 (Appendix B). The
lattice structure of the TPC-H schema consists of 16 vertices.
The LINEORDER tuples are of the form < CustomerID,
PartID, SupplierID, StoreID, Timestamp, ExtendedPrice >,
which are repeatedly fed to the experimental framework as
data streams. Similar to the synthetic data stream, a times-
tamp (system time), which is part of all the lattice vertices
and is not treated as a separate dimension, is appended to all
the tuples by the respective experimental framework.

4) CONTINUOUS AND OLAP QUERIES
To evaluate the effectiveness of the proposed unified frame-
work, two CQs are used, one for synthetic data stream and
the other for the TPC-H data. Both queries are join queries
between fact data streams and dimension tables, and they
use a cubify operator to generate an in-memory OLAP lattice
and maintain the selected materialized vertices. The cubify
operator is also provided with a configuration file as a param-
eter. Query 2 shows one such queries written in Jaql [47] for
TPC-H data.

To evaluate the OLAP querying cost, we issue a query
corresponding to each lattice vertex. The average OLAP
querying cost is computed by summing up the querying costs
to query all the lattice vertices and dividing this sum by the
total number of lattice vertices. In general, OLAP queries
corresponding to the non-materialized vertices require more
computation time than the materialized ones because the
former needs to be computed from the latter on an ad-hoc
basis.

B. EXPERIMENTAL RESULTS
The experimental evaluation is divided into three sections:
The first section compares the performance of the proposed
StreamingCube with the SPE+OLAP system, and the sec-
ond section evaluates the OLAP-querying cost, while the
third section evaluates the cubify operator. The experimental
results are presented by varying different important parame-
ters. Unless stated otherwise, the following default parameter
values are used in the experiments: the number of material-
ized vertices (# Materialized vertices) 12 (synthetic data) and
6 (TPC-H data), window size (n) 10,000 rows, the c-window
60 seconds. For the OLAP queries, aggregate function Sum
is used.

VOLUME 8, 2020 104641

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

FIGURE 5. Throughput comparison over synthetic data (StreamingCube vs. SPE+OLAP).

1) STREAMINGCUBE VS. SPE+OLAP
In this section, we compare the throughput and memory con-
sumption of our proposed StreamingCube framework with
the SPE+OLAP framework. Figs. 5 and 6 compare the
throughput of the two frameworks for the synthetic and the
TPC-H data streams, respectively, by varying the number of
materialized vertices. Here, the throughput can be defined as
the maximum number of tuples that can be processed by the
system. For the synthetic data, the number of materialized
vertices is varied from six to 30, whereas for the TPC-H data it
is varied from three to 15. From the figures, StreamingCube
evidently outperforms SPE+OLAP for all the variations of
the number of materialized vertices, i.e., the proposed frame-
work can achieve better throughputs than by using separated
SPEs and OLAP engines. The trends are quite similar for
both data streams, which is because our proposed frame-
work processes the data streams and maintains materialized
vertices as a single process. However, in the SPE+OLAP
framework, the output data from the SPE need to be sent to
the OLAP engine, thereby incurring data transfer (between
processes) and data transformation costs. Furthermore, it is
observable from the figures that the throughput decreases
with an increase in the number of materialized vertices, which
is apparent as each materialized vertex maintains a data struc-
ture that must be updated on the arrival and departure of
tuples.

It is noteworthy that the throughput shown in Figs. 5 and 6
seems lower than some of the general SPEs. This is due to

several reasons: 1) Inclusion of the cubify operator, which
performs several operations, including maintaining the data
structure of the materialized views and responding to OLAP
queries. In our experiments, 12 and 6 materialized vertices
are maintained for OLAP cubes, corresponding to the syn-
thetic and TPC-H data, respectively. 2) Execution of multiple
joins between a fact table and dimension tables (where join
is one of the most expensive database operations). For the
synthetic and TPC-H data streams, 6 and 4 joins are per-
formed between a fact stream and 6- and 4-dimension tables,
respectively, in our experiments. 3) Absence of indices in our
implementation since the main focus of this work is the uni-
fied framework via the use of the cubify operator. However,
the throughput can be improved with the implementation of
indices and putting more effort in the implementation, as in
the case of state-of-the-art SPEs. Since the main focus of the
experiments in this section is to prove the significance of
the unified framework by comparing it with the SPE+OLAP
framework, we did not concentrate on the implementation of
indices.

Notably also, in Figs. 5 and 6, the throughput of the TPC-H
data is lower than that of the synthetic data although the
number of vertices to materialize is lower for the TPC-H
data. This is because the join processing between the fact and
the dimension tables containing tuples of larger sizes takes
a comparatively larger time, thereby ultimately resulting in
smaller throughputs in the TPC-H data. Nonetheless, since
the focus of this work is the unified framework rather than the

104642 VOLUME 8, 2020

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

FIGURE 6. Throughput comparison over TPC-H data (StreamingCube vs. SPE+OLAP).

FIGURE 7. Storage cost comparison over synthetic data (StreamingCube vs. SPE+OLAP).

join processing, we have not put much effort in this direction.
However, the overall throughput for both data sets could be
improved by incorporating state-of-the-art join processing

algorithms and appropriate indices in the proposed frame-
work. Furthermore, it is observable from Figs. 5 and 6 that
the throughput decreases with an increase in the c-window

VOLUME 8, 2020 104643

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

FIGURE 8. Storage cost comparison over TPC-H data (StreamingCube vs. SPE+OLAP).

FIGURE 9. OLAP individual querying cost (TPC-H data).

FIGURE 10. Average OLAP querying cost.

size for both data sets because as the size of the c-window
increases, the number of tuples in the materialized vertices
also increase. Hence, the time to insert and delete data to and

from the data structures corresponding to the materialized
vertices also increases, resulting in a slight decrease in the
throughput.

104644 VOLUME 8, 2020

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

FIGURE 11. Processing cost per tuple.

FIGURE 12. Processing cost per tuple (by varying number of materialized vertices).

Next, we compare the memory consumed in MB by the
two frameworks in Figs. 7 and 8. The memory consump-
tion is calculated by considering the storage utilized by the
synopses of the query operators and the OLAP-materialized
views. From the figures, it is evident that the proposed uni-
fied framework consumes less memory than the SPE+OLAP
framework. This is because the SPE in the SPE+OLAP
framework utilizes an additional operator, and therefore,
an additional synopsis for generating query output. Further-
more, the OLAP engine requires some additional memory
space for receiving data from the SPE and transforming them.
Additionally, one can observe from Figs. 7 and 8 that memory
consumption increases with an increase in the number of
materialized vertices, which is evident as a separate data

structure is maintained for each materialized vertex. Notably
also in Figs. 7 and 8 is that the memory consumed by the
TPC-H data is larger than the synthetic data although the
number of vertices to materialize is smaller for the TPC-H
data. This is because of the larger number and individual sizes
of tuples in the TPC-H dimension tables.

Furthermore, we can observe from Figs. 7 and 8 that mem-
ory consumption increases with an increase in the c-window
size. This is because with the increase in the c-window size,
more tuples need to be maintained in the memory for the
materialized vertices. Moreover, the memory consumption
increment in Fig. 8 is steeper than in Fig. 7, which is due to the
larger tuple sizes of the TPC-H dimension tables, as discussed
above.

VOLUME 8, 2020 104645

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

FIGURE 13. Processing cost per tuple (by varying the number of cubify output vertices).

2) OLAP QUERYING COST
This section evaluates the OLAP-querying cost and the pro-
cessing cost per tuple in StreamingCube. Figs. 9 and 10
present the OLAP-querying costs. OLAP queries include
requesting a particular lattice vertex, drill down, roll up, slice,
and dice. Fig. 9 shows the querying cost of each lattice vertex
(including materialized and non-materialized vertices) for a
different number of materialized vertices for the TPC-H data.
The TPC-H lattice contains 16 vertices (practically 15 ver-
tices as the 16th vertex does not contain any dimension). If a
queried vertex is non-materialized, it is computed from one of
the nearest materialized vertices by performing aggregation,
which is computationally expensive than directly querying
the materialized vertex. Fig. 9 shows that the querying cost
is higher for most of the queried vertices when the number of
materialized vertices = 3. The querying cost decreases grad-
ually with an increase in the number of materialized vertices
due to the materialization of either the queried vertex or some
nearby vertices.

Figs. 10(a) and 10(b) present the average OLAP-querying
costs for the synthetic and TPC-H datasets for different values
of the c-window size by varying the number of materialized
vertices. The average OLAP-querying cost is computed by
summing up the querying costs for all the lattice vertices
and dividing this sum by the total number of lattice vertices.
In both figures, the average querying cost decreases with
an increase in the number of materialized vertices, which
is apparent and has been explained earlier. Furthermore,
it is noticeable that as the c-window increases, the average
querying cost rises, which is due to the increase in the

number of tuples in the materialized vertices. Comparing
Figs. 10(a) and 10(b), the average querying cost is higher for
TPC-H data, because it is a benchmark dataset with near-real
dimensional attribute values, i.e., larger tuple sizes. Hence,
queries need to fetch and process larger amounts of data,
thereby resulting in higher querying costs.

Fig. 11 presents the processing cost per tuple of our pro-
posed framework, which rises with an increase in the number
of materialized vertices, as the arrival and departure of each
tuple must update all the materialized vertices. Similarly,
the processing cost per tuple increases as the c-window size
enlarges because the size of the data structure and the mate-
rialized vertex are directly proportional, which causes each
input tuple to require more processing time.

Query 3. CQ with cubify output stream.

3) THE CUBIFY OPERATOR
To evaluate the cubify operator, we utilized Query 3. It is
a Cubify CQ with a cubify and an i-stream operators, and
employs a synthetic data stream. The data stream used in
this section is the same one used in earlier experiments.
However, we pre-joined it with dimensions to effectively
evaluate the cubify operator.
Figs. 12 and 13 reveal the processing cost per tuple in the

cubify operator for the different values of the c-window size
by varying the number of materialized vertices and the num-
ber of cubify output vertices, respectively. A cubify output

104646 VOLUME 8, 2020

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

FIGURE 14. The cubify operator storage cost.

vertex is an OLAP lattice vertex selected to generate contin-
uous output. The generated output is aggregated with respect
to the lattice vertex schema and time unit δ. From Fig. 12,
the processing cost per tuple of the cubify operator increases
with an increase in the number of materialized vertices, which
is due to the increase in the number of synopses that must be
maintained. Furthermore, the processing cost increases with
the increase in the c-window size, which is due to an increase
in the size of each synopsis; hence, requiring larger updating
times.

Similarly, the processing cost per tuple rises with an
increase in the number of cubify output vertices, as evident
in Fig. 13. The cost of output generation from a lattice
vertex depends on whether the requested vertex is materi-
alized or otherwise. If the vertex is not materialized, then
its aggregated output stream is computed from the nearest
materialized vertex. In the experiments, we attempted to
select an equal number of materialized and non-materialized
cubify output vertices. As the number of the cubify output
vertices increases, the number of elements to be generated
from these vertices also rises, thereby resulting in higher
processing costs per tuple.

Next, we evaluated the cubify operator’s storage cost
in Fig. 14 by varying the number of materialized vertices.
Since each materialized vertex requires a dedicated synop-
sis for its maintenance, the cubify operator’s storage cost
rises with an increase in the number of materialized vertices.
Similar trends can be observed for all the values of the
c-window in Fig. 14. Notably also is that the storage cost
increases as the c-window sizes expand because larger

c-window sizes can accommodate more tuples; therefore,
requiring more substantial storage.

X. CONCLUSION AND FUTURE WORK
Herein, we present a unified framework StreamingCube for
stream processing and OLAP analysis for applications with
a mixture of streaming and analytical workloads. The pro-
posed framework supportsCubify CQs in addition to the ordi-
nary CQs. To maintain the OLAP lattice materialized views
incrementally, a cubify operator is introduced. In addition
to CQs, StreamingCube supports OLAP queries, including
drill down, roll up, slice, and dice. Furthermore, the cubify
operator can generate an aggregated output of the selected
lattice vertices. Detailed experimental evaluation over syn-
thetic and TPC-H data proves that the unified framework
results in higher system throughputs and consumes less mem-
ory than the hybrid framework when provided with equal
resources. Furthermore, the proposed framework requires
lessmaintenance cost by avoiding the deployment of two ded-
icated engines, i.e., SPE and OLAP. In addition, the unified
StreamingCube saves communication costs that may have
otherwise been required to transfer data between the two
engines/processes.

In the future, we plan to extend this work in the following
directions. In the current framework, the dimension tables are
static; however, in many applications dimension tables need
to be updated. Although the update frequency of dimension
tables may be small, we believe that it is an important issue to
address. There are two possible ways to achieve this: 1) New
data overwrite the existing data in the dimension table.

VOLUME 8, 2020 104647

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

FIGURE 15. Modified TPC-H benchmark schema (star schema).

TABLE 1. Star Schema Benchmark (SSB) lattice vertices.

Thus, the existing data are lost as they are not backed up
anywhere else. Hence, both the historical and the new data
refer to the same updated dimension tuples. 2) A new tuple is
added for the updated dimension tuple, while the old tuple
is retained in the dimension table. Each tuple contains the
effective time and expiration time to identify the time period
wherein the tuple was active. This enables historical data to
refer to the old tuple and new data to the new tuple. Another
interesting future direction is the distributed processing of
StreamingCube using state-of-the-art stream processing plat-
forms, i.e., Apache Flink or Apache Spark.

APPENDIX A
SAMPLE CONFIGURATION FILE
#Dimension attributes with hierarchy
Dimensions = productID, productName | supplierID, sup-
plierName, supplierAddress | customerID, customerName,
customerAddress
#Vertices to materialize
MVertices = productID, Minute | productName, supplier-
Name, Hour

#Finest vertex materialization time granularity
TimeGrain =Minute

#c-window size (The unit is same as that of TimeGrain)
CWindow = 500

#Lattice output vertices
OutputVertices = productName, customerName

APPENDIX B
EXAMPLE OF STAR SCHEMA
(MODIFIED TPC-H BENCHMARK SCHEMA)
See Fig. 15.

APPENDIX C
LIST OF VERTICES (STAR SCHEMA BENCHMARK)
See Table 1.

REFERENCES
[1] The Apache Software Foundation, Apache Storm. Accessed: Feb. 23, 2017.

[Online]. Available: http://storm.apache.org/
[2] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and

K. Tzoumas, ‘‘Apache flink: Stream and batch processing in a single
engine,’’ IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38, Feb. 2015.

[3] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, ‘‘STREAM: The Stanford data
stream management system,’’ in Data Stream Management: Processing
High-Speed Data Streams, M. Garofalakis, J. Gehrke, and R. Rastogi, Eds.
Berlin, Germany: Springer, 2016, pp. 317–336, doi: 10.1007/978-3-540-
28608-0_16.

[4] D. J. Abadi, D. Carney, U. Eetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, ‘‘Aurora: A new model and
architecture for data streammanagement,’’ VLDB J. Int. J. Very Large Data
Bases, vol. 12, no. 2, pp. 120–139, Aug. 2003, doi: 10.1007/s00778-003-
0095-z.

[5] U. Çetintemel, D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska,
M. Cherniack, J.-H. Hwang, S. Madden, A. Maskey, A. Rasin, E. Ryvkina,
M. Stonebraker, N. Tatbul, Y. Xing, and S. Zdonik, The Aurora and
Borealis Stream Processing Engines. Berlin, Germany: Springer, 2016,
pp. 337–359.

[6] A. Samza. The Apache Software Foundation. Accessed: Aug. 25, 2017.
[Online]. Available: http://samza.apache.org/

[7] T. Akidau, A. Balikov, K. Bekiroülu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, ‘‘MillWheel: Fault-
tolerant stream processing at Internet scale,’’ Proc. VLDB Endowment,
vol. 6, no. 11, pp. 1033–1044, Aug. 2013.

[8] J. Fang, R. Zhang, X. Wang, and A. Zhou, ‘‘Distributed stream join under
workload variance,’’ World Wide Web, vol. 20, no. 5, pp. 1089–1110,
Sep. 2017.

[9] S. A. Shaikh, Y. Watanabe, Y. Wang, and H. Kitagawa, ‘‘Smart scheme:
An efficient Query execution scheme for event-driven stream processing,’’
Knowl. Inf. Syst., vol. 58, no. 2, pp. 341–370, Feb. 2019.

[10] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang, and Y. D. Cai,
‘‘Stream cube: An architecture for multi-dimensional analysis of data
streams,’’ Distrib. Parallel Databases, vol. 18, no. 2, pp. 173–197,
Sep. 2005.

[11] A. Cuzzocrea, A. Schuster, G. Vercelli, and M. Nolich, ‘‘Privacy-
preserving olap-based monitoring of data streams: The PP-OMDS
approach,’’ in Proc. 27th Italian Symp. Adv. Database Syst., Castiglione
della Pescaia (Grosseto), Rome, Italy, Jun. 2019, pp. 282–292.

[12] K. Nakabasami, T. Amagasa, S. A. Shaikh, F. Gass, and H. Kitagawa, ‘‘An
architecture for stream OLAP exploiting SPE and OLAP engine,’’ in Proc.
IEEE Int. Conf. Big Data, Oct. 2015, pp. 319–326.

[13] Hitachi. µCosminexus Stream Data Platform. Accessed:
Aug. 10, 2017. [Online]. Available: http://www.hitachi.co.jp/Prod/comp/
soft1/cosminexus/sdp/

[14] J. Ramnarayan, B. Mozafari, S. Wale, S. Menon, N. Kumar, H. Bhanawat,
S. Chakraborty, Y. Mahajan, R. Mishra, and K. Bachhav, ‘‘Snappydata:
A unified cluster for streaming, transactions and interactice analytics,’’ in
Proc. CIDR, 2017, pp. 1–8.

[15] The Apache Software Foundation, Apache Spark—Lightning-Fast
Cluster Computing. Accessed: Feb. 17, 2017. [Online]. Available:
http://spark.apache.org/

[16] M. Use of technology. The Internet in 60 Seconds. Accessed: Sep. 5, 2017.
[Online]. Available: http://www.makeuseof.com/tag/the-internet-in-60-
seconds/

104648 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-540-28608-0_16
http://dx.doi.org/10.1007/978-3-540-28608-0_16
http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/s00778-003-0095-z

S. A. Shaikh, H. Kitagawa: StreamingCube: Seamless Integration of Stream Processing and OLAP Analysis

[17] S. A. Shaikh and H. Kitagwa, ‘‘Streamingcube: A unified frame-
work for stream processing and OLAP analysis (demo paper),’’ in
Proc. 26th ACM Int. Conf. Inf. Knowl. Manage., 2017, pp. 2527–2530,
doi: 10.1145/3132847.3133165.

[18] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, ‘‘S4: Distributed stream
computing platform,’’ in Proc. IEEE Int. Conf. Data Mining Workshops,
Dec. 2010, pp. 170–177.

[19] V. Harinarayan, A. Rajaraman, and J. D. Ullman, ‘‘Implementing data
cubes efficiently,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1996,
pp. 205–216.

[20] K. Aouiche and J. Darmont, ‘‘Data mining-based materialized view and
index selection in data warehouses,’’ J. Intell. Inf. Syst., vol. 33, no. 1,
pp. 65–93, Aug. 2009.

[21] Z. A. Talebi, R. Chirkova, Y. Fathi, and M. Stallmann, ‘‘Exact and
inexact methods for selecting views and indexes for OLAP performance
improvement,’’ in Proc. 11th Int. Conf. Extending Database Technol. Adv.
Database Technol. (EDBT), 2008, pp. 311–322.

[22] C. Joslyn, J. Burke, T. Critchlow, N. Hengartner, and E. Hogan, ‘‘View dis-
covery in OLAP databases through statistical combinatorial optimization,’’
in Proc. the 21st Int. Conf. Sci. Stat. Database Manage., 2009, pp. 37–55.

[23] E. Lo, B. Kao,W.-S. Ho, S. D. Lee, C. K. Chui, and D.W. Cheung, ‘‘OLAP
on sequence data,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
New York, NY, USA, 2008, pp. 649–660, doi: 10.1145/1376616.1376682.

[24] W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, and
J. Huang, ‘‘STREAMCUBE: Hierarchical spatio-temporal hashtag clus-
tering for event exploration over the Twitter stream,’’ in Proc. IEEE 31st
Int. Conf. Data Eng., Apr. 2015, pp. 1561–1572.

[25] MemSQL: The Fastest In-Memory Database. Accessed: Feb. 14, 2017.
[Online]. Available: http://www.memsql.com/

[26] The Apache Software Foundation. Accessed: Feb. 14, 2017. [Online].
Available: http://cassandra.apache.org/

[27] M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim, ‘‘L-store:
A real-time OLTP and OLAP system,’’ in Proc. CoRR, 2016, pp. 1–15.

[28] M. Zaharia, P. Wendell, A. Konwinski, and H. Karau, Learning Spark.
Newton, MA, USA: O’Reilly Media, 2015.

[29] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, and
A. Shaikhha, ‘‘DBToaster: higher-order delta processing for dynamic,
frequently fresh views,’’ VLDB J., vol. 23, no. 2, pp. 253–278, Apr. 2014.

[30] R. Zhang, N. Koudas, B. C. Ooi, D. Srivastava, and P. Zhou, ‘‘Stream-
ing multiple aggregations using phantoms,’’ VLDB J., vol. 19, no. 4,
pp. 557–583, Aug. 2010.

[31] M. Nikolic, M. Dashti, and C. Koch, ‘‘How to win a hot dog eating contest:
Distributed incremental view maintenance with batch updates,’’ in Proc.
Int. Conf. Manage. Data, 2016, pp. 511–526.

[32] G. Luo and P. S. Yu, ‘‘Content-based filtering for efficient online materi-
alized view maintenance,’’ in Proc. 17th ACM Conf. Inf. Knowl. Mining
(CIKM), 2008, pp. 163–172.

[33] L. Fegaras, ‘‘Incremental stream processing of nested-relational queries,’’
in Database and Expert Systems Applications, S. Hartmann and H. Ma,
Eds. Cham, Switzerland: Springer, 2016, pp. 305–320.

[34] Y. Yang, L. Golab, and M. Tamer Ozsu, ‘‘ViewDF: Declarative incremen-
tal view maintenance for streaming data,’’ Inf. Syst., vol. 71, pp. 55–67,
Nov. 2017.

[35] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk, ‘‘Stream warehous-
ing with datadepot,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
New York, NY, USA, 2009, pp. 847–854, doi: 10.1145/1559845.1559934.

[36] M. Ahuja, C. C. Chen, R. Gottapu, J. Hallmann, W. Hasan, R. Johnson,
M. Kozyrczak, R. Pabbati, N. Pandit, S. Pokuri, and K. Uppala,
‘‘Peta-scale data warehousing at yahoo!’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, New York, NY, USA, 2009, pp. 855–862,
doi: 10.1145/1559845.1559935.

[37] M. Balazinska, Y. Kwon, N. Kuchta, and D. Lee, ‘‘Moirae: History-
enhanced monitoring,’’ in Proc. 3rd CIDR Conf., 2007, pp. 213–217.

[38] K. Tufte, J. Li, D. Maier, V. Papadimos, R. L. Bertini, and J. Rucker,
‘‘Travel time estimation using niagarast and latte,’’ inProc. ACM SIGMOD
Int. Conf. Manage. Data, New York, NY, USA, 2007, pp. 1091–1093,
doi: 10.1145/1247480.1247617.

[39] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li, A. Russakovsky, and
N. Thombre, ‘‘Continuous analytics: Rethinking Query processing in a
network-effect world,’’ in Proc. CIDR, 2009, pp. 1–10.

[40] L. Golab and T. Johnson, ‘‘Consistency in a stream warehouse,’’ in Proc.
CIDR, Jan. 2011, pp. 114–122.

[41] J. F. Naughton, D. J. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis,
J. Kang, R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy,
J. Shanmugasundaram, F. Tian, K. Tufte, S. Viglas, Y. Wang, C. Zhang,
B. Jackson, A. K. Gupta, and R. Chen, ‘‘The niagara Internet Query
system,’’ IEEE Data Eng. Bull., vol. 24, pp. 27–33, Oct. 2001.

[42] A. Arasu, S. Babu, and J. Widom, ‘‘The CQL continuous query language:
Semantic foundations and query execution,’’ VLDB J., vol. 15, no. 2,
pp. 121–142, Jun. 2006, doi: 10.1007/s00778-004-0147-z.

[43] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, ‘‘Mod-
els and issues in data stream systems,’’ in Proc. 21st ACM SIGMOD-
SIGACT-SIGART Symp. Princ. Database Syst., NewYork, NY, USA, 2002,
pp. 1–16, doi: 10.1145/543613.543615.

[44] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, ‘‘Automated
selection of materialized views and indexes in SQL databases,’’ in
Proc. 26th Int. Conf. Very Large Data Bases. San Francisco, CA,
USA: Morgan Kaufmann, 2000, pp. 496–505. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645926.671701

[45] H. Gupta and I. S. Mumick, ‘‘Selection of views to materialize in a data
warehouse,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 1, pp. 24–43,
Jan. 2005, doi: 10.1109/TKDE.2005.16.

[46] C. A. Dhote andM. S. ALi, ‘‘Materialized view selection in data warehous-
ing,’’ in Proc. 4th Int. Conf. Inf. Technol. (ITNG), Apr. 2007, pp. 843–847.

[47] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y. Eltabakh,
C. Kanne, F. Özcan, and E. J. Shekita, ‘‘Jaql: A scripting language for
large scale semistructured data analysis,’’ in VLDB J., vol. 4, no. 12,
pp. 1272–1283, 2011.

[48] JSON—JavaScript Object Notation. Accessed: Sep. 30, 2017. [Online].
Available: http://www.json.org/

[49] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, ‘‘Maintaining views
incrementally,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1993,
pp. 157–166.

[50] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak, ‘‘The star schema bench-
mark and augmented fact table indexing,’’ in Proc. 1st TPC Technol.
Conf. Perform. Eval. Benchmarking (TPCTC). Berlin, Germany: Springer-
Verlag, 2009, pp. 237–252, doi: 10.1007/978-3-642-10424-4_17.

SALMAN AHMED SHAIKH received the B.E.
degree in computer systems and the M.E. degree
in communication systems and networks from the
Mehran University of Engineering and Technol-
ogy, Pakistan, in 2005 and 2008, respectively, and
the Ph.D. degree in computer science from the
University of Tsukuba, Japan, in 2014. FromApril,
2014 to March 2018, he worked as a Postdoc-
toral Researcher with the University of Tsukuba,
Japan, on a Big Data Integration and Analysis

Project, Research and Development on Real World Big Data Integration
and Analysis, funded by Ministry of Education, Culture, Sports, Science,
and Technology, Japan. He is currently working as a Research Scientist
with the Artificial Intelligent Research Center (AIRC), AIST, Tokyo Water-
front, Japan. His research interests include stream processing, point cloud
data processing, spatial data processing, big data manipulation, transaction
processing, uncertain data processing, and data mining. He is a member
of the Database Society of Japan (DBSJ), the International Association
of Computer Science and Information Technology (IACSIT), and Pakistan
Engineering Council (PEC).

HIROYUKI KITAGAWA (Member, IEEE) recei-
ved the B.Sc. degree in physics and the M.Sc. and
Dr.Sc. degrees in computer science from the Uni-
versity of Tokyo, in 1978, 1980, and 1987, respec-
tively. He is currently a Full Professor with the
Center for Computational Sciences, University of
Tsukuba. His research interests include databases,
data integration, stream processing, data mining,
social media mining, information retrieval, and
scientific databases. He is a member of ACM and

JSSST. He is an IEICE Fellow, an IPSJ Fellow, and an Associate Member of
the Science Council of Japan. He has served as the President of the Database
Society of Japan, from 2014 to 2016, the Chairperson of the IEICE Special
Interest Group on Data Engineering, from 1999 to 2001, and the Chairperson
of ACM SIGMOD Japan Chapter, from 2003 to 2007.

VOLUME 8, 2020 104649

http://dx.doi.org/10.1145/3132847.3133165
http://dx.doi.org/10.1145/1376616.1376682
http://dx.doi.org/10.1145/1559845.1559934
http://dx.doi.org/10.1145/1559845.1559935
http://dx.doi.org/10.1145/1247480.1247617
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1145/543613.543615
http://dx.doi.org/10.1109/TKDE.2005.16
http://dx.doi.org/10.1007/978-3-642-10424-4_17

