
Received May 7, 2020, accepted May 18, 2020, date of publication June 3, 2020, date of current version June 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999092

A Novel and Adaptive Transient Fault-Tolerant
Algorithm Considering Timing Constraint
on Heterogeneous Systems
JING LIU , ZIQI ZHU, AND CHUNHUA DENG
College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China
Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430081, China

Corresponding author: Ziqi Zhu (zhuzq@wust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602350 and Grant 61702382, in part
by the Hubei Natural Science Foundation under Grant 2018CFB195, in part by the Hubei Education Department Foundation under
Grant Q20181104, and in part by the Key Laboratory of Image Processing and Intelligent Control, Ministry of Education Foundation,
under Grant IPIC2018-04.

ABSTRACT Due to high performance and low power consumption, heterogeneous processors are widely
used in many real-time systems. In these systems, if tasks are not completed before deadline, it will
cause disastrous consequences, and thus it is important to provide fault-tolerance. This paper proposes
a novel, adaptive and transient fault-tolerant scheduling algorithm to solve the fault-tolerant problem in
heterogeneous real-time systems, aiming to improve system reliability within a given deadline. Since task
replication is efficient in improving system reliability, the proposed algorithm supports multiple replicas for
each primary task and allows the primary tasks and their replicas to be scheduled on the same processor
to increase reliability and lower latency. Also, the algorithm can dynamically adjust the number of replicas
for each task to accommodate the deadline and ensure higher reliability. Simulated results show that the
proposed algorithm can achieve higher reliability in comparison with existing and related fault-tolerant
algorithms. To be specific, the proposed algorithm can obtain the reliability of 89.37% whereas the two
existing algorithms DB-FTSA and FTSA obtain the reliability of 47.05% and 84.75% for the benchmark of
sixty tasks, respectively, to be detailed in Fig. 4 in experiment.

INDEX TERMS Reliability, heterogeneous system, task scheduling, fault-tolerant, deadline.

I. INTRODUCTION
A. BACKGROUND
In the past decades, society has witnessed continually
improved performance of computing systems, which success-
fully caters to the demands in both industry and academia [1].
Although the performance of computing systems has been
improved, its scale and complexity have also been increased,
which has triggered increased failures [2], [3]. According to
the 54th edition of the TOP500 inNovember 2019, OakRidge
National Laboratorya̧ŕs Summit system holds top honors with
anHigh Performance Linpack (HPL) result of 148.6 petaflops
and contains 2,414,592 cores. Heterogeneous systems are
widely applied to many security-related real-time systems,
due to the high performance and low cost, as their scale and
complexity become larger and larger, the possible failures

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiao-Sheng Si .

increase. Therefore, it is no longer reasonable to ignore the
fact that an application running on a very large system can
crash. Especially, higher reliability is an indispensable design
goal for real-time systems that are safe-critical. In these
systems, the correct behavior depends not only on computing
results but also on the issue when results are yielded [4].
No matter how good the computation result is, as long
as the completion time exceeds the timing constraint, it is
invalid. What is worse, missing deadline may cause serious
catastrophe. Fault-tolerant scheduling is an effective way to
achieve fault tolerance. Different scheduling schemes may
result in different reliability and completion time. Therefore,
designing efficient fault-tolerant scheduling techniques has
become essential for achieving better reliability within timing
constraint and thus far has attracted great interest amongst
researchers.

Faults may happen when computing systems are run-
ning [5]. They can be primarily classified into two categories:

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 103047

https://orcid.org/0000-0002-8667-0261
https://orcid.org/0000-0001-5226-9923

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

permanent faults and transient faults [6]. Once permanent
faults occur, they exist all the time in the system. The failed
component cannot perform any task, and the unfinished
task must be migrated to other non-faulty components [7].
Transient faults are short-lived and occur primarily due to
temporary malfunctioning of the components or external
interferences such as electrostatic discharge, electrical power
drops or overheating [8], [9]. In computing systems, there are
all kinds of faults, but a majority of them are transient [10].
Thus, this paper is centered on analyzing transient faults.

There are several methods to solve transient failure
problems. One commonly used method is based on the task
duplication technique which allows multiple replicas for each
task. Task duplication has two forms. One is the active
form, where replicas of a task can be assigned to multiple
processors, and executed in parallel to reduce failures [11].
Only when a task or one of its replicas is successfully per-
formed, the task is regarded to have been finished. The other
is the passive form [12]. A task and its replicas are classified
as the primary task and the backup tasks, where the original
task is called the primary task and all its replicas are deemed
as the backup tasks. When a primary task fails, it needs to
select a backup task to restore the pre-failure state, resulting in
a longer recovery time. This form also makes an assumption
that a fault detection mechanism is used to detect processor
crashes. Nevertheless, there is no need for the active form to
detect and handle failures [13], thereby saving time. In this
paper, we take the active form to cope with transient failures.
Unfortunately, most of the time, increasing the reliability
causes an increase in the completion time [14]. Therefore,
how to achieve higher reliability within a given time period
is a big challenge.

B. RELATED WORK
Fault-tolerant scheduling under different situations has been
widely studied in previous literatures.

Some aim to maximize the system reliability.
Luo et al. [15] develop a real-time fault-tolerant algorithm
RDFTAHS to schedule preemptive periodic tasks on het-
erogeneous distributed systems to boost system reliability.
Yan et al. [16] focus on the fault tolerance when task run-
time is uncertain. They propose an efficient fault-tolerant
scheduling algorithm DEFT for real-time tasks in the cloud,
aiming to achieve both fault tolerance and resource uti-
lization efficiency, whilst not taking hosts’ communication
time into account. Latiff et al. [17] propose a DCLCA
technique for dynamic clustering fault tolerance aware intel-
ligent scheduling using the LCA optimization algorithm,
not considering timing constraint. Zhang et al. [18] devise
a novel algorithm RMEC which incorporates task priority
establishment, frequency selection, and processor assignment
to maximize the system reliability with energy constraint.
They do not consider timing constraint, either. Mottaghi and
Zarandi [19] present a dynamic scheduling algorithm called
DFTS for real-time tasks in multicore processors to tolerate
single and multiple transient faults. However, DFTS is only

used for independent tasks and identical processing cores.
Wei et al. [20] propose a fault-tolerant algorithm to deal with
the transient failures which allows at most one backup task
and cannot make full use of deadline.

Some others focus on studying energy-efficient fault-
tolerance. Guo et al. [11], [21] develop energy-efficient
fault-tolerance (EEFT) techniques to schedule periodic
tasks running on systems with identical functionalities.
Zhao et al. [22] propose the SHR-DAG algorithm for
scheduling a set of frame-based real-time tasks with indi-
vidual deadlines on a single-processor system to minimize
energy consumption while preserving the system reliability.
Xie et al. [23] study the energy-efficient fault-tolerant
scheduling problem on heterogeneous distributed embed-
ded systems. They want to reduce the energy consump-
tion while satisfying the reliability goal and do not
consider timing constraint. Chatterjee et al. [24] study fault-
tolerant dynamic task mapping and scheduling problem for
Network-on-Chip-based multicore platform.

Apart from the works above, others have their different
focuses. Nair et al. [25] and Devaraj et al. [26] study
the fault-tolerant problem on independent tasks. Studies
[27]–[30] tackle the fault-tolerant problem in homogeneous
multicore systems. Benoit et al. [31] propose an efficient
fault-tolerant scheduling algorithm named FTSA for het-
erogeneous systems based on an active replication scheme
to minimize the latency given a fixed number of failures.
They do not consider communication time. Zhao et al. [32]
design a fault-tolerant scheduling algorithm called MaxRe
for heterogeneous systems to satisfy users’ reliability require-
ments with minimum resources. Nor do they consider com-
munication time. Samal et al. [33] propose a hybrid GA for
primary-backup fault-tolerant scheduling of hard real-time
tasks on multiprocessor systems with identical processors to
maximize system utilization and efficiency. Kurt et al. [34]
present a fault-tolerant dynamic task graph scheduling algo-
rithm that recovers from faults without global coordination to
minimize the slowdown of the application in the presence of
soft errors. Timing constraint is not taken into consideration,
either.

In this paper, we focus on transient failures and applica-
tions represented by DAGs considering communication time,
aiming to improve system reliability by using redundancy to
tolerate faults within timing constraint.

C. OUR CONTRIBUTION
In this paper, we propose a novel, adaptive and transient
fault-tolerant scheduling algorithm to solve the fault-tolerant
problem with timing constraint in heterogeneous system,
aiming to improve system reliability. Generally, the more
replicas, the more likely to obtain higher reliability. This
further generate smaller communication overhead between
tasks executed on the same processor than that on different
processor. Based on this, our proposed algorithm allows mul-
tiple replicas for each primary task. The primary task and its
replicas can be assigned to one processor. After determining

103048 VOLUME 8, 2020

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

the assignment of all primary tasks and their replicas under
the given deadline, the algorithm calculates the maximum
reliability that the system can achieve. We conduct a series of
simulated experiments including randomly generated graphs
with various characteristics and real-word applications to
evaluate the proposed algorithm.

The main contributions of this paper are summarized as
follows:
• We propose a novel, adaptive and transient fault-tolerant
scheduling algorithm to solve the transient fault-tolerant
problem. The algorithm can dynamically determine the
number of replicas based on the given deadline, and
obtain as much reliability as possible.

• We propose a task assignment algorithm to assign each
task to its best fit processor.

• Simulated results show that the proposed algorithm can
always keep a higher reliability compared with existing
and related fault-tolerant algorithms within the given
deadline.

The remainder of this paper is organized as follows.
Section II defines models and the problem in discussion.
Section III shows a motivational example to illustrate the
importance of proper fault-tolerant scheduling. Section IV
proposes a novel, adaptive and transient fault-tolerant
scheduling algorithm. A comparison of the proposed algo-
rithm with existing and related algorithms is conducted in
Section V to evaluate the performance of the proposed
algorithm, before Section VI concludes this paper.

II. MODELS AND PROBLEM DEFINITION
In this section, we first describe the system model, task
model, and fault model. Then, we offer the definition of the
problem discussed in this paper.

A. SYSTEM MODEL
The system targeted in this study is composed of a set of het-
erogeneous processors labeled as p1, p2, . . . , pM , whereM is
the number of total processors. Denote P = {p1, p2, . . . , pM }
to be the set of processors. These processors are connected
to each other with communication links and can commu-
nicate with each other. Different links between proces-
sors have different data transmission rate. The transmission
rate of a link (namely bandwidth) is measured in bits per
second [35], [36]. Suppose communication bandwidth
between any two processors is symmetrical, and we use
notation Bij to represent the communication bandwidth from
processor pi to processor pj. As a result, we have Bij = Bji.
We also assume that all interprocessor communications are
performed without contention.

B. TASK MODEL
An application is generally modeled by a weighted directed
acyclic graph (DAG) G =< V ,E >. V is the set of nodes
and contains N nodes v1, v2, . . . , vN . Each node represents
a task. In this paper, we use the terms ‘‘node’’ and ‘‘task’’
interchangeably. E ⊆ V×V is the set of edges corresponding

to precedence relations between tasks. For instance,
the directed edge (vi, vj) connecting node vi to node vj
indicates that node vj cannot start executing until task vi
has finished execution. The computational heterogeneity of
tasks means the difference of execution time that each task
is executed on each available processor in a system. Denote
ETij as the execution time of task vi on processor pj. When
the redundancy technique is taken to provide transient fault-
tolerance, a task may have multiple replicas.We use vi and v

bj
i

to label the primary task and its jth replica, and they have the
same execution time when executed on the same processor. In
a DAG, a task may need the output generated by other tasks
as its input, then data transfer happens. Let data(vi, vj) be the
data volume transferred from task vi to task vj. If two tasks
are mapped to the same processor, the communication time
will be zero. Otherwise, if vi is mapped to processor pm and
vj is mapped to processor pk , then the communication time
from task vi to task vj will be computed by data(vi, vj)/Bmk .
We assume that all the tasks have a shared deadline and tasks
are performed in a non-preemptive means.

If there is an edge (vi, vj) from node vi to node vj, then
vi can be said to be the predecessor (parent) of vj and vj
as the successor (child) of vi. A task vi may have multiple
predecessors or multiple successors, and we use pre(vi) to
denote the set of all predecessors of task vi. Similarly, we use
succ(vi) to denote the set of all successors of task vi. Fig.1
gives an example of a DAG.

FIGURE 1. An example of DAG. (a) A tree. (b) Values of execution time for
tasks executed on different processors.

In a DAG, a task without any predecessor is called an entry
task, and a task without any successor is called an exit task.
A DAGmay have multiple entry tasks and multiple exit tasks.
Without loss of generality, suppose there is only one entry
task and one exit task in a DAG. The DAG is finished only
when its exit task is finished. Therefore, the finished time
(namely makespan) is obtained by

makespan = FT (vexit), (1)

where FT (vexit) is the finished time of task vexit .

C. FAULT MODEL
At run-time, failures may occur due to various reasons,
such as hardware failures, electromagnetic interferences as

VOLUME 8, 2020 103049

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

well as the effects of cosmic ray radiations. Based on the
common exponential distribution assumption in the reliability
research [37] for every processor, the arrival of failures
follows a poisson distribution with the λ value repre-
senting the expected number of occurrence of failures in
unit time. Different processors have different λ values.
Denote λ1, λ2, . . . , λM to be the λ values for processors
p1, p2, . . . , pM , respectively, and3 = {λ1, λ2, . . . , λM }. The
failure distribution in t unit times for processor pj can be
defined as

f (k, λj, t) =
λkj e
−λjt

k!
, (2)

where k is the number of actual failures in t unit times.
The reliability of task vi executed on processor pj is the

possibility of its successful execution. That is

Rij = f (0, λj,ETij) =
λ0j e
−λjETij

0!
= e−λjETij . (3)

task vi is successfully executed if it or at least one of
its replicas is successfully finished. So the possibility for
successful execution of vi is computed by

Ri = 1−
∏
i′∈Ci

(1− Ri′p(i′)), (4)

where Ci is the set of indexes for vi and its replicas, and p(i′)
is the index of the processor that the vi′ is assigned to.
Therefore, the reliability of a system with N tasks is

calculated by

R =
N∏
i=1

Ri. (5)

D. PROBLEM
We address the problem as follows: Given a system composed
of a set of M heterogenous and connected processors P =
{p1, p2, . . . , pM }, and an application represented by a DAG
G =< V ,E > with a shared deadline D, the goal is to find
a fault-tolerant scheduling scheme which can maximize the
system reliability as well as satisfy task dependencies and
meet the give deadline. The problem can be mathematically
described as follows:

max R =
N∏
i=1

Ri,

s.t. makespan ≤ D. (6)

Since the problem is NP-hard [31], a heuristic algorithm is
proposed to copewith it. Redundancy is an efficient technique
to improve the system reliability. Thus, the heuristic takes
active backup strategy. It first calculates out the most replicas
that the system can tolerate within the given deadline. Then it
computes the final system reliability. Different schedules will
lead to different makespan and system reliability. Different
number of replicas will also cause different makespan and
system reliability. This will be illustrated in-depth in the
following section.

III. A MOTIVATIONAL EXAMPLE
An example is initially presented here to illustrate that dif-
ferent fault-tolerant scheduling schemes have a significant
impact on the makespan of an application and the system
reliability when it is executed on a heterogeneous system.
Suppose that the application is shown in Fig. 1(a) and the
execution times of all its five tasks executed on a system with
three heterogeneous processors are shown in Fig. 1(b). For
simplicity, we assume that the value of the communication
bandwidth between any two processors is 1.

FIGURE 2. A motivational example with deadline D = 35. (a) The first
scheme with makespan 30 and the reliability 97.54%; (b) The second
scheme with makespan 26 and the reliability 97.67%; (c) The
third scheme with makespan 35 and the reliability 99.76%.

Fig. 2 displays three different scheduling schemes when
the given deadline is 35 time units. In some schemes, each
task has one replica, whereas in other schemes, each task
may have multiple replicas. Denote vij to be the jth replica
of task vi, 1 ≤ i ≤ 5, j ≥ 1. In the first scheme shown
in Fig. 2(a), every task has one replica, and the primary task
as well as its replica are assigned to different processors:
v1, v2, v3, v4, v5 are separately assigned to processors
p2, p3, p1, p3, p2 while v11, v21, v31, v41, v51 are separately
assigned to processors p3, p2, p3, p2, p1. The makespan is
30. In the second scheme shown in Fig. 2(b), although each
task still has one replica, the primary task and its replica
could be assigned to the same processor, different from the
first scheme. The makespan is 26. In the third scheme shown
in Fig. 2(c), each task has multiple replicas. The makespan
is 35. Assume that processors p1, p2, p3 have λ values:
3 = {0.015, 0.014, 0.013}, and we obtain the reliability cal-
culated by (5) for the three scheduling schemes in Fig. 2 from
left to right are 97.54%, 97.67%, and 99.76%, respectively.

Different scheduling schemes generate different reliability
and different makespan. Usually, more replicas means higher
reliability. Compared with the first two schemes, the third
scheme has more replicas and the highest reliability. This
brings us to the question of whether more replicas represents
a better scenario.

103050 VOLUME 8, 2020

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

FIGURE 3. Three cases of different number of replicas generated by the
third scheme above. (a) One replica with makespan 26 and the reliability
97.67%; (b) Two replicas with makespan 35 and the reliability 99.76%;
(c) Three replicas with makespan 43 and the reliability 99.98%.

Fig. 3 shows what will happen when the number of replicas
increases from one to three using the third scheme above.
In Fig. 3(a), each task has one replica, themakespan is 26 time
units, and the reliability is 97.67%. In Fig. 3(b), each task
has two replicas, the makespan is 35 time units, and the
reliability is 99.76%. In Fig. 3(c), each task has three replicas;
the makespan is 43 time units and the reliability is 99.98%,
missing the given deadline 35 time units. From Fig. 3, we can
get to know: (1) when the number of replicas increases,
the reliability and makespan also increase; (2) when the
number of replicas increase to some value, and the reliability
is high enough (i.e., larger than 99%), it will not cause signif-
icant increase in reliability if more replicas are considered.

Although more replicas can provide higher reliability,
it consumes more resources like CPU, time, and memory, etc.
As a consequence, it is necessary and important to design effi-
cient fault-tolerant scheduling method to improve the system
reliability with various constraints.

Notations used in this paper are summarized in Table 1.

IV. THE PROPOSED ALGORITHM
In this section, we propose a novel, adaptive and transient
fault-tolerant scheduling algorithm (AFTSA) which is the
third scheme mentioned in Section III to solve our stated
problem. For the convenience of reading, we first explain
some concepts and formulas, and then present the proposed
algorithm in detail.

A. CONCEPTS AND FORMULAS
EST (vi, pk), the earliest execution start time of task vi on
processor pk , is computed by

EST (vi, pk) =

{
0 if vi = ventry
max{RT (vi, pk), avail(pk)} if vi 6= ventry,

(7)

where avail(pk) is the time once processor pk finishes its last
assigned task and becomes idle.
RT (vi, pk) is the time when vi receives all the data from its

predecessors and is ready to be executed on pk . It is computed
by

RT (vi, pk)

= max
vx∈pre(vi)

{max{AFT (vx , pro(vx))

+ cxi, max
vx
bj∈Backup(vx)

{BAFT (v
bj
x , pro(v

bj
x))+ cxji)}}}, (8)

where pro(vx) is the processor to which the primary task vx is
assigned and pro(vxbj) is the processor to which the jth replica
vxbj is assigned, respectively. cxi(cxji) is the communication
time from tasks vi to vx(v

bj
x).

EFT (vi, pk), the earliest execution finish time of task vi on
processor pk , is computed by

EFT (vi, pk) = EST (vi, pk)+ ETik . (9)

AFT (vx , pro(vx)), the actual finish time of primary task vx
on its assigned processor pro(vx), is computed by

AFT (vx , pk) = min
pj∈P
{EFT (vx , pj)}, (10)

where pk is the processor that vx has the minimum earliest
execution finish time among all processors. Let pk = pro(vx).
BAFT (vxbj , pro(vxbj)), the actual finish time of the jth

replica of vx on processor pro(vxbj), is computed by

BAFT (vxbj , p(vxbj)) = min
ps∈P
{EFT (v

bj
x , ps)}. (11)

FT (vi), the finish time of vi, if vi has no replicas, then we
have

FT (vi) = AFT (vi, pro(vi)). (12)

Otherwise, the finish time of vi is the time when both itself
and its replicas have finished execution. Thus, the finish time
of vi is computed by

FT (vi) = max{BAFT (vibj , pro(vibj)}, ∀vibj ∈ Backup(vi),

(13)

where Backup(vi) is the set of replicas of task vi.
ranku(vi), the uprank of task vi, is used to determine the

scheduling order of vi and computed as following

ranku(vi) = ETi + max
vj∈succ(vi)

(cij + ranku(vj)), (14)

where ETi is the average execution time of task vi on all
processors and cij is the average time consumed when task vi
communicates with task vj. We have

ETi =

∑M
j=1 ETij
M

, (15)

cij =
data(vi, vj)

B
, (16)

VOLUME 8, 2020 103051

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

TABLE 1. Definitions of the notations.

where B is the average data transmission rate among
processors. It can be calculated by

B =

∑M
m=1

∑M
k=1 Bmk

M2 . (17)

A larger value of uprank value implies a higher priority.
For example, if ranku(v1) > ranku(v2), then the priority of v1
will be higher than that of v2 and it will be scheduled earlier
than v2. If ranku(v1) = ranku(v2), then tie is broken by firstly
executing the task of smaller index.

B. ALGORITHM DESCRIPTION
The basic idea of the proposed AFTSA is as follows. First,
it calculates all tasks’ ranku values and stores them in the
descending order of their ranku values. Next, it calculates
the makespan without backup tasks (replicas) by calling a
scheduling function. Then, it calculates the maximum num-
ber of replicas for each primary task that the system can
tolerate within the given deadline. Finally, it computes the
maximum reliability that the system can achieve. AFTSA is
advantageous in that it makes good use of the given time to
dynamically generate the maximum number of replicas for

each task to obtain higher reliability in limited time, allows
the primary task and its replicas to be assigned to the same
processor, and assigns the primary task and its replicas to pro-
cessors of the minimum earliest execution finish time among
all processors. We now describe the proposed algorithm in
detail.

Algorithm 1 outlines AFTSA. The Input is a DAG G =
<V ,E>, a deadline D, and M processors p1, p2, . . . , pM .
The Output is a schedule scheme for all tasks of G that
achieves the maximum system reliability. Firstly, the pro-
posed algorithm calculates the ranku values for all tasks
by Equation (14), stores these tasks according to the
non-increasing order of ranku(vi) in a list list , as well as
initializes the parameters makespan, CN , and Fmakespan to
be zero (lines 1-3). Secondly, it invokes the function shown in
Algorithm 2 to get the makespan without considering replicas
(line 4). Thirdly, it uses a while loop to calculate out the most
replicas for each task that the system can tolerate within the
given deadline D (lines 5-15). The inner while loop from
line 7 to line 14 checks if the system can tolerate CN replicas
or not for each task until the makespan exceeds D or all tasks
have been copied. In order to reduce overhead, the maximum

103052 VOLUME 8, 2020

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

Algorithm 1 AFTSA
Input: A DAG G = {V , E}, a common deadline D, P =
{p1, p2, . . . , pM };

Output: A schedule scheme for all tasks of G that achieves
maximum system reliability;

1: compute ranku(vi) for ∀vi ∈ V by (14);
2: store all tasks by a non-increasing order of ranku(vi) in a

list list;
3: makespan← 0,CN ← 0,Fmakespan← 0;
4: makespan← TaskAssignment(list,∅,P,CN);
5: while makespan <= D&&CN < 3 do
6: k ← 0, clist ← ∅,CN + = 1;
7: while makespan <= D&&k < N do
8: Fmakespan← makespan;
9: for j = 0 to CN − 1 do
10: clist ← clist ∪ {list[k]};
11: end for
12: makespan← TaskAssignment(list, clist,P,CN);
13: k ++;
14: end while
15: end while
16: if makespan > D then
17: clist ← clist − {list[k − 1]};
18: end if
19: makespan← Fmakespan.
20: compute the system reliability R by (5).

value of CN is set to be two. That is, the number of replicas
for each primary task shall be no larger than two. Fifthly,
it checks if the makespan exceeds the given deadline. If the
makespan is larger than D, then the last task added to the
list clist will be taken off (line 17). Finally, it updates the
makespan and calculates the reliability that the system can
achieve under the final scheduling scheme by Equation (5)
(lines 19-20). The time complexity of Algorithm 1 is O(N +
|E|)+O(NlogN)+O(N 2M |E|) = O(N 2M |E|), where |E| is
the number of edges.
Algorithm 2 shows how to map the primary tasks and

their replicas to proper processors. The Input is three arrays
list, clist,P and a parameterCN . TheOutput is themakespan.
While list is not empty, the algorithm first select the task with
the maximum uprank value, calculates its earliest execution
finish time on all processors, assigns it to the processor with
the minimum earliest execution finish time, and updates the
makespan. Then, the algorithm calculates the assignment for
the replicas of the selected task and updates the makesapn.
The time complexity of Algorithm 2 is O(NM |E|).

V. EXPERIMENT
To evaluate the effectiveness of the proposed algorithm,
several series of experiments have been conducted on a com-
puter with the 64-bit Windows 10 operating system, a dual
processor Intel(R) Core (TM) CPU @ 2.2GHz and an 8GB
RAM. Two algorithms DB-FTSA [20] and FTSA [32] are

Algorithm 2 TaskAssignment(list, clist, P, CN)
Input: list, clist,P,CN ;
Output: makespan;
1: while list! = ∅ do
2: vi← the task with maximum ranku(vi) in list;
3: for j = 1 to M do
4: calculate EFT (vi, pj) by (9);
5: end for
6: schedule vi on processor pro(vi) which makes vi have

the minimum EFT ;
7: AFT (vi, pro(vi))← EFT (vi, pro(vi)) by (10);
8: if makespan < AFT (vi, pro(vi)) then
9: makespan← AFT (vi, pro(vi));
10: end if
11: for j = 1 to CN do
12: for k = 1 to M do
13: calculate EFT (v

bj
i , pk) by (9);

14: end for
15: if clist! = ∅&&vi ∈ clist then
16: schedule vibj on processor pro(vibj) which makes

vibj have the minimum EFT ;
17: BAFT (vibj , pro(vibj)) ← EFT (vi, pro(vibj))

by (11);
18: if makespan < BAFT (vibj , pro(vibj)) then
19: makespan← BAFT (vibj , pro(vibj));
20: end if
21: end if
22: end for
23: end while
24: return makespan.

selected as comparison baselines. FTSA is an excellent fault
tolerance algorithm for solving reliability problems with no
timing constraint. It requires that the primary task and its
replicas must be assigned to different processors. DB-FTSA
is the latest and efficient fault tolerance algorithm to solve the
problem similar to ours. It only supports up to one replicas
and allows the primary task and its replicas to be assigned to
the same processor. Randomly generated application graphs
with various characteristics and real-world applications are
adopted as test instances. In the following, we present the
experimental parameters and metrics.

A. EXPERIMENTAL SETTING
In the experiments, we use randomly generated directed
acyclic graphs which have been widely used in many studies,
such as [38], [39]. To generate a directed acyclic graph,
several parameters are needed:
• N , the number of tasks in a directed acyclic graph, its
value is ranged from 20 to 100 with the increment of 20.

• the indegree of a task, its value is randomly generated
from the interval [0, 4].

• the outdegree of a task, its value is randomly generated
from the interval [0, 4].

VOLUME 8, 2020 103053

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

FIGURE 4. Comparisons of the makespan (a) and reliability (b) generated by AFTSA, DB-FTSA, and FTSA for CCR = 1, ET = 11, M = 4.

• CCR, the communication to computation ratio which is
equal to the value of the average communication time
divided by the average computation time in a system.
Like many other studies, the value of CCR is selected
from {0.1, 0.5, 1, 2, 5}.

To account for communication heterogeneity in the system,
the unit data delay of the processors is chosen uniformly
from the range of [0, 2]. In addition, we consider two system
platforms. One is composed of four connected processors and
the other consists of eight connected processors. The failure
rate λ of processors is randomly generated from the range of
[1× 10−2, 2× 10−2].
We choose two metrics to assess the performance of the

proposed algorithm as follows:

• Reliability: it is an important metric to measure whether
a fault-tolerant algorithm is effective. A higher reliability
means a better performance in system reliability.

• Makespan: it is the time to complete all tasks of a given
application. A shorter makespan means a lower system
delay.

In what follows, we will present and discuss the
experimental results in detail.

B. EXPERIMENTAL RESULTS AND DISCUSSIONS FOR
RANDOMLY GENERATED APPLICATIONS
Fig.4 shows the makespan and reliability produced by algo-
rithms AFTSA, DB-FTSA, and FTSA for different bench-
marks with different numbers of tasks when CCR = 1,
the average execution time ET = 15, and the number of
processorM = 4 under the given deadline. It is observed that
fromFig.4(a), DB-FTSAperforms best in terms ofmakespan,
while AFTSA performs slightly worse than DB-FTSA but
better than FTSA. This is probably because DB-FTSA takes
up to one replica into consideration while AFTSA and FTSA
allow multiple replicas. More replicas will take more exe-
cution time. Also, AFTSA allows the primary task and its
replicas to be assigned to the same processor while FTSA
requires the primary task and its replica to be assigned to
different processors, which incur additional communication

time and a longer makespan. With the number of tasks
increasing, the makespan produced by all above three algo-
rithms increases. Fig.4(b) shows that in terms of reliability,
AFTSA always maintains higher reliability compared with
the other algorithms. Reasons are multifold: AFTSA can
generate multiple replicas for each primary task which has a
good effect on improving reliability; FTSA needs much more
time to generate more replicas to provide higher reliability,
and DB-FTSA cannot make full use of the given time
which leads to a lower reliability. With the number of tasks
increasing, the reliability generated by all above three
algorithms decreases.

Fig.5 shows the makespan and reliability produced by
algorithms AFTSA, DB-FTSA, and FTSA when CCR = 1,
the average execution time ET = 15, and the number of
processor M = 8 under given deadline. On the whole,
Fig.4 and Fig.5 convey to us similar information: For all three
algorithms, with the number of tasks increasing, the
makespan increases and the reliability decreases. It is worth
pointing out that AFTSA can obtain higher reliability. The
difference lies in that for the same benchmark, the plat-
form with eight processors leads to lower makespan and
higher reliability in comparison with the platform with four
processors. This is because more resources is helpful to
reduce the burden on the system and improve its performance.
This shapes the very advantage of the parallel computing with
multiple processors.

Table 2 shows the makespan and reliability of benchmarks
in Fig. 4 produced by algorithms AFTSA, DB-FTSA, and
FTSA when the given deadline increases. It is observed
that when the deadline increases, the makespan and relia-
bility generated by all three algorithms also increase. When
the deadline increases to a certain value, if it continues to
increase, the makespan and reliability generated by AFTSA
andDB-FTSA keep unchanged. Because AFTSA can support
one replica at most and DB-FTSA can tolerate up to one
replica, when the deadline is small, the two algorithms cannot
guarantee the maximum number of replicas for each task
and get small makespan and reliability; when the deadline is
large enough, the two algorithms can achieve the maximum

103054 VOLUME 8, 2020

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

FIGURE 5. Comparisons of the makespan (a) and reliability (b) generated by AFTSA, DB-FTSA, and FTSA for CCR = 1, ET = 11, M = 8.

TABLE 2. Changes of makespan and reliability of benchmarks in Fig. 4 when deadline increases.

number of replicas for each task and get large makespan reli-
ability. If the deadline further becomes larger, the makespan
and reliability will keep invariant. However, FTSA can get
increasing makespan and reliability because it can support
more and more replicas with deadline increasing. What is
more, AFTSA can obtain higher reliability and substantially
less makespan compared with FTSA, and this helps to save
time and resources.

Fig.6 shows the reliability produced by algorithms
AFTSA, DB-FTSA, and FTSA for different benchmarks
when the average execution time andCCR change their values
with the platform ofM = 4 processors under given deadline.
Fig.6(a) shows the reliability gained for benchmarks with
N = 40, CCR = 1, and different average execution time.
Table 3 shows the deadline and the makespan generated by
algorithms AFTSA, DB-FTSA, and FTSA for each bench-
mark. It can be seen that AFTSA can obtain the highest
reliability, followed by FTSA, and followed by DB-FTSA.

TABLE 3. Deadline and makespan for benchmarks in Fig. 6.

This is because AFTSA can produce more replicas for each
primary task and get higher reliability than FTSA, and
DB-FTSA supports no more than two replicas for each pri-
mary task. More replicas usually denote higher reliability.
Fig.6(b) shows the reliability gained for benchmarks

VOLUME 8, 2020 103055

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

FIGURE 6. Comparison of the reliability generated by AFTSA, DB-FTSA, FTSA with M = 4. (a)N = 40, CCR = 1; (b)N = 50, ET = 15.

FIGURE 7. Comparison of the reliability generated by AFTSA, DB-FTSA, FTSA with M = 8. (a)N = 40, CCR = 1; (b)N = 50, ET = 15.

TABLE 4. Deadline and makespan for benchmarks in Fig. 7.

with N = 50, ET = 15, and different CCR value. It can
be seen that AFTSA can still achieve better reliability than
the other two algorithms.

Fig.7 shows the reliability produced by algorithms
AFTSA, DB-FTSA, and FTSA for different benchmarks
when the average execution time andCCR change their values
with the platform of M = 8 processor under the deadline.
Table 4 shows the deadline and the makespan generated by
algorithms AFTSA, DB-FTSA, and FTSA for each bench-
mark in Fig. 7. Similar to Fig. 6, it reveals to us that AFTSA
ismore reliable than the other two algorithmswithin deadline.
The only difference lies in that for the same benchmark,
the platform of eight processors achieves higher reliability

than the platform of four processors since more resources
are beneficial to reducing the burden of systems and improve
efficiency.

C. EXPERIMENTAL RESULTS AND DISCUSSIONS FOR
REAL-WORLD APPLICATIONS
This subsection considers three types of real-word applica-
tions: Gaussian elimination [40], Fast fourier transform (FFT)
[39] and a molecular dynamics code [38] which are adopted
to test the effectiveness of the proposed algorithm. Task graph
instances for each of these three applications from [40] are
shown in Fig. 8, Fig. 9 and Fig. 10.

1) GAUSSIAN ELIMINATION
The structure of data-flow graph for gaussian elimination
applications is already known, and we only need to
know the number of tasks N and the execution time of
tasks for these applications. N is computed by a formula
N = MS2+MS−2

2 [40], where MS is the matrix size of the
coefficient matrix for gaussian elimination applications.

Fig.11 shows the makespan and reliability produced by
algorithms AFTSA, DB-FTSA, and FTSA for Gaussian
elimination applications with different matrix size when
CCR = 1, ET = 15, and the deadline D = MS × (ET +
ET × CCR) on the platform of four processors. The matrix

103056 VOLUME 8, 2020

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

FIGURE 8. (a) Gaussian elimination, (b) task graph for matrix of
size 5 [40].

FIGURE 9. (a) FFT algorithm, (b) the generated DAG of FFT with four
points [40].

size of gaussian elimination applications increases from 5
(corresponding to 14 tasks) to 20 (corresponding to 209 tasks)
with an increment of 3. In terms ofmakespan, DB-FTSA per-
forms best, AFTSA performs slightly worse than DB-FTSA,
and FTSA obtains a much larger makespan than the former
two algorithms. In terms of Reliability, AFTSA always per-
forms best, and DB-FTSA does better than FTSA in most
cases. Fig.12 shows the makespan and reliability produced
by algorithms AFTSA, DB-FTSA, and FTSA for Gaussian
elimination applications with different matrix size when
CCR = 1, ET = 15, and the deadline D = MS × (ET +
ET × CCR) on the platform of eight processors. It tells a
similar story as Fig.11. One difference is that in reliability,
AFTSA performs best, followed by FTSA, and further by
DB-FTSA. The other difference is that on the platform with
eight processors, all three algorithms can obtain a smaller
makespan and a higher reliability, and the makespan gener-
ated by AFTSA is very close to that generated by DB-FTSA.
When the matrix size is less than or equal to 14, AFTSA and
DB-FTSA have the same makespan. The reason is that more
resources generally provide more opportunities for reducing
makespan and improving reliability.

FIGURE 10. The task graph of the molecular dynamics code [40].

2) FAST FOURIER TRANSFORM
The structure of data-flow graph for one-dimensional and
recursive FFT applications is known [39], andwe only need to
know the number of tasks and the execution time of tasks for
these applications. The FFT algorithm with an input vector
size of S has 2S − 1 recursive call tasks and S log S butterfly
operation tasks.

Fig.13 shows the makespan and reliability produced by
algorithms AFTSA, DB-FTSA, and FTSA for FFT applica-
tions at different vector size when ET = 15, CCR = 1, and
the deadline D = (2 × log2 S + 1) × (ET + ET × CCR) on
the platform of four processors. S varies from 2 to 32 with
a multiplier of 2. In view of makespan, DB-FTSA performs
best, followed by AFTSA, and further by FTSA, and the gap
between them becomes wider and wider with the increase of
the vector size. In view of Reliability, AFTSA always keeps
higher reliability among three algorithms, especially when
the vector size is large. After all, more replicas generally
mean longer makespan and higher reliability with limited
resource, and that the primary task and their replicas are
assigned to different processors will increase communica-
tion time and cause a longer makespan. Fig.14 shows the
makespan and reliability produced by algorithms AFTSA,
DB-FTSA, and FTSA for FFT applications at different vec-
tor size when ET = 15, CCR = 1, and the deadline
D = (2× log2 S + 1)× (ET + ET × CCR) on the platform
of eight processors. Fig.13 and Fig.14 reflect similar insight.
All three algorithms can obtain a smaller makespan and a
higher reliability for each benchmark on the platform of
eight processors, and the makespan obtained by AFTSA and
DB-FTSA are very close but much smaller than that by
FTSA, especially when the vector size is large. The reason
is that more processors are more likely to reduce makespan
and improve reliability.

VOLUME 8, 2020 103057

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

FIGURE 11. Makespan, Reliability generated by AFTSA, DB-FTSA and FTSA for Gaussian elimination applications with
ET = 15, CCR = 1, D = MS × (ET + ET × CCR), M = 4.

FIGURE 12. Makespan, Reliability generated by AFTSA, DB-FTSA and FTSA for the Gaussian elimination applications with
ET = 15, CCR = 1, D = MS × (ET + ET × CCR), M = 8.

FIGURE 13. Makespan, Reliability generated by AFTSA, DB-FTSA and FTSA for FFT applications with ET = 15, CCR = 1,
D = (2× log2 S + 1)× (ET + ET × CCR), M = 4.

3) MOLECULAR DYNAMICS CODE
The structure of data-flow graph formolecular dynamics code
applications and the number of tasks are known [40], and we
only consider two factors: CCR and the average execution
time of tasks in the experiments.

Fig.15 shows the makespan and reliability generated by
algorithms AFTSA, DB-FTSA, and FTSA for molecular
dynamics code applications at different values of CCR when

ET = 15 and M = 4 within the given deadline. It can be
seen that AFTSA can obtain the highest reliability, followed
by FTSA, and followed by DB-FTSA. FTSA can obtain
the largest makespan, followed by AFTSA, and followed by
DB-FTSA. Because AFTSA and FTSA can support more
replicas for each task than DB-FTSA, and more replicas usu-
ally mean higher reliability and longer makespan. In addition,
the primary task and its replicas can be allowed to be assigned

103058 VOLUME 8, 2020

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

FIGURE 14. Makespan, Reliability generated by AFTSA, DB-FTSA and FTSA for FFT applications with ET = 15, CCR = 1,
D = (2× log2 S + 1)× (ET + ET × CCR), M = 8.

FIGURE 15. Makespan, Reliability generated by AFTSA, DB-FTSA and FTSA for the task graph of a molecular dynamics code with
ET = 15, CCR = 1, D = 500, M = 4.

FIGURE 16. Makespan, Reliability generated by AFTSA, DB-FTSA and FTSA for the task graph of a molecular dynamics code with
ET = 15, CCR = 1, D = 500, M = 8.

to the same processor to reduce communication time and
makespan for AFTSA. When the value of CCR is smaller
than or equal to 1, the gap of the makespan obtained from
any two algorithm is not very large; when the value of CCR
is larger than 1, the makespan obtained by three algorithms
increase dramatically, and the makespan obtained by AFTSA
and DB-FTSA are quite close but much smaller than that by
FTSA. Fig.16 shows the makespan and reliability generated

by algorithms AFTSA, DB-FTSA, and FTSA for molecular
dynamics code applications at different values of CCR when
ET = 15 and M = 8 within the given deadline. It takes on
similar information as Fig.15. The difference is that on the
platform of eight processors, all three algorithms can obtain
a smaller makespan and a higher reliability for the same
benchmark. This is because more processors embody more
likelihood to reduce makespan and improve reliability.

VOLUME 8, 2020 103059

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

According to all above experimental results and analysis,
we conclude that AFTSA can always get higher reliability
within limited time compared with DB-FTSA and FTSA,
and more resources provide more opportunities to reduce
makespan and improve reliability.

VI. CONCLUSION
In this paper, we propose a novel, adaptive and transient
fault-tolerant scheduling algorithm to solve the fault-tolerant
problem on heterogeneous systems, aiming to optimize the
reliability in a shared deadline. The proposed algorithm
allows multiple replicas, which has been proved in its capa-
bility to improve reliability. The primary task and its replicas
can be assigned to the same processor which helps to decrease
makespan. The proposed algorithm first works out the maxi-
mum number of replicas for each primary task that the system
can tolerate within the given deadline. Then it assigns all
primary tasks and their replicas to appropriate processors
and computes the maximum reliability that the system can
achieve. Simulated results show that the proposed algorithm
can keep a higher reliability in comparison with the existing
and related fault-tolerant algorithms. When the number of
tasks for an application is large and the given deadline is large
enough, the reliability obtained by our proposed algorithm
will be smaller than that obtained by FTSA. In the future,
we will continue to find a better way to solve this problem.
Also, we will explore how to reduce energy consumption on
the basis of improving reliability, and use more complicated
fault model to solve this type of problems.

ACKNOWLEDGMENT
The authors would like to thank the editors and the referees.
This article was presented in part at the 14th IEEEConference
on Industrial Electronics and Applications (ICIEA 2019).

REFERENCES
[1] K. Li, ‘‘Scheduling precedence constrained tasks with reduced processor

energy on multiprocessor computers,’’ IEEE Trans. Comput., vol. 61,
no. 12, pp. 1668–1681, Dec. 2012.

[2] J. Villamayor, D. Rexachs, E. Luque, and D. Lugones, ‘‘Raas: Resilience
as a service,’’ in Proc. 18th IEEE/ACM Int. Symp. Cluster, Cloud Grid
Comput. (CCGRID), May 2018, pp. 356–359.

[3] C. George and S. Vadhiyar, ‘‘Fault tolerance on large scale systems
using adaptive process replication,’’ IEEE Trans. Comput., vol. 64, no. 8,
pp. 2213–2225, Aug. 2015.

[4] F. Abdi, R. Tabish, M. Rungger, M. Zamani, and M. Caccamo, ‘‘Applica-
tion and system-level software fault tolerance through full system restarts,’’
in Proc. 8th Int. Conf. Cyber-Phys. Syst., Apr. 2017, pp. 197–206.

[5] B. Zhao, H. Aydin, and D. Zhu, ‘‘Energy management under general task-
level reliability constraints,’’ in Proc. IEEE 18th Real Time Embedded
Technol. Appl. Symp., Apr. 2012, pp. 285–294.

[6] C. M. Krishna, ‘‘Fault-tolerant scheduling in homogeneous real-time sys-
tems,’’ ACM Comput. Surv., vol. 46, no. 4, p. 48, 2014.

[7] A. Das, A. Kumar, and B. Veeravalli, ‘‘Energy-aware task mapping
and scheduling for reliable embedded computing systems,’’ Acm Trans.
Embedded Comput. Syst., vol. 13, no. 2s, pp. 479–496, 2014.

[8] A. Aviziens, ‘‘Fault-tolerant systems,’’ IEEE Trans. Comput., vol. COM-
100, no. 12, pp. 1304–1312, Dec. 1976.

[9] E. Dubrova, Fault-Tolerant Design. New York, NY, USA: Springer, 2013.
[10] R. Devaraj, A. Sarkar, and S. Biswas, ‘‘Fault-tolerant scheduling of non-

preemptive periodic tasks using sct of timed des on uniprocessor systems,’’
IFAC-PapersOnLine, vol. 50, no. 1, pp. 9315–9320, Jul. 2017.

[11] Y. Guo, D. Zhu, H. Aydin, and L. T. Yang, ‘‘Energy-efficient scheduling
of primary/backup tasks in multiprocessor real-time systems (extended
version),’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process., Oct. 2013,
pp. 896–902.

[12] H. Agarwal and A. Sharma, ‘‘A comprehensive survey of fault tolerance
techniques in cloud computing,’’ in Proc. Int. Conf. Comput. Netw. Com-
mun. (CoCoNet), Dec. 2015, pp. 408–413.

[13] X.-T. Cui, K.-J. Wu, T.-Q. Wei, and E. H.-M. Sha, ‘‘Worst-case finish time
analysis for DAG-based applications in the presence of transient faults,’’
J. Comput. Sci. Technol., vol. 31, no. 2, pp. 267–283, Mar. 2016.

[14] J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, ‘‘Bi-objective scheduling
algorithms for optimizing makespan and reliability on heterogeneous sys-
tems,’’ in Proc. 19th Annu. ACM Symp. Parallel Algorithms Archit. SPAA,
2007, pp. 280–288.

[15] W. Luo, F. Yang, L. Pang, and X. Qin, ‘‘Fault-tolerant scheduling based
on periodic tasks for heterogeneous systems,’’ in Autonomic and Trusted
Computing, vol. 4158. Berlin, Germany: Springer, 2006, pp. 571–580.

[16] H. Yan, X. Zhu, H. Chen, H. Guo,W. Zhou, andW. Bao, ‘‘DEFT: Dynamic
fault-tolerant elastic scheduling for tasks with uncertain runtime in cloud,’’
Inf. Sci., vol. 477, pp. 30–46, Mar. 2019.

[17] S. M. Abdulhamid, M. S. Abd Latiff, S. H. H. Madni, and M. Abdullahi,
‘‘Fault tolerance aware scheduling technique for cloud computing environ-
ment using dynamic clustering algorithm,’’ Neural Comput. Appl., vol. 29,
no. 1, pp. 279–293, Jan. 2018.

[18] L. Zhang, K. Li, Y. Xu, J.Mei, F. Zhang, andK. Li, ‘‘Maximizing reliability
with energy conservation for parallel task scheduling in a heterogeneous
cluster,’’ Inf. Sci., vol. 319, pp. 113–131, Oct. 2015.

[19] M. H. Mottaghi and H. R. Zarandi, ‘‘DFTS: A dynamic fault-tolerant
scheduling for real-time tasks in multicore processors,’’ Microprocessors
Microsyst., vol. 38, no. 1, pp. 88–97, Feb. 2014.

[20] M. Wei, J. Liu, T. Li, X. Xu, W. Hu, and D. Zhao, ‘‘Fault-tolerant schedul-
ing of real-time tasks on heterogeneous systems,’’ inProc. 12th IEEEConf.
Ind. Electron. Appl. (ICIEA), Jun. 2017, pp. 1006–1011.

[21] Y. Guo, D. Zhu, and H. Aydin, ‘‘Generalized standby-sparing techniques
for energy-efficient fault tolerance in multiprocessor real-time systems,’’
in Proc. IEEE 19th Int. Conf. Embedded Real-Time Comput. Syst. Appl.,
Aug. 2013, pp. 62–71.

[22] B. Zhao, H. Aydin, and D. Zhu, ‘‘Shared recovery for energy efficiency
and reliability enhancements in real-time applications with precedence
constraints,’’ Acm Trans. Design Autom. Electron. Syst., vol. 18, no. 2,
pp. 99–109, 2013.

[23] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, and K. Li, ‘‘Energy-efficient
fault-tolerant scheduling of reliable parallel applications on heterogeneous
distributed embedded systems,’’ IEEE Trans. Sustain. Comput., vol. 3,
no. 3, pp. 167–181, Jul. 2018.

[24] N. Chatterjee, S. Paul, and S. Chattopadhyay, ‘‘Fault-tolerant dynamic task
mapping and scheduling for network-on-chip-based multicore platform,’’
ACM Trans. Embedded Comput. Syst. (TECS), vol. 16, no. 4, p. 108,
2017.

[25] P. P. Nair, R. Devaraj, and A. Sarkar, ‘‘FEST: Fault-tolerant energy-aware
scheduling on two-core heterogeneous platform,’’ in Proc. 8th Int. Symp.
Embedded Comput. Syst. Design (ISED), Dec. 2018, pp. 63–68.

[26] R. Devaraj, A. Sarkar, and S. Biswas, ‘‘Fault-tolerant preemptive aperiodic
rt scheduling by supervisory control of tdes on multiprocessors,’’ ACM
Trans. Embedded Comput. Syst., vol. 16, no. 3, pp. 1–25, 2017.

[27] L. A. R. Duque, J.M.M.Diaz, and C. Yang, ‘‘ImprovingMPSoC reliability
through adapting runtime task schedule based on time-correlated fault
behavior,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2015,
pp. 818–823.

[28] M. A. Haque, H. Aydin, and D. Zhu, ‘‘On reliability management of
energy-aware real-time systems through task replication,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 3, pp. 813–825, Mar. 2017.

[29] J. Zhou, X. S. Hu, Y. Ma, J. Sun, T. Wei, and S. Hu, ‘‘Improving
availability of multicore real-time systems suffering both permanent and
transient faults,’’ IEEE Trans. Comput., vol. 68, no. 12, pp. 1785–1801,
Dec. 2019.

[30] J. Zhou, J. Sun, X. Zhou, T. Wei, M. Chen, S. Hu, and X. S. Hu,
‘‘Resource management for improving soft-error and lifetime reliability of
real-time MPSoCs,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 12, pp. 2215–2228, Dec. 2019.

[31] A. Benoit, M. Hakem, and Y. Robert, ‘‘Fault tolerant scheduling of prece-
dence task graphs on heterogeneous platforms,’’ in Proc. IEEE Int. Symp.
Parallel Distrib. Process., Apr. 2008, pp. 1–8.

103060 VOLUME 8, 2020

J. Liu et al.: Novel and Adaptive Transient Fault-Tolerant Algorithm Considering Timing Constraint

[32] L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, ‘‘Fault-tolerant scheduling with
dynamic number of replicas in heterogeneous systems,’’ in Proc. IEEE
12th Int. Conf. High Perform. Comput. Commun. (HPCC), Sep. 2010,
pp. 434–441.

[33] A. K. Samal, R. Mall, and C. Tripathy, ‘‘Fault tolerant scheduling of
hard real-time tasks on multiprocessor system using a hybrid genetic
algorithm,’’ Swarm Evol. Comput., vol. 14, pp. 92–105, Feb. 2014.

[34] M. C. Kurt, S. Krishnamoorthy, K. Agrawal, and G. Agrawal, ‘‘Fault-
tolerant dynamic task graph scheduling,’’ in Proc. SC14: Int. Conf. High
Perform. Comput., Netw., Storage Anal., Nov. 2014, pp. 719–730.

[35] M. Lauer, M. Amy, J.-C. Fabre, M. Roy, W. Excoffon, and M. Stoicescu,
‘‘Engineering adaptive fault-tolerance mechanisms for resilient computing
on ROS,’’ in Proc. IEEE 17th Int. Symp. High Assurance Syst. Eng.
(HASE), Jan. 2016, pp. 94–101.

[36] C. Wongyai, ‘‘Improve fault tolerance in cell-based evolve hardware
architecture,’’ in Proc. Int. Conf. Adv. Comput. Sci. Inf. Syst., Oct. 2014,
pp. 13–18.

[37] H. Jin, X.-H. Sun, Z. Zheng, Z. Lan, and B. Xie, ‘‘Performance under
failures of DAG-based parallel computing,’’ in Proc. 9th IEEE/ACM Int.
Symp. Cluster Comput. Grid, May 2009, pp. 236–243.

[38] M. I. Daoud and N. Kharma, ‘‘A high performance algorithm for static task
scheduling in heterogeneous distributed computing systems,’’ J. Parallel
Distrib. Comput., vol. 68, no. 4, pp. 399–409, Apr. 2008.

[39] C.-Y. Chen, ‘‘Task scheduling for maximizing performance and reliability
considering fault recovery in heterogeneous distributed systems,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 521–532, Feb. 2016.

[40] H. Topcuoglu, S. Hariri, and M. Y. Wu, ‘‘Performance-effective and low-
complexity task scheduling forheterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, 2002.

JING LIU received the B.S. degree from the
College of Mathematics and Econometrics,
in 2009, and the Ph.D. degree from the College
of Information Science and Engineering, Hunan
University, Changsha, China, in 2015. She is cur-
rently a Lecturer with the School of Computer
Science and Technology, Wuhan University of
Science and Technology, Wuhan, China. Her cur-
rent research interests include scheduling, fault
tolerance, real-time systems, and edge computing.

ZIQI ZHU received the B.S. degree in computer
science from Wuhan University, Wuhan, China,
in 2005, and the Ph.D. degree from the Huazhong
University of Science and Technology, Wuhan,
in 2011. He is currently an Associate Professor
with the School of Computer Science and
Technology, Wuhan University of Science and
Technology, Wuhan. His current research interests
include scheduling, machine learning, pattern
recognition, and computer vision.

CHUNHUA DENG received the Ph.D. degree in
pattern recognition and intelligent systems from
the School of Automation, Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2016. He is currently a Lecturer with the School
of Computer Science and Technology,WuhanUni-
versity of Science and Technology, Wuhan. His
current research interests include computer vision,
pattern recognition, and machine learning.

VOLUME 8, 2020 103061

	INTRODUCTION
	BACKGROUND
	RELATED WORK
	OUR CONTRIBUTION

	MODELS AND PROBLEM DEFINITION
	SYSTEM MODEL
	TASK MODEL
	FAULT MODEL
	PROBLEM

	A MOTIVATIONAL EXAMPLE
	THE PROPOSED ALGORITHM
	CONCEPTS AND FORMULAS
	ALGORITHM DESCRIPTION

	EXPERIMENT
	EXPERIMENTAL SETTING
	EXPERIMENTAL RESULTS AND DISCUSSIONS FOR RANDOMLY GENERATED APPLICATIONS
	EXPERIMENTAL RESULTS AND DISCUSSIONS FOR REAL-WORLD APPLICATIONS
	GAUSSIAN ELIMINATION
	FAST FOURIER TRANSFORM
	MOLECULAR DYNAMICS CODE

	CONCLUSION
	REFERENCES
	Biographies
	JING LIU
	ZIQI ZHU
	CHUNHUA DENG

