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ABSTRACT Great progress has been made in the field of pedestrian detection, but the following two
problems have not yet been well addressed. One problem is the missed detection of small scale pedestrain
as false negative failure, and the other one is confusion with anthropomorphic negative samples like
vertical structures as false positive failure. In this paper, to tackle the above two problems, we use the
light-field camera to capture pedestrian images for the following reasons: (i) the light-field camera can
obtain multi-depth refocused images in a single exposure using one sensor, (ii) compared with 2D images,
these refocused images can provide different key representations for different parts of the image. We further
establish a light-field pedestrian dataset with 1766 images for pedestrian detection. A multi-focus detection
network proposed in this work consists of multiple-branch detection models and takes multiple refocused
images as inputs. In order to select the appropriate candidate proposal bounding box as final detection results,
we design a cumulative probability selection (CPS) layer to combine each refocused image branch and
accumulate the probability of each candidate neighboring proposal. Experimental results demonstrate that
the proposed method outperforms state-of-the-art methods on our light-field pedestrian dataset.

INDEX TERMS CNN, light-field imaging, pedestrian detection.

I. INTRODUCTION
Pedestrian detection is one of the key problems in the field
of computer vision and multimedia, which has a number of
applications, such as video surveillance, urban autonomous
driving, and robotics. In recent years, a lot of work has been
devoted to this study [1]–[10]. However, there are still some
common problems existing in pedestrian detection task. Two
of the main problems are as follows. One is the small scale
pedestrian detection. Since small scale pedestrians are often
far away from the camera lens, it is easy to blur and small
scale pedestrians are easily detected as negative samples for
the lack of strong feature representations. The other is confu-
sion with anthropomorphic negative samples. These anthro-
pomorphic negative samples are pedestrian-like objects such
as vertical structures, dustbins, traffic lights, and trees [11].
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Because the shape of these objects is very similar to that
of pedestrians in some cases, they are usually incorrectly
detected as positive samples.

At the same time, as the 2D images contain limited infor-
mation in pedestrian detection tasks, there are many meth-
ods proposed utilizing RGB-D or multi-spectral sensors to
detect pedestrians in various situations. Choi et al. [12] used
Kinect to detect people in a living room combining an ensem-
ble of detectors in a unified framework. Hsieh et al. [13]
proposed a people counting system with Kinect achieving
almost 100% bi-directional counting and real-time detecting.
Chen et al. [14] detected people in crowded scenes by fusing
RGB and depth images from Kinect. Premebida and Nunes
[15] used the context-based multisensor for pedestrian detec-
tion in urban environment. Zhang and Tao [16] proposed a
pedestrian codetection framework for detecting pedestrians in
binocular stereo sequence. Park et al. [17] proposed a novel
sensor fusion CNN framework for detecting pedestrians and
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improved the detection performance in the night. However,
these methods are energy-consuming and inconvenient. For
instance, the Kinect camera needs mobile power and bracket
when working outdoors and the binocular vision systems
need accurate calibration to work well.

Considering the unique imaging process of light-field cam-
era [18], it records both light intensity and the direction
of each ray simultaneously. Thus, it can get multi-depth
refocused images in a single photographic exposure using
one sensor. These refocused images provide different key
representations for different parts of the image. Intuitively, the
in-focus part transmits more information than the out-focus
part. This inspires us to design reasonable strategies to
enhance the performance of pedestrian detection according
to the different emphases of the information expressed by
different refocused images. However, the original data cap-
tured by the light-field camera is in 4D format which is quite
different from 2D and stereo information. Until now, in the
field of object detection, there is no ready-made solution
that can easily read the original data and make good use
of refocusing characteristics. To solve the above difficulties,
we design a new method to read the original data and make
full use of refocusing characteristics of light-field imaging.
Reasons mentioned above lead to the motivation of our paper.

Therefore, in this paper, a multi-focus detection net-
work (MFDN) which uses light-field refocused images as
input is designed to boost pedestrian detection performance.
For established light-field pedestrian dataset, we design two
methods to obtain refocused images. These two methods are
Lytoro software method and digital refocusing method, and
the effects of two different methods on the results are also
illustrated. In order to select the appropriate bounding boxes
that can be retained from the results of multiple refocusing
branches, a cumulative probability selection (CPS) layer is
introduced to accumulate probabilities of different refocus-
ing branches. Our method can effectively suppress the hard
negatives (e.g., vertical structures) and improve the efficiency
of the small scale pedestrian detection to some extent. Com-
parisons with state-of-the-art methods are also illustrated in
Section IV. Our key contributions are as follows:
1) Dataset construction. Although there is a similar dataset

of light-field pedestrian [19], it lacks the annotation
information of pedestrian bounding box. We first estab-
lish a light-field pedestrian dataset with 1766 images
with a complete annotation box. This dataset is obtained
in complex scenes, which is totally different from [19]
and will be public for researchers.

2) We devise two methods for extracting the multiple
refocused images from the raw light-field images and
analyze their advantages and disadvantages. These two
methods are general and flexible enough to be applicable
to any scenarios requiring speed or accuracy. Moreover,
we also compare the effects of two refocusing methods
on the detection results.

3) We propose a multi-focus pedestrian detection network
with multiple refocused images as input to tackle the

problems of small scale pedestrian detection and con-
fusion with anthropomorphic negative samples, while
introducing a cumulative probability selection (CPS)
layer to combine the results of multiple detection
branches. Compared with the baseline method [20], our
method markedly reduces the log average missrate by
15.39% and achieves an overall missrate of 30.09% on
our proposed light-field dataset.

The remainder of this paper is organized as follows.
Section II elaborates related work on pedestrian detection
and light-field imaging. We present the proposed method in
Section III. Experimental results and discussion are intro-
duced in Section IV, and we conclude the paper in Section V.

II. RELATED WORK
A. LIGHT FIELD IMAGING
Adelson and Wang introduced the first light-field imaging
technology in [21]. They built a plenoptic camera with an
array of lenses. Ng et al. [22] invented the first hand-held
device and introduced digital refocusing. Then, Ng founded
Lytro company and successively launched two commercial
hand-held light-field camera. Moreover, Veeraraghavan et al.
[23] enriched the framework for obtaining the 4D information
from light-field camera and widened the application scope of
the light-field camera.

Recent years, many new light-field camera applications
have been put forward. Shi et al. [24] introduced a novel tech-
nique that could simultaneously measure 3Dmodel geometry
and 3D surface pressure with a single light-field camera.
Zhao et al. [25] believed that light-field camera could be
applied to depth extraction of low-texture region. Fan and
Yang [26] estimated the depth of real-world scenes contain-
ing an object semi-submerged in water using a light-field
camera. The depth estimation of the light-field imaging had
a certain develop [27], [28] and it made many applications
possible, e.g., 3D scene reconstruction [29], saliency detec-
tion [30], and image super-resolution reconstruction [31].
The light-field imaging could be also used in biometric sys-
tem [32] to improve face/iris recognition by its abundant
information.

B. LIGHT FIELD DATASETS
The existing light-field datasets are based on the specific
research purposes. For example, Raghavendra et al. [32]
constructed two relatively large datasets to improve the
performance of face and iris biometric recognition sys-
tem. Li et al. [33] collected 100 scene images for saliency
detection. Wang et al. [34] built a dataset which con-
tained 1200 light-field images for material recognition.
Jia et al. [19] established a dataset which contained
about 1000 light-field pedestrian images. But the pedestrian
dataset lacked bounding box (ground truth) and the scenes in
the dataset was relatively simple. Therefore, it is necessary
to build a dataset of light-field pedestrians with complete
annotations in complex scenes.

VOLUME 8, 2020 105083



Y. Zhao et al.: Detecting Small Scale Pedestrians and Anthropomorphic Negative Samples Based on Light-Field Imaging

C. PEDESTRIAN DETECTION
In recent years, there have been a lot of researches in the
field of pedestrian detection, and a series of papers have been
published. But two vital problems still exist in pedestrian
detection task. The first is small scale of pedestrian detec-
tion. Song et al. [35] proposed a method which combined
somatic topological line localization (TLL) and temporal
feature aggregation for detecting small scale pedestrians.
SAF R-CNN [36] utilized the divide-and-conquer philos-
ophy to develop a Scale-Aware Fast R-CNN framework
which contained multiple built-in subnetworks detecting var-
ious scale pedestrians. The second is confusion with hard
negative samples. Zhang et al. [37] used boosted forests
classifiers to effectively mine hard negatives based on the
region proposal network (RPN) and high-resolution feature
map. Wang et al. [38] proposed a novel loss function which
improved the performance of the detector under occlusion
cases. Liu et al. [39] proposed a asymptotic localization
fitting module based on the single-stage detectors to improve
the performance of pedestrian detection by continuously
improving the accuracy of bounding box.

Overall, the above methods are more or less based on
Fast/Faster R-CNN [20], [40] architecture with common 2D
images as input. On the contrary, our proposed method relies
on multi-focus image sequence as input, which can apply
more information for detectors to suppress the hard negative
samples and improve small scale pedestrian detection to some
extent.

III. PROPOSED METHOD
In this section, we explain the principle of light-field
imaging, and describe how to construct the pedestrian
light-field dataset and how to label data. Furthermore,
we describe the overall process of our framework in
detail.

A. LIGHT FIELD IMAGING
A light-field camera consists of main lens, microlens array,
and photosensor. Microlens array is a two-dimensional array
composed of multiple microlens units, as indicated by
Fig. 1(a). The pupil plane (uv plane) of the main lens and
the photosensitive plane of the image sensor are conju-
gated with respect to the microlens array (st plane). That
is to say, the light passing through each microlens unit
will be projected onto the image sensor to form a small
microlens image. Each microlens image contains several pix-
els. At the same time, the light intensity coming from the
narrow beam is recorded by each pixel. As shown in Fig. 1(b),
the narrow beam here is limited by a space composed of
a microlens and a main lens and is also the discrete sam-
pling form of the light-field. The position and direction of
each narrow beam can be determined by the coordinate (s,t)
of microlens unit and the coordinate (u,v) of sub-aperture.
Furthermore, the light distribution L(u, v, s, t) can be
obtained.

FIGURE 1. Schematic diagram of light-field camera imaging.

B. LIGHT FIELD DATASET CONSTRUCTION
1) LIGHT FIELD IMAGE ACQUISITION
In order to better illustrate the value of our experiment,
we capture pedestrian images by different authors in rela-
tively complex scenes, such as campus, busy street, and busi-
ness district, using Lytro Illum camera [18] under different
viewpoints and lighting conditions. The spatial resolution of
the light field images is 376× 541, and the angular resolution
is 14× 14. Considering that the imaging quality of the light
field camera is sensitive to light, we limit the shooting time
to 9am-4pm. Due to the small pixel size (1.4µm) of Lytro
camera, the images are often too dark to use. All in all, we take
2000 images and keep 1766 images that are not so repetitive,
dim, or blurred. The raw data exported from the Lytro camera
is saved in LFR format. In order to refocus light-field images
in subsequent experiments using the method in [41], we
decode the raw data by using light-field MATLAB toolbox
[42] and each size of decoded image is 118MB.

2) ANNOTATION PROTOCOL
In order to annotate the light-field dataset, we need to get a
2D version of our dataset. First, we import all raw light-field
images into the Lytro software and set the aperture to f/16
(focus to infinity) in the Lytro software to get high-quality 2D
images. Then we export all of the all-in-focus images into the
disk and eventually get the 2D version of our dataset, denoted
as 2D-light. In this paper, we do not consider the problem of
occlusion. That is, if there is a pedestrian occlusion in the
image, we will artificially determine the overall pedestrian
proportion based on the area of the visible part and then
annotate it. Meanwhile, similar to the format of VOC [43],
we use the rectangle bounding box that covers the people
from head to toe to annotate the image. This also applies to
other types of people, such as sitting people and others. After
annotating all images in the 2D-light, we divide them into
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FIGURE 2. The illustration of our approach. Our proposed network consists of 4 modules, including multi-focus image sequence extraction, feature
extraction network, region proposal network, and inference network.

TABLE 1. Statistics of our proposed dataset.

the train set (1360) and test set (406). In order to study the
performance of different pixel size of pedestrians in detector
carefully, similar to Cityperson [44], we define the pedestri-
ans which height between 30 pixels and 80 pixels as small
scale pedestrian. Furthermore, we define a subset of images
that contains at least five pedestrians and four of them are
between 30 pixels and 80 pixels. The detailed information of
our dataset is shown in Table 1.

C. THE PROPOSED SCHEME
Our approach consists of 4 parts, includingmulti-focus image
sequence extraction, feature extraction network, region pro-
posal network, and inference network, as indicated by Fig. 2.
More concretely, the multi-focus image sequence extraction
is to extract the multi-depth refocused images. Then, we feed
these images into feature extraction network and get the
convolutional features(F1, · · ·Fn). In the region proposal net-
work, the proposals are generated on the feature F1. In infer-
ence network, the cumulative probability selection (CPS)
layer is proposed to select the candidate box with the optimal
probability by accumulating the probability of the surround-
ing candidate proposals.

1) MULTI-FOCUS IMAGE SEQUENCE EXTRACTION
According to the requirements of our method, it is neces-
sary to obtain the multi-focus image sequence of light-field

FIGURE 3. Considering the proportion of individual pedestrian pixels in
the whole image, we divide rows and columns into 9 parts on average
and get 81 regions, as shown by the dash lines in the figure.

images in advancewhen constructing thewhole detection net-
work. As far as we know, there are two common methods to
refocus light-field images. These two methods are described
in detail as following.
• Lytro software method. First, in order to get a wide
scope of refocusing, the aperture is set to f/1 in Lytro
software [18]. Considering the proportion of individual
pedestrian pixels in the whole image, we divide the
image into 81 regions to cover as many areas as possible
(Fig. 3). Depending on the functionality of the software,
we click on the corresponding area (the region contained
in the 81 regions) one by one and save the image to
the disk. This repetitive process can be accomplished by
automation tools like pyautogui library. We eventually
get 81 refocused images ( 2450× 1634) for one raw
image. Considering the performance and time cost of
image processing, all these refocused images are resized
into 1225× 817.
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• Digital refocusing. Digital refocusing is proposed in Ng
[22] and implemented by Tao et al. [41]. As far as we
know, the code in Tao et al. [41] is the first and only
open source. We rewrite the core module and accelerate
it via GPU. Due to the limitation of number of microlens
arrays, the resolution of the output refocused image is
541× 434.

Comparison of two methods of the light-field image
refocusing.

• Using Lytro software to refocus the image is
time-consuming and it needs to save the temporary
refocused images on the disk. However, the advantages
of this method can generate high quality images and high
resolution images.

• The advantages of digital refocusing is GPU acceler-
ation and online processing, without storing refocused
image to hard disk. So, it can fuse with CNNs better
and achieve end-to-end training. However, due to the
limitation of number of microlens arrays, the resolution
of the refocused image is reduced and the height-width
ratio is slightly deformed compared with the original
image. This will more or less affect the final detection
result.

2) FEATURE EXTRACTION NETWORK
To make full use of extracted refocused images, we feed
each refocused image into a series of convolution layers
(conv-layers). The initial parameters of conv-layers are from
the ResNet-50 [45] pretrained model (‘Conv1’ to ‘Conv5’)
on the ImageNet. Since original ResNet-50 has a large
down-sampling rate at conv-layers to detect small pedes-
trians, we change it into a form by using a series of
dilated-convolution and deconvolution resulted in the final
feature map as 1/16 of input size [35]. The convolutional fea-
tures from each branch are denoted as (F1, · · ·Fn), as shown
in Fig. 2.

3) REGION PROPOSAL NETWORK
We adopt the region proposal network (RPN) [20] to generate
the candidate proposals. These proposals can be parameter-
ized to a tuple L(i) = [xi, yi,wi, hi], where (xi, yi) is the cen-
ter point and (wi, hi) are weight and height diameters of the
bounding box. Because the refocusing operation often affects
the local features of the image and the RPN will convolute
the overall image to generate a mass of proposals, the slight
change of these local features will not have a great impact
on the generation of the proposals. So, in this paper, our
method only utilizes the convolutional feature F1 to generate
proposals for simply processing.

4) INFERENCE NETWORK
The inference network is to get the pedestrian probability
and position coordinate of each pedestrian proposal accord-
ing to convolution features of each pedestrian proposal.
To improve the performance of pedestrian detection, we adopt

FIGURE 4. Schematic diagram of CPS layer. (a) An example image may
produce false positives. (b) Proposals corresponding to (a), the red color
rectangles represent proposal with high pedestrian probabilities and
yellow color rectangles represent proposal with low pedestrian
probabilities. (c) A bounding box neighborhood system.

the region-of-interest (ROI) align [46] rather than ROI pool-
ing [40] scheme comparedwith [20]. To select the appropriate
candidates as outputs from each refocused image branch,
we propose a cumulative probability selection (CPS) layer
to select the appropriate candidate bounding box as the final
bounding box.

a: REGION-OF-INTEREST (ROI) ALIGN
As the fully-connected layer requires the input to be a fixed
size vector, similar to [46], we transform the features in any
effective ROI into a small feature map with a fixed size of
7× 7. The pedestrian probability of each ROI in each refo-
cused image branch can be expressed as P1(i),P2(i) . . .Pn(i).

b: CUMULATIVE PROBABILITY SELECTION LAYER
In pedestrian detection task, the false positives usually occur
in two situations. First, because overlapping areas (such as the
region "O") contain the part of pedestrians, the probability
of these areas is often higher than that of other candidate
bounding box (Fig. 4(a)). The region similar to ‘‘O’’ is eas-
ily detected as false positives. It is worth noting that the
non-maximum suppression (NMS) process cannot suppress
false positives well in this case. Second, the false positives
usually appear at some region (such as the region ‘‘I’’) which
is usually called pedestrian-like vertical structure (Fig. 4(a)).
These two kinds of problems can be alleviated by considering
the relevance of neighborhood proposals. Most of the existing
detection methods [20], [47], [48] deem that each pedestrian
candidate proposal is independent and these proposals are
sensitive to false positives. To overcome this, we propose a
cumulative probability selection (CPS) layer which accumu-
lates the estimated probabilities at each pedestrian proposal
with its surrounding proposals. To describe the surrounding
candidate bounding box, we introduce the concept of neigh-
borhood space, denoted as N (i). Moreover, we use R(i) and
R(k) to represent neighboring pedestrian proposals where
k ∈ N (i). The l2-norm distance can be expressed asD(i, k) =
‖R(i)− R(k)‖2. The comprehensive pedestrian probability at
each location can be expressed as

P̄(i) = 1
Np

∑
k∈N (i)

∑
j∈{1,··· ,n} exp(−D(i, k))Lj(k)Pj(k). (1)

where Pj(k) is the pedestrian probability of neighbor-
ing pedestrian proposals R(k). Lj(k) is a N × n weight
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matrix which represents the contribution of each can-
didate proposal to the final pedestrian probability. The
Lj(k) can be initialized by normal distribution and updated
by iterative training. The normalization factor is Np =∑

k∈N (i)
∑

j∈{1,··· ,n} exp(−D(i, k))Lj(k).

This design not only combines proposals of each branch,
but utilizes the method of accumulating the probability of
neighbor bounding box without hard negative mining [49].
To update Pj(k) in iterative training, the CPS layer must be
derivable. The derivative of the final loss L with respect to
Pj(k) can be expressed as

∂L
∂Pj(k)

=
∂L
∂P̄(i)

∂P̄(i)
∂Pj(k)

=
∂L
∂P̄(i)

1
Np

exp(−D(i, k))Lj(k). (2)

D. NETWORK TRAINING
We use two loss functions LRPN , LCPS for the whole network.
The total loss of the whole network can be expressed as

Ltotal = LRPN
(
T ,PF ,T ∗,P∗F

)
+ LCPS

(
T ′, P̄,T ∗,P∗

)
. (3)

where T ∗ is the ground truth pedestrian bounding box.

1) REGION PROPOSAL NETWORK LOSS
According to the positive and negative judgment method
of anchor in [20], we assign an anchor class label to each
proposal candidate. If an anchor is positive, set P∗F (j) = 1,
and if an anchor is negative, set P∗F (j) = 0. According to
these definitions, the LRPN can be expressed as

LRPN
(
T ,PF ,T ∗,P∗F

)
= λ1

∑
j

LclsRPN
(
PF (j),P∗F (j)

)
+λ2

∑
j

P∗F (j)L
reg
RPN (T (j),T

∗(j)).

(4)

where LclsRPN is the classification loss and LregRPN is the
regression loss. λ1 and λ2 are balancing factors between
LclsRPN and LregRPN , respectively. For the regression loss, we
use LregRPN (T (j),T

∗(j)) = β (T (j)− T ∗(j)) where β is the
robust loss function (smooth L1) defined in [40]. The term
P∗F (j)L

reg
RPN means the regression loss which is activated only

for positive anchors P∗F (j) = 1 and is disabled otherwise
P∗F (j) = 0. The T (j) and T ∗(j) can be computed according
to [20].

2) CUMULATIVE PROBABILITY SELECTION LOSS
Compared with the LRPN , the CPS layer loss LCPS can pro-
duce more accurate pedestrian probability. The LCPS also
includes classification loss and regression loss functions and
can be expressed as

LCPS
(
T ′,P′,T ∗,P∗

)
= λ3LclsCPS

(
P̄,P∗

)
+ λ4P∗L

reg
CPS

(
T ′,T ∗

)
. (5)

where LclsCPS is the classification loss and LregCPS is the regres-
sion loss. λ3 and λ4 are balancing factors between LclsCPS and
LregCPS , respectively. According to the rules of anchor positive

TABLE 2. Comparison results of different num_refocus.

and negative judgments, we also make positive and negative
judgments on candidate proposal. If candidate proposal is
positive, set P∗ = 1, otherwise, set P∗ = 0. The LregCPS
can also be computed similar to the LregPRN . In the process of
network training, minimizing the total loss function of LRPN
and LCPS can make the network provide the best performance
of pedestrian detection.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present the settings and details of our
experiments. Then, we compare our method with state-of-
the-art methods and analyze the effects of some parameters
on the results. In order to explicitly illustrate the role of our
method, we make a qualitative analysis in the end.

A. EXPERIMENT SETTINGS
Our framework is implemented using the Pytorch deep learn-
ing library. We train the network using a NVidia GeForce
GTX 1080Ti GPU and adjust the learning rate from 0.01 to
0.001 after 60k iterations (in total 120k iterations). The SGD
solver is adopted to optimize the network. In our experiments,
our network is implemented with the fixed parameter for
all datasets:{λ1, λ2, λ3, λ4} = {1, 10, 1, 10} and the number
of anchors is set to 9 similar to [20]. The size of anchors
is defined as 16, 32, and 64. The number of neighboring
proposals is set to 7. The parameters worth discussing in this
experiment are λ1, λ2, λ3, λ4, and the number of neighbor-
ing proposals. We conduct several experiments with these
parameters, and obtain the balance of speed and accuracy.
The standard evaluation metric [50] is adopted for our exper-
iment: log missrate is averaged over the false positive per
image (FPPI) in (10−2,100), denoted as MR.

B. ANALYSIS OF THE DEPTH-RESOLUTION IN DIGITAL
REFOCUSING
In order to analyze the depth-resolution of the refocused
image on the detection performance, we choose the dig-
ital refocusing method to illustrate. From [22] and the
open-source code in [41], we know that the αstep determines
resolution of the refocused light-field images and the number
of refocused images, as in (6). We use num_refocus to denote
the number of refocused images.

num_refocus =
αmax − αmin

αstep
. (6)

The default value of αmax and αmin are 2 and 0.2, respectively.
In order to analyze the effect of different αstep on detection
result, we compare the effects of different num_refocus on
the results.

Table 2 shows that the MR corresponding to the num-
ber of different refocused image and the time required to
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TABLE 3. Comparison results of different refocusing method.

TABLE 4. Comparison results of different backbone.

detect one light-field image. We find that if num_refocus ≥
128, MR remains unchanged. If num_refocus equals to 64 or
128, MR does not change much, but the time is shortened
obviously. So, if using the digital refocusing method and the
num_refocus equals to 64, a speed-accuracy trade-off result
can be achieved.

C. COMPARISON STUDY OF TWO DIFFERENT
REFOCUSING METHODS
As mentioned in chapter III, different refocusing methods
generate refocused images with different resolutions. So,
in order to study the effect of refocusing methods on the final
results, we present the detection results on the all dataset and
subset.

Table 3 shows that the missrate of the light-field images
refocusing algorithm using Lytro software is lower than that
of Tao et al. [41] on both test dataset and subset. This con-
firms that using the Lytro software methods to generate high
resolution images will retain more useful image information
and provide more detection performance. It is worth noting
that as Lytro company dose not provide the open source
implementation code of Lytro software, we do not know the
specific principle of obtaining refocused images by clicking
the corresponding area with the mouse. However, the refo-
cused images obtained from the Lytro software can be used
for theoretical verification.

D. COMPARISON STUDY OF DIFFERENT BACKBONES
To illustrate the influence of backbone on detection perfor-
mance, we use several common backbones including Vgg16
[51], ResNet-101, and MobileNetV1 to replace the ResNet-
50 in feature extraction network and evaluate the results of
experiments, respectively. Four groups of experiments adopt
the Lytro software method to refocus light-field images.

Table 4 shows that using the ResNet-50 as the backbone
can get the best detection performance with less time cost.
Using the MobileNetV1 as the backbone can achieve the
fastest detection speed, but the performance of the detector
is greatly reduced. Overall, the ResNet-50 is the best feature
extractor backbone at present. Many recent pedestrian detec-
tion methods [38], [39], [52] all adopt it as the feature extrac-
tor. Because it takes a lot of time to process the light-field

FIGURE 5. Some examples of pedestrians and hard negatives from
different refocused images.

FIGURE 6. Comparisons of detection results with state-of-the-art
methods.

image data, it is also a good choice to adopt a lighter feature
extractor such as MobileNetV1.

E. ABLATION STUDY ON CPS LAYER
The CPS layer has two functions: one is to use the cumu-
lative probability of surrounding proposals to suppress hard
negative samples, and the other is to select more appropriate
proposals as our final detection results from the multiple
refocusing branches. In order to evaluate the role of N (i)
neighborhood system, we remove the l2-norm term from the
CPS layer. The pedestrian probability can be expressed as

P̄(i) =
1
Np

∑
j∈{1,··· ,n}

expLjPj. (7)

where normalization factor Np =
∑

j∈{1,··· ,n} expLj. The
experiment results on all test dataset are as follows.

Table 5 shows that the missrate of the method without
N (i) system is higher than that of the method with N (i)
neighborhood system. The N (i) neighborhood system in CPS
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FIGURE 7. Comparisons with state-of-the-art methods. (From left to right) ALFNet, CSPNet, Faster-RCNN, Reploss, and Ours. The green rectangle
represents the detection results and the red rectangle represents missed detection and error detection.
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FIGURE 8. Analysis of the confidence score at same position of different
refocused images. (a) Detection results of refocusing on the region 9.
(b) Detection results of refocusing on the region 11.

layer indeed improves the detection performance. As men-
tioned in chapter III, 81 refocused images will be obtained
after refocusing operation (using Lytro software method). To
show the effect of pedestrians and hard negatives in different
refocused images more specifically, we cut out examples
from some refocused images and find that the sharpness is
different for the same location of each image (Fig. 5). These
parts have different feature representations and roles in the
whole detection network and the effect of different refocused
parts on the detection results is illustrated in the Qualitative
Analysis section. Moreover, due to the randomness of the
location of the pedestrians and hard negative samples in each
of refocused images, it is necessary to input all the refocused
images into the network to ensure that the feature represen-
tation of each refocused image is not missed. To evaluate the
effect of different refocused branches on the detection results,
we use odd, even, and interval two samplingmethod (noted as
a, b, and c) to sample 81 refocused branches, and the number

FIGURE 9. Analysis of the confidence score at same position of different
refocused images. (a) Detection results of refocusing on the region 33.
(b) Detection results of refocusing on the region 36.

TABLE 5. Performance of our methods with different CPS layers.

of reserved branches finally included in the study is 41, 40,
and 27, respectively. The comparative results show that if
some branches are missing, the performance of the whole
system will decline to some extent (Table 6).

F. COMPARISONS WITH STATE-OF-THE-ART METHODS
Recent open source methods are trained and evaluated on the
2D-light dataset for a reasonable comparison with ours.

As shown in Table 7 and Fig. 6, we compare our approach
with some state-of-the-art methods including Faster R-CNN
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TABLE 6. Performance of our methods with different branches input.

TABLE 7. Comparisons with state-of-the-art methods on our dataset.

[20], CSPNet [52], ALFNet [39], and RepLoss [38]. These
methods use default parameters in the training process. Our
approach achieves the MR of 30.09% and 33.34% on all test
set and subset, respectively, and reduces 15.39% and 10.04%
comparied with the baseline method (Faster R-CNN). Our
method also works better than other 3 approaches on both
dataset and subset. The MR of all methods is between
30%-50%. Compared with the above four methods on
Cityperson and Caltech datasets, the value of MR is in a
reasonable range. This shows that the dataset we build is
reasonable and has certain difficulty. It can properly reflect
the differences of the algorithm and can be used to evaluate
the performance of pedestrian detection algorithm.

As shown in Fig. 7, the first row of images is captured
in ice arena. The second to the fourth rows are campus,
commercial street, and busy street. The green rectangle in the
image represents the detection results and the red rectangle
represents missed detection and error detection. The Faster
R-CNN method dose not optimize the pedestrian situation,
such as increasing the size of feature map andmining the hard
negatives, resulting more false positive in detection results.
The ALFNet, CSPNet, and Reploss all have different levels
of missed detection and error detection. The missed detection
usually occurs in case of small scale pedestrian or occlusion,
and the error detection usually occurs in case of anthropomor-
phic negatives. As shown in first row, our method still work in
a crowded scene. The second row shows that our method can
still achieve a better result in case of bad light. All of these
show that our proposed method is robust in real world.

G. QUALITATIVE ANALYSIS
To explore the effect of different refocused images on the
detection results, we output the confidence scores of the
detection results of different refocused images. From Fig. 3,
one light-field image is divided into 81 regions for refocusing
operation. Then, we select a light-field image focused on the
region 9 (Fig. 8(a)) and region 11 (Fig. 8(b)) respectively for
specific explanation. As shown in Fig. 8, the hard negative
(e.g., vertical structure) is detected with the confidence score
of 0.108 and 0.804 in (a) and (b), repectively. From the

perspective of intuition, the sharpness of the vertical structure
part seems to be better in (b) than in (a). If the threshold is set
to 0.9, it can really suppress the vertical structure in Fig. 8(a),
but it also suppress positive samples with a confidence score
less than 0.9. In our experiment, the threshold is usually set
to 0.5. Therefore, the detection branch of different refocused
images processed by CPS layer can suppress some hard
negative (e.g., vertical structure) which are usually detected
as false positive. If the hard negative samples is as close to
the light-field camera as the positive samples, that is to say,
they are in the same imaging plane, and they will have the
same sharpness with the change of focusing distance. It may
affect the detection results more or less, but this situation is
very rare in the whole dataset after all.

For small scale pedestrian detection, we also output the
confidence scores of the detection results of different refo-
cused images. As shown in Fig. 9(a), we define target T as the
small scale pedestrian target which needs to be studied. Then,
we feed the regionA andB into the detection network, and the
confidence score of T is 0.865 and 0.387, respectively. This
phenomenon shows that different feature maps classified by
fully-connected layer will interact with each other. Namely,
some feature maps are activated and some are suppressed.
Whereas the confidence score of target T in Fig. 9(b) is 0.792.
This phenomenon shows that the representation of feature
map around the target T is enhanced to some extent compared
with which in Fig. 9(a) in some cases. So, the target T in
Fig. 9(b) is considered to be a true positives. Overall, multiple
refocused images will increase the representation ability of
feature maps and can extract more useful features than a
single 2D image.

V. CONCLUSION
In this paper, we design two methods to extract multi-
ple refocused images from raw light-field images and pro-
pose a multi-focus detection network (MFDN) based on
Faster R-CNN architecture. MFDN uses multiple refocused
images as input and makes full use of the information of
light-field images. To select the appropriate pedestrian candi-
date proposal from detection branch of each refocused image,
we propose cumulative probability selection (CPS) layer.
The evaluation experiments demonstrate that our approach
improves the performance of pedestrian detection. Overall,
our method provides a new idea for detecting pedestrians with
light-field camera and promotes the application of light-field
imaging in object detection.

REFERENCES
[1] Y. Zhang, P. Yi, D. Zhou, X. Yang, D. Yang, Q. Zhang, and X. Wei,

‘‘CSANet: Channel and spatial mixed attention CNN for pedestrian detec-
tion,’’ IEEE Access, vol. 8, pp. 76243–76252, 2020.

[2] P. Tumas, A. Nowosielski, and A. Serackis, ‘‘Pedestrian detection in severe
weather conditions,’’ IEEE Access, vol. 8, pp. 62775–62784, 2020.

[3] C. Lin, J. Lu, G. Wang, and J. Zhou, ‘‘Graininess-aware deep feature
learning for robust pedestrian detection,’’ IEEE Trans. Image Process.,
vol. 29, pp. 3820–3834, Jan. 2020.

[4] S. Zhang, Y. Xie, J. Wan, H. Xia, S. Z. Li, and G. Guo, ‘‘WiderPerson:
A diverse dataset for dense pedestrian detection in the wild,’’ IEEE Trans.
Multimedia, vol. 22, no. 2, pp. 380–393, Feb. 2020.

VOLUME 8, 2020 105091



Y. Zhao et al.: Detecting Small Scale Pedestrians and Anthropomorphic Negative Samples Based on Light-Field Imaging

[5] J. Cao, Y. Pang, J. Han, B. Gao, and X. Li, ‘‘Taking a look at small-scale
pedestrians and occluded pedestrians,’’ IEEE Trans. Image Process.,
vol. 29, pp. 3143–3152, Dec. 2020.

[6] Y. Pang, J. Cao, J. Wang, and J. Han, ‘‘JCS-Net: Joint classification and
super-resolution network for small-scale pedestrian detection in surveil-
lance images,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 12,
pp. 3322–3331, Dec. 2019.

[7] Y. Zhao, Z. Yuan, and B. Chen, ‘‘Accurate pedestrian detection by human
pose regression,’’ IEEE Trans. Image Process., vol. 29, pp. 1591–1605,
Sep. 2020.

[8] X.-M. Xia, Z.-L. Jiang, and P.-F. Xu, ‘‘A detection algorithm of spatter
on welding plate surface based on machine vision,’’ Optoelectron. Lett.,
vol. 15, no. 1, pp. 52–56, Jan. 2019.

[9] X. Zhang, D.Wang, Z. Zhou, and Y.Ma, ‘‘Robust low-rank tensor recovery
with rectification and alignment,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
early access, Jul. 16, 2019, doi: 10.1109/TPAMI.2019.2929043.

[10] W. Liu, X. Chang, L. Chen, D. Phung, X. Zhang, Y. Yang, and
A. G. Hauptmann, ‘‘Pair-based uncertainty and diversity promoting early
active learning for person re-identification,’’ ACM Trans. Intell. Syst. Tech-
nol., vol. 11, no. 2, pp. 1–15, Mar. 2020.

[11] J. Noh, S. Lee, B. Kim, and G. Kim, ‘‘Improving occlusion and hard neg-
ative handling for single-stage pedestrian detectors,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 966–974.

[12] W. Choi, C. Pantofaru, and S. Savarese, ‘‘Detecting and tracking peo-
ple using an RGB-D camera via multiple detector fusion,’’ in Proc.
IEEE Int. Conf. Comput. Vis. Workshops (ICCV Workshops), Nov. 2011,
pp. 1076–1083.

[13] C.-T. Hsieh, H.-C. Wang, Y.-K. Wu, L.-C. Chang, and T.-K. Kuo,
‘‘A Kinect-based people-flow counting system,’’ in Proc. Int. Symp. Intell.
Signal Process. Commun. Syst., Nov. 2012, pp. 146–150.

[14] X. Chen, K. Henrickson, and Y.Wang, ‘‘Kinect-based pedestrian detection
for crowded scenes,’’ Comput.-Aided Civil Infrastruct. Eng., vol. 31, no. 3,
pp. 229–240, Mar. 2016.

[15] C. Premebida and U. Nunes, ‘‘Fusing LIDAR, camera and semantic infor-
mation: A context-based approach for pedestrian detection,’’ Int. J. Robot.
Res., vol. 32, no. 3, pp. 371–384, Mar. 2013.

[16] Z. Zhang and W. Tao, ‘‘Pedestrian detection in binocular stereo sequence
based on appearance consistency,’’ IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 26, no. 9, pp. 1772–1785, Sep. 2016.

[17] K. Park, S. Kim, and K. Sohn, ‘‘Unified multi-spectral pedestrian detec-
tion based on probabilistic fusion networks,’’ Pattern Recognit., vol. 80,
pp. 143–155, Aug. 2018.

[18] R. Ng. Lytro Redefines Photography With Light Field Cameras. Accessed:
Oct. 18, 2018. [Online]. Available: http://www.lytro.com/

[19] C. Jia, F. Shi, Y. Zhao, M. Zhao, Z. Wang, and S. Chen, ‘‘Identification of
pedestrians from confused planar objects using light field imaging,’’ IEEE
Access, vol. 6, pp. 39375–39384, 2018.

[20] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[21] E. H. Adelson and J. Y. A.Wang, ‘‘Single lens stereo with a plenoptic cam-
era,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 99–106,
Feb. 1992.

[22] R. Ng, M. Levoy, M. Brédif, G. Duval, and M. Horowitz, ‘‘Light field
photography with a hand-held plenoptic camera,’’ Ph.D. dissertation, Dept.
Comput. Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep. 2005-02,
2005.

[23] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin,
‘‘Dappled photography: Mask enhanced cameras for heterodyned light
fields and coded aperture refocusing,’’ ACM Trans. Graph., vol. 26, no. 3,
pp. 1–12, Jul. 2007.

[24] S. Shi, S. Xu, Z. Zhao, X. Niu, and M. K. Quinn, ‘‘3D surface pressure
measurement with single light-field camera and pressure-sensitive paint,’’
Exp. Fluids, vol. 59, no. 5, p. 79, Apr. 2018.

[25] H. Zhao, Z. Miao, Y. Peng, and S. Zhao, ‘‘Depth extraction of low-texture
region using a light field camera,’’ Opt. Eng, vol. 56, no. 7, pp. 65–75,
Jul. 2017.

[26] J. Fan and Y.-H. Yang, ‘‘Depth estimation of semi-submerged objects
using a light-field camera,’’ in Proc. 14th Conf. Comput. Robot Vis. (CRV),
May 2017, pp. 80–86.

[27] H.-G. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y.-W. Tai, and I. S. Kweon,
‘‘Accurate depth map estimation from a lenslet light field camera,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1547–1555.

[28] W. Zhou, E. Zhou, G. Liu, L. Lin, and A. Lumsdaine, ‘‘Unsupervised
monocular depth estimation from light field image,’’ IEEE Trans. Image
Process., vol. 29, pp. 1606–1617, Oct. 2020.

[29] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. H. Gross,
‘‘Scene reconstruction from high spatio-angular resolution light fields,’’
ACM Trans. Graph., vol. 32, no. 4, pp. 1–12, Jul. 2013.

[30] Y. Piao, X. Li, M. Zhang, J. Yu, and H. Lu, ‘‘Saliency detection via
depth-induced cellular automata on light field,’’ IEEE Trans. Image Pro-
cess., vol. 29, pp. 1879–1889, Oct. 2020.

[31] Y. Yoon, H.-G. Jeon, D. Yoo, J.-Y. Lee, and I. S. Kweon, ‘‘Learning a deep
convolutional network for light-field image super-resolution,’’ in Proc.
IEEE Int. Conf. Comput. Vis. Workshop (ICCVW), Dec. 2015, pp. 57–65.

[32] R. Raghavendra, K. B. Raja, and C. Busch, ‘‘Exploring the usefulness
of light field cameras for biometrics: An empirical study on face and
iris recognition,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 5,
pp. 922–936, May 2016.

[33] N. Li, J. Ye, Y. Ji, H. Ling, and J. Yu, ‘‘Saliency detection on light field,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 8, pp. 1605–1616,
Aug. 2017.

[34] T. Wang, J. Zhu, E. Hiroaki, M. Chandraker, A. Efros, and
R. Ramamoorthi, ‘‘A 4D light-field dataset and CNN architectures
for material recognition,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
Oct. 2016, pp. 121–138.

[35] T. Song, L. Sun, D. Xie, H. Sun, and S. Pu, ‘‘Small-scale pedestrian
detection based on topological line localization and temporal feature aggre-
gation,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 554–569.

[36] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan, ‘‘Scale-aware fast
R-CNN for pedestrian detection,’’ IEEE Trans. Multimedia, vol. 20, no. 4,
pp. 985–996, Apr. 2018.

[37] L. Zhang, L. Lin, X. Liang, and K. He, ‘‘Is faster R-CNN doing well for
pedestrian detection,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Oct. 2016,
pp. 443–457.

[38] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and C. Shen, ‘‘Repulsion loss:
Detecting pedestrians in a crowd,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7774–7783.

[39] W. Liu, S. Liao, W. Hu, X. Liang, and X. Chen, ‘‘Learning efficient
single-stage pedestrian detectors by asymptotic localization fitting,’’ in
Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 643–659.

[40] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[41] M.W. Tao, S. Hadap, J.Malik, and R. Ramamoorthi, ‘‘Depth from combin-
ing defocus and correspondence using light-field cameras,’’ in Proc. IEEE
Int. Conf. Comput. Vis., Dec. 2013, pp. 673–680.

[42] D. G. Dansereau, O. Pizarro, and S. B. Williams, ‘‘Decoding, calibration
and rectification for lenselet-based plenoptic cameras,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 1027–1034.

[43] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andA. Zisserman,
‘‘The Pascal visual object classes (VOC) challenge,’’ Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303–338, Jun. 2010.

[44] S. Zhang, R. Benenson, and B. Schiele, ‘‘CityPersons: A diverse dataset for
pedestrian detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 4457–4465.

[45] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[46] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[47] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, ‘‘A unified multi-scale
deep convolutional neural network for fast object detection,’’ in Proc. 14th
Eur. Conf. Comput. Vis. ECCV, Amsterdam, The Netherlands, Oct. 2016,
pp. 354–370.

[48] J. Li, Y. Wei, X. Liang, J. Dong, T. Xu, J. Feng, and S. Yan, ‘‘Attentive
contexts for object detection,’’ IEEE Trans. Multimedia, vol. 19, no. 5,
pp. 944–954, May 2017.

[49] A. Shrivastava, A. Gupta, and R. Girshick, ‘‘Training region-based object
detectors with online hard example mining,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 761–769.

[50] P. Dollar, C. Wojek, B. Schiele, and P. Perona, ‘‘Pedestrian detection: An
evaluation of the state of the art,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, no. 4, pp. 743–761, Apr. 2012.

[51] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. Int. Conf. Learn. Represent.
(ICLR), San Diego, CA, USA, May 2015, pp. 1–14.

[52] W. Liu, S. Liao, W. Ren, W. Hu, and Y. Yu, ‘‘High-level semantic feature
detection: A new perspective for pedestrian detection,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5182–5191.

105092 VOLUME 8, 2020

http://dx.doi.org/10.1109/TPAMI.2019.2929043


Y. Zhao et al.: Detecting Small Scale Pedestrians and Anthropomorphic Negative Samples Based on Light-Field Imaging

YUFENG ZHAO received the bachelor’s degree
from the Tianjin University of Technology and
Education, Tianjin, China, in 2015. He is currently
pursuing the Ph.D. degree with the Key Labo-
ratory of Computer Vision and System, Ministry
of Education, Tianjin University of Technology.
His research interests include object detection and
computer vision.

FAN SHI received the Ph.D. degree from Nankai
University, Tianjin, China, in 2012. He is currently
an Associate Professor with the Tianjin Univer-
sity of Technology, China. His research interests
include machine vision, pattern recognition, and
optics.

MENG ZHAO received the Ph.D. degree from
Tianjin University, Tianjin, China, in 2016. She
is currently a Lecturer with the Tianjin University
of Technology, China. She is a part of the Chi-
nese National Natural Science Foundation Young
Project. Her research interests include medical
images and machine learning.

WENZHE ZHANG received the bachelor’s degree
from the Weifang Institute, Shandong, China,
in 2018. He is currently pursuing the master’s
degree with the Key Laboratory of Computer
Vision and System, Ministry of Education, Tian-
jin University of Technology. His research inter-
ests include light field reconstruction and machine
learning.

SHENGYONG CHEN (Senior Member, IEEE)
received the Ph.D. degree in computer vision from
the City University of Hong Kong, Hong Kong,
in 2003. In 2006 and 2007, he was with the
University of Hamburg. He is currently a Pro-
fessor with the Tianjin University of Technology,
China. He has authored over 100 scientific arti-
cles in international journals. His research interests
include computer vision, robotics, and image anal-
ysis. He is a Fellow of IET and a Senior Member

of CCF. He was a recipient of the National Outstanding Youth Foundation
Award of China, in 2013. He received the Fellowship from the Alexander
von Humboldt Foundation, Germany.

VOLUME 8, 2020 105093


