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ABSTRACT Human drivers have different driving styles, experiences, and emotions due to unique driving
characteristics, exhibiting their own driving behaviors and habits. Various research efforts have approached
the problem of detecting abnormal human driver behavior with the aid of capturing and analyzing the
face of driver and vehicle dynamics via image and video processing but the traditional methods are not
capable of capturing complex temporal features of driving behaviors. However, with the advent of deep
learning algorithms, a significant amount of research has also been conducted to predict and analyze driver’s
behavior or action related information using neural network algorithms. In this paper, we contribute to
first classify and discuss Human Driver Inattentive Driving Behavior (HIDB) into two major categories,
Driver Distraction (DD), Driver Fatigue (DF), or Drowsiness (DFD). Then we discuss the causes and
effects of another human risky driving behavior called Aggressive Driving behavior (ADB). Aggressive
driving Behavior (ADB) is a broad group of dangerous and aggressive driving styles that lead to severe
accidents. Human abnormal driving behaviors DD, DFD, and ADB are affected by various factors including
driver experience/inexperience of driving, age, and gender or illness. The study of the effects of these
factors that may lead to deterioration in the driving skills and performance of a human driver is out of
the scope of this paper. After describing the background of deep learning and its algorithms, we present
an in-depth investigation of most recent deep learning-based systems, algorithms, and techniques for the
detection of Distraction, Fatigue/Drowsiness, and Aggressiveness of a human driver. We attempt to achieve
a comprehensive understanding of HIADB detection by presenting a detailed comparative analysis of all the
recent techniques. Moreover, we highlight the fundamental requirements. Finally, we present and discuss
some significant and essential open research challenges as future directions.

INDEX TERMS Deep learning, human inattentive driving behavior, connected vehicles, road accident
avoidance, abnormal behavior detection, distraction or aggressiveness detection, fatigue or drowsiness
detection.

I. INTRODUCTION

The massive development in automobile industry has
enhanced vehicle technology to ensure safe and secure travel.
But still many accidents occur due to the unsafe, careless
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and dangerous driving of the driver. Hence, even today,
the problem of traffic safety concerns the worldwide. Road
accident is undoubtedly a global tragedy that has become
an ever rising trend. Road traffic accidents and injuries
impose serious problems on society by causing consider-
able economic losses to individuals, their families and to
nations as a whole [1]. World Health Organization (WHO)
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announced nearly 1.25 million fatalities each year and on
average 3,287 deaths a day [1], [2]. It is estimated that
road traffic deaths continue to climb, reaching 1.35 million
in 2016 [2]. It is thus, very crucial to understand the various
factors and reasons associated with these road accidents.

The vision of highly automated vehicles is accident
free driving in the future. In theory, the technology of
self-driving cars is established with six levels of auton-
omy ranging from O to 5. In order to detect potentially
dangerous driving situations Advanced Driving Assistance
Systems (ADAS) or Advanced Driving Systems (ADS) are
suggested to be capable of reducing human errors while driv-
ing. Although these systems offer many advantages and can
handle some specific dangerous situations but in reality, they
become incompetent to detect dangerous driving menacing
situations. This is due to the fact that these systems depend on
sensors and in adverse situations, the accuracy of these sen-
sors diminishes significantly [3]. For example, lane departure
warning systems use sensors to register lane markings or the
road edge, which may be problematic on roads that aren’t
well marked or are covered with snow. Some sensors may not
function well in low light or inclement weather. Moreover,
some systems only work at certain speeds. There have been
recent news reports of fatal Tesla crashes that occurred when
automation failed to detect obstacles during a period when
the driver was not monitoring the automation [4]. Hence,
a human driver needs to be alert and ready for taking control
of his car (vehicle) in emergency situations [5], [6].

The semi-autonomous vehicles or partial driving automa-
tion (SAE Level 2) [7], [8] are driver assistance systems that
are becoming more prevalent these days and are increasingly
available in passenger vehicles with level SAE Level 2. For
example, the automation systems that are on the road are
launched from companies such as Tesla, Mercedes, GM,
and Volvo, are Level 2. These cars can control steering and
speed on a well-marked highway, but a driver still has to
supervise. Comparatively, a Honda vehicle is a Level 1 which
is equipped with its “Sensing” suite of technologies, that
include emergency braking detection, adaptive cruise control
and lane keeping assistance. It is often confused with highly
automated driving, however, in fact the semi-autonomous
vehicles require human driver to monitor automation [9].
Furthermore, under some safety conditions, safety consider-
ations may require automation to shut it-self off to protect an
inattentive driver [10]. Thus, for both levels of 2 and 3 ADAS
systems, human drivers must be well prepared to intervene,
whenever system failures or limitations occur. According
to [11], increasing levels of vehicle automation has shifted
the human driver’s active role to a supervisory role for mon-
itoring automation. It is thus important for the human driver
to be more attentive and simultaneously aware of multiple
vehicle’s status in order to respond quickly in the event of
failure or malfunction.

The automation in vehicles is ultimately degrading the
attentiveness of a human driver. The study in [12] pointed out
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that human drivers fail to monitor the automation and thus
cannot detect critical signals related to systems functional-
ity due to misunderstanding or over trust in these systems.
A multitude of research concerning human performance
issues including trust in automation, situation awareness etc.,
is covered by [13] and evolving driving roles are specifically
covered in [14]. According to [15], automotive manufacturers
might avoid this supervisory role altogether and only 5% of
the studies have addressed this area, thus it is still opened to
debate. In this regard, Banks, Stanton and Harvey indicated
in [16] that automation in driving and additional assistance
subsystems would increase cognitive loads on a human driver
rather than reducing his workload and they have analyzed
in [17] the videos of the participants operating a Tesla Model
S in Autopilot mode, finding that drivers were not properly
supported in adhering to their new monitoring responsibil-
ities, and were showing signs of complacency and over-
trust. Moreover, they suggested that certain levels of driving
automation need not be implemented even if they are feasible
from a technical point of view, and while considering human
factors or human supervisory role in automated driving, only
two levels driver driving (DD) and driver not driving (DND)
should be preferred. Another important issue regarding the
automated driving is the concept of trust calibration which
means that human drivers while supervising the automation
in driving intervene only when they believe that their own
decisions are superior to the automation system’s decisions.
In this regard, [13] suggested to convey the the capabilities
and limitations of the automation to the operator whenever
feasible.

Intensive efforts have been made in understanding, detect-
ing, identifying and predicting the human driving styles and
behavior since driving is an essential daily activity for many
people [18]. Various research efforts have approached the
problem of detecting abnormal human driver behavior with
the aid of capturing and analyzing face of driver and vehicle
dynamics via image and video processing but the traditional
methods are not capable of capturing complex temporal fea-
tures of driving behaviors. The studies [19]-[23] that utilized
accelerometers and gyro-sensors built into smart phones for
detecting driving behavior, fail to provide accurate results if
the vehicle is operated in a GPS-deprived area, or if the GPS
receiver demonstrated poor performance. Thus, aggressive
driving remained difficult to detect. Moreover, such systems
fail to recognize aggressive driving in the form of quick
and irregular turns and frequent braking while the vehicle
is used on a mountain road and other winding-type roads.
In Bio-signal-based methods [24], [25], the problem is that
expensive sensors are used and the attachment of sensors may
cause discomfort. In the single camera based solutions [26],
measurement becomes difficult at night or in tunnels. Driver
fatigue can be detected over a wide range by leveraging
dual Near-infrared (NIR) cameras [27], however, physical
characteristics that can be observed by a naked eye can-
not be detected. Aggressive driving emotion detection-based
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convolution neural networks (CNN) method [28] has used
both NIR and thermal cameras where NIR cameras can detect
facial feature points and measure their changes and Thermal
cameras can measure temperature changes in a driver’s body,
which cannot be checked by the naked eye. In this method,
an intensively trained CNN is robust in various environmen-
tal and driver conditions. However, the use of two cameras
increases algorithm complexity and processing time.

The topic of driver behavior detection is intuitively so wide
and several surveys and studies exist in the literature on driver
behavior detection [29]-[32], but what appears to be lacking
in these attempts is that none of them presented a fuller
and more holistic picture of human driving behavior (HDB)
detection techniques based on deep learning. The survey [29]
covers only the analysis of the existing image processing
methods of driver drowsiness detection and recent deep learn-
ing techniques and methods for drowsiness detection of a
driver are still missing. In another survey [30], the authors
focus on the utilization of deep learning models for various
traffic state prediction like traffic speed and flow in Intelligent
Transportation Systems (ITS). Another recent comprehensive
survey [31] focused on utilization of deep learning methods
for various ITS problems including traffic flow prediction,
traffic signal control, travel time estimation etc. The authors
in [32] investigated ML based ITS techniques, applications
and services, such as co-operative driving and road hazard
warning and expanded the concepts of various ITS tasks
but lacks human driving behavior recognition techniques.
Motivated by the fact that monitoring and correcting driver
intention in time is critical to ADAS systems in order to avoid
making conflicting decisions with the driver, more recently
the authors in [33] provide an overview of the ego-vehicle
driver intention inference (DII) systems. They mainly focus
on driver’s lane change intention on highways and classi-
fied human driver intention inference mechanisms into three
major categories; strategy intention,operation intention and
tactical intention.

This paper focuses on the most recent deep learning
based systems, algorithms and techniques for the detec-
tion of Human Driver Inattentive and Aggressive Driving
Behavior (HIADB) by classifying human Inattentive driving
behavior (HIDB) into two major categories; Distraction and
Fatigue/Drowsiness. We also discuss in detail causes and
effects of human driver Aggressive driving behavior and its
detection through deep learning methods. Aggressive driv-
ing behaviors often result in property as well as bodily
injury damages. A number of factors including driver’s expe-
rience/inexperience in driving, decline (change) in driving
skills due to natural aging or illness/diseases, gender, different
driving characteristics as well as the other environmental
conditions like road adhesion, traffic conditions, and weather
conditions affect the attentiveness of a human driver while
driving either negatively or positively. But the study of these
factors on human driving behavior are out of the scope of
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this paper. The challenges and requirements regarding the
detection of HIADB are also highlighted. In an attempt to
achieve a comprehensive understanding of human driving
behavior, a detailed comparative analysis of all the recent
techniques is also performed, presenting in the form of tables
and figures and thus, this review serves as trove of informa-
tion which is not only helpful in informing the specialists
and the students about the current state of the art HIADB
detection but also assist them with design choices.

The major contributions of this study are as follows:

1) The human driver inattentive driving behavior (HIDB)
is classified into two major categories; distraction and
fatigue/drowsiness. The detection of driver distraction
and driver fatigue/drowsiness is classified according to
the features selected for the detection of human driving
behavior in the literature.

2) A more risky human driving behavior called Aggres-
sive driving behavior is also explained and discussed,
highlighting the causes and effects of different aggres-
sive driving styles on human safe driving. The detection
of human driver aggressive driving behavior (HADB)
is classified according to the aggressive driving styles
adopted by an aggressive driver.

3) The most recent deep learning based solutions for
human driver Inattentive and Aggressive Driving
Behavior (HIADB) detection are reviewed systemati-
cally and comprehensive comparative analysis is per-
formed, highlighting their detection accuracies.

4) The fundamental requirements for detecting human
abnormal driving behavior from developing trust of
ADAS systems to including trust, security and privacy
of such automated systems are presented and discussed.

5) The imperative open research challenges in the field
of HIADB detection are identified. These challenges
are discussed as future research directions that need
to be addressed for the accurate detection of abnormal
human driving behavior so that risk of accidents can be
reduced.

The structure of our paper which is illustrated in Figure 1
is as follows: In Section 2, we first classify and discuss the
Human driver Inattentive Driving Behavior (HIDB) detection
and then discuss Human driver Aggressive Driving Behavior
(HADB) and classify its detection measures. In Section 3,
we present some background about machine learning (ML),
deep learning (DL). In Section 4, we give an overview of deep
learning algorithms that are particularly employed for detect-
ing HIADB. In Section 5, we comprehensively review deep
learning based methods devised in the literature for detect-
ing HIADB and a comparative analysis of these approaches
is performed according to the classification in Section 2.
In Section 6, we highlight some of the fundamental require-
ments for HTADB detection. Section 7 presents open research
challenges in detecting human abnormal driving behavior.
In Section 8, we finally conclude the paper.
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FIGURE 1. Structure of the paper.

Il. HUMAN DRIVER INATTENTIVE AND AGGRESSIVE
DRIVING BEHAVIOR (HIADB)

A. HUMAN DRIVER INATTENTIVE DRIVING

BEHAVIOR (HIDB)

Driving is a dynamic process which is comprised of three
key components including, driver, vehicle and the driving
environment [34]. For the sake of life and property safety,
a driver is responsible to make appropriate decisions and
perform actions accordingly by staying aware and attentive
to the environment and the current situation. A study spon-
sored by NHTSA, investigated 723 crashes and showed that
driver behavioral error caused or contributed to 99% of these
crashes [35]. It is estimated that 90% of road accidents are
caused by wrong driving behavior. In this section, we cat-
egorize the HIDB that contribute to serious road accidents
into two main domains; Driver Distraction (DD) and Driver
Fatigue or Drowsiness (DFD).

1) DISTRACTION OF A HUMAN DRIVER

Distraction of a human driver refers to loosing concentra-
tion behind the wheels while doing another event or activ-
ity and when an object, or person outside or inside of the
vehicle takes away the driver’s attention from the driving
task. Distraction of human driver can degrade his driving
performance resulting in unplanned speed changes, hiccups
in vehicle control, and drifting outside the lane edges, which
ultimately increases the chance of a motor vehicle crash.
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Distraction can be either driver initiated (where the driver
starts carrying out a distracting activity) or non-driver ini-
tiated (the unpredictable actions of something or someone
else) [36]. Human driving distractions can vary greatly in the
form and severity. Some of the examples of human driver
distraction include sending or texting a message on mobile
phone, calling, listening or reaching a mobile phone [37],
looking at off-road persons and events, using a navigation
system, eating or drinking, operating in-vehicle-technology
etc. Every year automobile accidents happen and hundreds
of thousands of people are injured due to distracted human
drivers and this number is continuously rising. It is reported
that when divers try to multitask, road accidents happen more
often and thus, more than half of the total accidents are caused
by distraction of a driver [37].

Human driver distractions are of six kinds including visual,
cognitive, manual, auditory, olfactory and gustatory distrac-
tion. Visual distraction is when a driver takes his/her eyes off
the road. Cognitive distraction is when a driver takes his/her
mind off of driving and thinking about something which is
not related to vehicle driving. Manual distraction is when the
driver takes his/her hands off the steering wheel and manipu-
lating a device. Auditory distraction is when a human driver
hears some sound like ringtone or music which is not related
to driving and thus, distraction is caused when different
sounds impede the driver from making the best use of his/her
hearing, making him less observant towards controlling the
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FIGURE 2. Taxonomy of driver distraction detection.

vehicle safely. While driving, mood or mind set of a driver
can be changed when he listens to music or having a conver-
sation, thus, effecting the human driving behavior. Olfactory
distraction is when a driver is distracted by the smell of some-
thing outside or inside of the vehicle. Gustatory distraction is
when a driver is distracted by the taste of something while
eating or drinking.

Driving is a multitask activity (manual/visual) or a process
that demands human driver attentional resources associ-
ated with his visual features (visual perceptions), cognitive
features (spatially working memory) and manual features
(motor responses). However, other human resources like
auditory or verbal responses, senses like olfactory and gus-
tatory are substantially not needed (or have minor demand)
for driving tasks. Visual, cognitive and manual distrac-
tions highly degrade the driving performance and disrupt
the driver’s attention allocated to the driving scene and
for processing information while driving whereas the other
three distractions (auditory, olfactory, gustatory) have min-
imal or no affect on the driving performance or attentive-
ness of a driver. According to the estimation of the National
Safety Council, 26% of all car crashes involve cell phones
because it is a combination of visual, manual and cognitive
distractions [38].

We categorize detection of Human driver distraction into
two types of measures, human driver’s visual behavior and
vehicle’s dynamics or vehicle related features (driving per-
formance metrics). This categorization is shown in Figure 2.
Visual, cognitive or manual human driver distraction can be
detected by measuring human’s visual features (eye glance
patterns, spatial and temporal eye gaze distribution or pat-
tern, head and hand movements) or vehicle related features
(steering wheel pattern, lane keeping or position, vehicle
braking events). When attempting to determine whether cog-
nitive load has truly diverted the driver’s attention, it is

105012

Vehicle Dynamics

Vehicle Braking
Events

Steering Wheel

Pattern

Lane Keeping or

Position

a bigger challenge to identify and assess what is and what
is not cognitive load as it is difficult to understand precisely
what a driver may be thinking. A number of studies exist in
the literature for the detection of human driver visual, cog-
nitive and manual distraction. According to [39], increased
visual distraction resulted due to frequent glances at an object
far away and off-road, the concentration of gaze. The three
parameters standard deviation of lane position, eyes-off-road
glance time and glance duration of head-off-road are crucial
indicators of visual distraction. The authors in [40]-[42]
study and analyze the parameters like gaze pattern and head
movements to discriminate between focused and distracted
driving and measure the cognitive distraction. A study in [43]
has shown that distraction, cognitive workload, and features
of eye movement (saccade, smooth pursuit, and fixation) are
interlinked. Saccades are quick actions that occur when visual
attention transfers from one point to another and thus, can be
used for mental workload measurements.

Recently, for the non-intrusive and real-time detection of
visual distraction, a method was developed in [44] which
detects driver’s visual distraction by measuring vehicle
dynamics data and environmental data, without using eye-
tracker information. A more recent attempt [45] presented a
novel algorithm for detection of driver’s manual distraction
consisting of two modules. The first module was responsible
for the prediction of the bounding boxes of the driver’s right
hand and right ear from RGB images. The second module on
the other hand took the bounding boxes as input and predicted
the type of distraction. A research study in [46] developed a
distraction detection algorithm using kinematic signals from
the vehicle Controller Area Network (CAN) bus. The authors
continuously recorded vehicle kinematic data from naturalis-
tic driving study program on everyday driven vehicles without
specified base lines. Cabin video data were captured and
manually inspected to identify attentive or distracted cases.
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Moreover, a Nonlinear Autoregressive Exogenous (NARX)
model was developed for vehicle speed prediction. On the
basis of which the mean of the absolute prediction error
was proposed as a new metric for distraction detection. The
authors then exploited a support vector machine for distrac-
tion detection with the identified features reporting promising
detection performance results.

The three distractions including auditory, olfactory and
gustatory are still in their infancy and thus, there are only a
few attempts in the literature to detect them. A study in [47]
proposes a procedure to quantitatively estimate auditory dis-
tractions that are not accompanied by any visual diversions
to clarify the influence of non-visual distractions on driving.
An auditory distraction has negative impact on the driver’s
driving behavior [48] whereas in other studies [49], [50],
it is shown that listening to music can help human drivers
to stay alert, and influences mood and physiological states
of a driver without necessarily impairing his driving perfor-
mance. The only two studies we found [51], [52] focused on
olfactory distraction and showed that smell distracts a human
driver.

2) FATIGUE/DROWSINESS OF A HUMAN DRIVER

Fatigue of a human driver refers to a state when he/she is
too tired to remain alert. Human Driver’s Fatigue results
due to his physical or mental exertion, prolonged driv-
ing, inadequate, fragmented or interrupted sleep, strenuous
work or non-work activities or a combination of other factors.
Insufficient sleep and fatigue of a driver can reduce vigilance,
diminish his alertness and concentration so that he is not capa-
ble enough to recognize oncoming hazards which ultimately
leads to deterioration of driving performance, affect the qual-
ity of decision making, driver’s significant loss of control,

VOLUME 8, 2020

Vehicle Based

Steering Wheel
Angle

—

Vehicle Variables ——> Speed

A/\A

Lateral
Displacement

Driver's Visual

Features

De-Acceleration ' Acceleration

unpredictable vehicle trajectory and no braking response.
Moreover, fatigue leads to slower reaction time, diminished
steering performance and makes the driver less capable to
keep distance to the car in front.

The terms ‘“fatigue”, “‘sleepiness” and ‘“‘drowsiness’ are
often used interchangeably in the driving context but they
differ significantly. Sleepiness can be defined as the neuro-
biological need to sleep [53]. Fatigue is linked to feeling
tired, exhausted or low in energy, but often does not result
in sleep, whereas drowsiness is a state in between sleep and
wakefulness or right before sleep. Inactivity reduces phys-
ical fatigue but increases drowsiness. Although the causes
of fatigue and sleepiness may be different, their effects
are very much the same, namely a decrease in mental and
physical performance capacity. The U.S. National Highway
Traffic Safety Administration (NHTSA) reports that drowsy
driving is related to at least 100,000 motor-vehicle crashes
and more than 1,500 deaths per year. Since, drowsy and
fatigue driving is a serious problem that is responsible for
thousands of accidents and numerous fatalities every year,
thus, it is a major transportation safety concern. Several
studies [54], [55] reveal that 25-35% of driving mishaps are
related to fatigue, making it the second major reason for road
accidents.

We categorize detection of Human driver fatigue or drowsi-
ness into two major types of measures; Driver-based
measures or Vehicle-based measures. Driver based mea-
sures, derived from human driver, are further categorized
into Physiological features (intrusive) and Visual features
(non-intrusive). Physiological measures of a human driver
involve intrusive fatigue detection by analyzing the psycho-
logical state of the driver through electroencephalographic
(EEG) and electro-oculographic (EOG) information features.
Measuring human visual features involve non-intrusive
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detection by providing fatigue warning based on facial fea-
tures including Head and Eye Movement etc. Vehicle based
features include those which are derived from the vehicle
including Lateral displacement, Speed, Acceleration etc.
Fatigue/Drowsiness detection categorization is also shown in
the Figure 3.

A number of methods have been proposed in the literature
in the past. The researchers have focused on utilizing certain
physiological and physical phenomena and variations that
undergo in the body of a fatigued driver for the detection
of human driver fatigue. Recently, a driver fatigue detection
system was presented [56] in which SVM was trained on
driver performance data, lane position, lane heading, and
lateral distance. The authors have proposed and applied a
two stage parameter learning algorithm called Distributed
Learning and Searching (DL&S) to select optimal parameters
and used them to train a SVM for driver fatigue detection.
at the first stage distributed learning was performed on a
subset of training data, and at the second stage fine-tuning
was performed to obtain the most optimal parameters. The
data set was generated from real-world driving trips taken
by 20 drivers. Their experimental results showed that the
proposed DL&S algorithm consumed only 7.5% of the com-
putational cost needed by grid search.

Driver’s drowsiness can be detected by identifying ini-
tial signs of fatigue before a critical situation arises. The
most recent attempt in [57] has utilized eye tracking data
acquired from 53 subjects in a simulated driving experiment
and simultaneously recorded multichannel electroencephalo-
gram (EEG) signals to detect drowsiness of a driver. They
employed random forest (RF) and a non-linear support vec-
tor machine (SVM) for binary classification of the state of
vigilance. Another attempt in [58] presented an algorithm
for drowsiness detection in drivers of several vehicles based
on eye-shape. They located the face in real-time video, and
feature point detection on face region for delimiting the ocular
area by using a combination of HOG Linear SVM. Moreover,
the authors in [59] detect driver’s drowsiness by classifying
surface electromyography signal features. They measured the
surface electromyography signal from the upper arm and
shoulder muscles including mid deltoid, clavicular portion of
the pectoralis major, and triceps and biceps long heads. They
have applied six classifiers for the prediction of drowsiness
and concluded that the k-nearest neighbor classifier predicts
drowsiness by 90% accuracy, 82% precision, 77% sensitiv-
ity, and 92% specificity. A recent study [60] leverages the
data of steering wheel angles for monitoring driver fatigue
level under real driving conditions by presenting an online
drowsiness detection system. Another study [61] performed
a comparative analysis of K-nearest neighbor, support vector
machine, and artificial neural network classifiers for driver
drowsiness detection by analyzing different road geometries
(straight segments and curve segments) based on a driving
simulator [62].
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B. HUMAN DRIVER AGGRESSIVE DRIVING

BEHAVIOR (HADB)

In addition to distraction and fatigue, aggressive driving
behavior of a human driver is another major reason for the
road accidents. National Highway Traffic Safety Adminis-
tration (NHTSA) defines aggressive driving behavior as an
action “when individuals commit a combination of moving
traffic offences so as to endanger other persons or prop-
erty”’ [63]. According to the British Automobile Association,
flashing, obscene gestures, deliberate obstruction of equip-
ment, verbal abuse or strike are labeled as aggressive driving
behaviors or road rage [64]. Some authors even report that
aggressive driving and road rage are used as synonyms but,
in order to make a distinction between them, the authors
in [65] said that Aggressive driving is a traffic offense and
road rage is a criminal offense and thus, road rage is associ-
ated with criminal behaviors punishable by law.

We categorize Aggressiveness of a human driver into
two types; Habitual Aggressiveness (Intentional) and Sit-
uational or Occasional Aggressiveness (non-intentional).
Habitual aggressiveness of a human driver is an intentional
risk-taking behavior that refers to unsafe and hostile driving
behavior while operating a vehicle for instance, making fre-
quent or unsafe lane changes (weaving), excessive speeding,
tailgating etc. The driving in such an aggressive manner
may also sometimes result in harm for other individuals
(motorists) on the road and for the society, thus, risk the
lives of other people. This kind of aggressive behavior may
include violent behaviors such as failing to signal or yield
the right of way, ignoring or disregarding traffic controls,
shortcut maneuvers etc. The authors in [66] describe the
perception of what people consider an aggressive behavior,
and their perception of which are the most aggressive acts
performed when driving. They categorized three behavioral
elements of aggressive driving as intentional acts of physical,
verbal, or gestured aggression; negative emotions (e.g., anger,
frustration) while driving; and risk-taking. It was found that
when the nuance of intentionality of a driver is added to
the debate of aggressiveness, aggressive driving is not the
result of simple lapses and errors while driving but a clear
distinction can be made between violent but non-aggressive
behaviors, and aggressive, but non-violent behaviors.

Situational or Occasional aggressive driving behavior of a
human driver is a non-intentional risk taking behavior while
operating a vehicle that refers to reckless driving without any
intention to harm other road users and on certain occasions
it can be useful for survival purposes. sometimes the road
situation or environment makes a human driver to act aggres-
sively and adopt aggressive driving styles. For instance;
A simulated and on road experimental study [67] was con-
ducted and focused on driving anger induction and detection.
Three scenarios including waiting for the red light frequently,
traffic congestion, and the surrounding vehicle interference
were used for inducing anger and then a detection algorithm

VOLUME 8, 2020



M. H. Alkinani et al.: Detecting Human Driver Inattentive and ADB Using DL

IEEE Access

Driver Aggressiveness

Lane Changing

Car Following \\ ‘/—’/%

y— Driver Maneuvers ————

Late ral
Acce ler ation
Sudde n D e-
7 Acce 1erat10n

Vehicle State

Sudden
Sharp Turns »M\A Tail Gating A‘\Accekm@
/ Speed & / Longitudinal
) Breaking Throttle Pedal w \\RPM A

Steering Wheel

FIGURE 4. Taxonomy of driver aggressiveness.

was built for which a Hidden Naive Bayes classifier was
employed to detect angry driving during the on-road driving
experiments. Many drivers are over confident and unaware of
their bad driving habits, thus in order to increase awareness
of driving habits of drivers it is important to classify aggres-
sive and normal driving behavior, which can assist them to
avoid potential accidents [3]. In this regard, in order to raise
people’s awareness and help them understand their driving
behaviors, the authors in [68] presented and trained a pop-
ulation model using instances for each unique routine label
(e.g., one model for aggressive and one for non-aggressive
driving). They also conducted a user study in which par-
ticipants drove on a predefined route and reviewed their
driving behaviors using their tool hypothesizing that showing
participants their aggressive behaviors and non-aggressive
alternatives will change their rating of their driving expertise
and quality. Their systems can automatically model, detect,
generate, and reason about people’s routines by enabling
artificial intelligent systems. Such systems can help people
reflect on and understand their behaviors, which is a step
towards technologies that aid people in behavior change.
We categorize the detection of human driver aggressive-
ness into two kinds of monitoring the measures; measures
related to driver maneuvers and measures related to vehi-
cle state. Human driver’s maneuvers or driving styles used
to detect aggressive driving include Lane Changing, Car
Following, Sharp Turns, Steering Wheel angle, Braking,
Throttle Pedal, Tailgating etc. Aggressive behavior of human
driver can also be detected by assessing the vehicle’s state
including Lateral Acceleration, Sudden Acceleration and De-
acceleration, Longitudinal Acceleration, Speed and Velocity,
RPM etc. This categorization is shown in Figure 4.
Detection of driver aggressiveness can significantly aid
in reducing the number of traffic accidents leading to safe
driving. There are certain behaviors associated with aggres-
sive driving which are utilized by the researchers to identify
aggressive driving behavior. Several methods have been pro-
posed for detecting aggressive driving behaviors based on
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metrics from vehicle sensor data such as excessive speed,
hard braking, heavy acceleration, and aggressive turns. Most
of the studies have used common vehicle kinematics such as
speed, longitudinal and lateral acceleration to measure driv-
ing aggressiveness [69]. An attempt in [70] has investigated
that whether vehicle longitudinal jerk could be potentially
used to identify aggressive drivers. The authors hypothesized
that the vehicle jerk indicates how smoothly a driver acceler-
ates and decelerates the vehicle, and aggressive drivers may
use large jerk more often by operating the gas and brake pedal
compared to normal drivers. In this regard they developed
two jerk-based metrics; the frequency of using large positive
jerk when pressing the gas pedal and the frequency of using
large negative jerk when pressing the brake pedal. Speeding,
Tailgating, driver’s association with crash or near-crash were
used to identify the aggressive drivers and results showed
that aggressive drivers had significantly higher values of the
two jerk-based metrics. Most recently the authors in [71]
presented a two-stage clustering approach for the detection
of unsafe driving styles by utilizing driving data and informa-
tion on mobile usage, harsh events occurrence, speeding and
acceleration profile with increasing importance with respect
to safety. In this way, trips have been categorized into six
distinct groups (Aggressive trips include Aggressive trips,
Distracted trips and Risky trips). Non-Aggressive Trips on
the other hand include Safe trips, Distracted Trips and Risky
Trips. An initial clustering was performed for separating
aggressive from non-aggressive trips whereas a second level
clustering was performed to distinguish normal trips from
unsafe trips. By grouping the drivers in relation to the trips,
the authors have analyzed that drivers cannot maintain a sta-
ble driving profile through time, but exhibit a strong volatile
behavior per-trip.

Ill. BACKGROUND OF DEEP LEARNING

This section presents the background of Machine learn-
ing and deep learning and its categories. Machine Learn-
ing (ML) is a small subset of Artificial Intelligence (Al), since
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the 1950’s. ML models can be categorized into two major
categories; models based on the depth and models based
on learning styles; Models that are based on learning styles
are of four kinds in which deep learning models are trained
with data; supervised learning, unsupervised learning, semi-
supervised learning and reinforcement learning. Models that
are based on depth are further categorized into two types;
Shallow learning and Deep Learning. This categorization is
clearly demonstrated in Figure 5.

A. MODELS BASED ON LEARNING STYLES

In this section, we present ML models based on learning
styles which include Supervised learning, Unsupervised
Learning, Semi-supervised Learning and Reinforcement
Learning.

1) SUPERVISED LEARNING

In supervised learning, a deep learning model is handed a
full set of labeled data including both the input data and the
desired output (correct answer), which a machine learning
engineer or data scientist has added while training an algo-
rithm to guide it to understand which features are important
to the problem at hand. Thus, the algorithm learns on a labeled
dataset, and evaluates its accuracy on the training data using
an answer key. For example, when an image of flower is
given to a supervised learning model it can compare it to
the training examples, a labeled dataset of flower images that
would tell the model which photos were of roses, daisies and
daffodils and so in this way it can predict the correct label
accurately and can correctly classify new images of other
flowers. Deep learning supervised learning models include
Convolution Neural Networks (CNN), Recurrent Neural Net-
works (RNN) etc.
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2) UNSUPERVISED LEARNING

In unsupervised learning, a deep learning model is handed an
unlabeled dataset including a collection of examples without
a specific desired outcome or correct answer. The training
dataset has no explicit instructions on what to do with it
and thus, the algorithm learns to inherent structure from the
input data to make sense by extracting features and patterns
on its own. For example, if a collection of bird photos is
given to an unsupervised learning model, it will look at
them and separate them roughly by species and group them
together, by relying on training data and cues like feather
color, size or beak shape. Deep learning unsupervised learn-
ing models include Deep Belief Networks (DBN), Deep
Boltzmann Machines (DBM), etc.

3) SEMI-SUPERVISED LEARNING

In semi-supervised learning, a learning model takes the mid-
dle ground because it is handed with a training data set
in which some data is labeled but most of it is unlabeled.
For example, if the semi-supervised learning model has to
identify and then specify specific groups of web pages it uses
some of the labeled data to identify that there are specific
groups of web page types present in the data and what they
might be. The algorithm is then trained on unlabeled data so
that it is capable enough to define the boundaries of those
web page types and may even identify new types of web
pages that were unspecified in the existing data handed to
the algorithm. The main disadvantage of supervised learning
is the expense of labeling the training data the process of
labeling massive amounts of data is time consuming and
expensive whereas, unsupervised learning often doesn’t work
very well due to unlabeled data. Semi-supervised learning is
thus, useful because it is a win-win in many problems like
web page classification, speech recognition, genetic sequence
and many more. Some of the semi-supervised deep learning
models include Generative Adversarial Networks (GAN),
Variational Autoencoders (VAE), Ladder Net etc.

4) REINFORCEMENT LEARNING
Reinforcement learning is a goal oriented algorithm that falls
in between supervised and unsupervised learning. It learns
by trial and error and predicts the action that will yield
the best result. In reinforcement learning, no supervisor is
involved and the algorithm works sequentially in a unknown
environment where only a reward signal is used for an agent
to determine if they are doing well or not. The agent needs
to find the ““right” actions to take in different situations for
which it is either rewarded or punished for the actions they
take. Each action of an agent affects the next data it receives.
The general framework of RL can be applied to any problem
due to its generality and dynamic nature.

The components of RL algorithm are agent, environment,
action, state, reward and policy. An agent is an entity that
executes actions e.g. a trader deciding what to buy or sell or
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a robot deciding to walk on a path. The agent makes deci-
sions without losing too much reward for which it needs to
learn from its experiences in the environment. A stafe is a
situation in which the agent finds itself containing the set of
actions, tools, dangers, rewards or the information available
to an agent which is used to determine what happens next.
A reward is a discount which is a scalar feedback signal
that represents the result of the agent’s action. The reward
indicates how well an agent is doing at step time t and can be
immediate (short term) or delayed (long term). The reward
function should be carefully designed in order to apply RL
to various real world problems. An Environment, which can
be fully observable or partially observable, is a function that
transforms the action taken in the previous step into a reward
and a new set of actions. A policy is an agent’s behavior
function (Deterministic or Stochastic), or the strategy that
agent uses to determine the next action, based on the current
state and previous rewards.

Deep reinforcement learning (DRL) is a combination of
Reinforcement learning and Deep Learning in which deep
learning determines the action taken at every stage by
creating a sequential reinforcement learning process [72].
DRL can be further categorized into two classes; Value-
Based and Policy-Based Learning. In Value based methods
(Q-Learning), an agent calculates a Q-value of each possible
action. It performs back-propagation to find the most accurate
Q-Values and selects the best action [73]. In Policy-based
methods, an agent does not calculate a value function for each
action but it learns the policy function directly, e.g. Policy
Gradient. Since, there are major gaps between simulated and
real environments that make it difficult to train models, DRL
works very well in closed environments like video games, but
it is difficult to apply to real-world environments [74]-[76].

B. MODELS BASED ON DEPTH
In this section, we present ML models based on Depth which
include Shallow learning models and Deep learning models.

1) SHALLOW LEARNING

Shallow learning [77] is just a buzz-word for the traditional
machine learning pipeline. Shallow Learning relies on hand-
crafted features based upon heuristics of the target problem.
Supervised Shallow learning models include Support Vector
Machines (SVM), Decision tress (DT), K-Nearest Neigh-
bor (k-NN), Random Forest (RF), Linear Regression (LR),
Logistic Regression, Naive Bayes etc. Unsupervised Shallow
Learning models include Clustering, Hierarchical Clustering,
K-means, Auto-encoders etc. Shallow learning models are
out of the scope of this paper.

2) DEEP LEARNING

Neural Networks (NN) is a subfield of ML that has spawned
Deep Learning (DL). Deep Learning methods derive their
own features directly from data (feature learning). Shallow
neural Networks consists of single hidden layer whereas Deep
Neural Networks consists of more hidden layers and has
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alarge number of neurons in each layer. Since the inception of
DL, it has garnered tremendous success in almost every appli-
cation domain [78]. Although the history of deep learning
can be traced back to the mid 1960’s [79], modern-day deep
learning is still a relatively new development and it developed
largely from 2006 onward. It has been applied to a number of
fields including computer vision, image processing, speech
recognition, medical imaging, bioinformatics, robotics and
control, natural language processing, cybersecurity, and many
others.

Deep learning describes a family of learning algorithms
rather than a single method that can be used to learn complex
prediction models, e.g., multi-layer neural networks with
many hidden units [80]. A procedure of learning estimates the
model parameters so that the learned model (algorithm) can
perform a task. These tasks include Classification, Clustering,
Regression, generative modeling, dimentionality reduction,
association Rule Learning etc. Deep learning consists of
several layers in between the input and output layer which
allows for many stages of non-linear information process-
ing units with hierarchical architectures to be present that
are exploited for feature learning and pattern classification
[79], [80]. The traditional ML methods faltered but deep
learning excels in solving the problems of learning from raw
audio signal, the raw pixel values of images, or mapping
between sentences of arbitrary lengths and their counterparts
in foreign languages [81]. It is thus capable of addressing low-
level perceptual data in a way that ML and previous tools
could not because they are affected by the curse of dimen-
sionality. Deep learning models include Convolution Neural
Networks (CNN), Recurrent Neural Networks (RNNs), Long
Short Term Memory (LSTM), Autoencoders (AEs), Vari-
ational Autoencoders (VAEs), Generative Adversarial Net-
works (GANSs) etc. Only those Deep learning models that are
employed for driver behavior detection are described in detail
in Section IV and the rest of the models are out of the scope
of this paper.

IV. DEEP LEARNING ALGORITHMS FOR HUMAN DRIVER
INATTENTIVE AND AGGRESSIVE DRIVING

BEHAVIOR DETECTION

The deep learning models that are employed for the detec-
tion of Human driver Inattentive and Aggressive Driving
Behavior (HIADB) are of two kinds; Generative models
and Discriminative models. Generative model is a branch
of unsupervised deep learning that learns any kind of data
distribution and captures the joint probability. It describes
how a data set is generated, in terms of a probabilis-
tic model, thus, new data instances can be generated by
sampling form this model. The Generative deep learning
models include Auto-encoders (AE), Variational Autoen-
coders (VAE), Restricted Boltzmann Machine (RBM), Deep
Belief Networks (DBN) and Generative Adversarial Net-
works (GAN). The aim of VAE is to maximize the lower
bound of the data log-likelihood whereas the aim of GAN is to
achieve an equilibrium between Generator and Discriminator.
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Some of the generative classifiers include Naive Bayes,
Bayesian networks, Markov random fields, Hidden Markov
Models (HMM). Generative model can also be applied to a
labeled dataset to learn how to generate observations from
each distinct class.

Discriminative model is a branch of supervised learning
and discriminates between different kinds of data instances.
It learns a function that maps an input to an output using
a labeled dataset and captures the conditional probability.
In these models the input data is classified into known cate-
gories by learning discriminative driving features adaptively.
These algorithms learn distinctive features through non-linear
transformation and classification based on probabilistic pre-
diction. Their basic functions include feature extraction and
classification. Some of the discriminative deep learning mod-
els include Convolution Neural Networks (CNN), Recur-
rent Neural Networks (RNNs), Long Short Term Memory
(LSTM) which are the focus of this paper. CNN, RNN and
LSTM are the most common deep learning methodologies
applied to HIADB detection.

A. CONVOLUTION NEURAL NETWORKS (CNN)

Kunihiko Fukushima was the first who introduced Convolu-
tional Neural Networks (CNN) by designing neural networks
with multiple pooling and convolutional layers. In 1979, he
developed an artificial neural network, called Neocognitron,
which used a hierarchical, multilayered design. This design
allowed the computer to recognize visual patterns by learning
about the shapes of objects [82]. CNN achieved great success
not only in powering vision in robots and self-driving cars
but also in identifying objects, faces, traffic signs [83] etc.
It has been widely adopted in the applications for image
classification, speech recognition, video classification, action
recognition, and sentence classification.

CNNs, often called ConvNet, have two main compo-
nents; the feature extraction part and the classification part
[83], [84]. In the feature extraction part, features are detected
by performing a series of convolutions and pooling oper-
ations using two hidden layers; Convolution and Pooling
layers. In convolution layers, filters are applied to the original
image, or to other feature maps in a deep CNN. A series
of filters known as convolutional kernels are present in each
convolutional layer. The filter is a matrix of integers that are
used on a subset of the input pixel values, the same size as
the kernel. The important parameters involve in this layer are
the number of kernels and the size of the kernels. Pooling
layers on the other hand simply the information output from
convolution layers and reduces the spatial size of the repre-
sentation by decreasing the required amount of computation
and weights. Thus, pooling reduces the dimensionality of
the network by performing a specific function such as max
pooling, which takes the maximum value in a certain filter
region, or average pooling, which takes the average value
in a filter region. In the classification part, fully connected
layers are first organized in three dimensions; width, height
and depth and then they serve as a classifier on top of these
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extracted features. It takes the output of the previous layers,
“flattens” them and turns them into a single vector that can
be an input for the next stage. They assign a probability for
the object on the image and the final output is reduced to a
single vector of probability scores, organized along the depth
dimension. The final probabilities for each label are given by
the Fully connected output layer.

B. RECURRENT NEURAL NETWORKS (RNN)

Recurrent neural networks (RNN) were based on David
Rumelhart’s work in 1986. John Hopfield in 1982 discovered
called Hopfield networks. Recurrent Neural Networks (RNN)
are neural networks with time varying behavior including
the notion of dynamic change over time. RNNs are called
recurrent or recursive because they perform the same task for
every element of a sequence and the output depends upon the
previous computations.

RNNs support processing of sequential data by using a
looping mechanism allowing the information to persist and
flow from one step to the next. There are three layers the input
layer, the hidden layer and the output layer. The input layer
takes in a sequential input loops through the input values and
gives output. The Hidden layer contains the memory from
previous iterations which is utilized for prediction or clas-
sification resulting through an output layer. Different kinds
of RNNs include Deep Transition (DT) RNN, DT-RNN with
shortcut connections, Deep Transition-Deep Output (DOT)
RNN and Stacked RNN etc. [85], quasi-recurrent neural net-
works (QRNN) [86], hierarchical multiscale recurrent neural
network (HM-RNN). RNNs are particularly useful in time
dependent data where data must be handled in a sequen-
tial manner or processes change over time for example in
Speech recognition, Machine translation, Image recognition,
Music composition, Handwriting recognition, Stock predic-
tions, Grammar learning and natural language processing
[87]1-[89]. There is also a recent attempt in [90] to employ
Recurrent Neural Networks for Classifying Crash-related
events and proposed a model for the detection of crash and
near-crash events based on a large set of time-series data
collected from naturalistic driving behavior.

1) LONG SHORT-TERM MEMORY (LSTM)

Long short-term memory (LSTM) was proposed in 1997 by
German researchers Sepp Hochreiter and Jurgen Schmidhu-
ber as a solution to the vanishing gradient problem in RNN
algorithm. LSTM is an artificial recurrent neural network
(RNN) architecture that has feedback connections [91]. It can
process single data points like images as well as the entire
sequences of data) sequentially and keep its hidden state
through time. A common LSTM unit architecture is com-
posed of different memory blocks called cells (the memory
part of the LSTM unit), and three “regulators™, called gates
(an input gate, an output gate and a forget gate). The cell
remembers values over arbitrary time intervals. Similar to
a computer’s memory, Information can be stored in, written
to, or read from a cell. The cell makes decisions about what
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to store, and when to allow reads, writes and erasures, via
gates that open and close. There are two states that are being
transferred to the next cell; the cell state and the hidden state.
The three gates are responsible for regulating the flow of
information inside the LSTM unit and outside the cell. The
input gate is responsible for the addition of information to
the cell state. The output gate is responsible for selecting
useful information from the current cell state and showing it
out as an output.The forget gate is responsible for removing
information from the cell state that is no longer required for
the LSTM to understand things or the information that is of
less importance via multiplication of a filter. This process
helps in optimizing the performance of the LSTM network.
Some variations of the LSTM unit do not have one or more
of these gates or maybe have other gates. Some of these
variations or types of LSTM include Gated Recurrent
Units (GRUs), Multiplicative LSTM (mLSTM), Bidirec-
tional LSTM (BiLSTM) with Attention mechanism etc.
Gated Recurrent Unit (GRUs) is a variant of LSTM with
forget gate that was introduced in 2014 by Cho et al. [91].
It lacks an output gate and has fewer parameters than classic
LSTM. Therefore, GRU fully writes the contents from its
memory cell to the larger net at each time step. GRUs only
have one hidden state responsible for holding both the long-
term and short-term dependencies at the same time due to the
gating mechanisms and computations that the hidden state
and input data go through. It has two gates, a reset gate and
update gate to solve the vanishing gradient problem. The
update gate controls information that flows into memory,
and the reset gate controls the information that flows out
of memory. These gates are trained to selectively filter out
any irrelevant information while keeping what’s useful. For
proposing a new hidden state, the Reset gate decides which
portions of the previous hidden state are to be combined with
the current input. The Update gate determines how much
of the previous hidden state is to be retained and what portion
of the new proposed hidden state that is derived from the
Reset gate) is to be added to the final hidden state.
Multiplicative LSTM (mLSTM) is a variant of LSTM that
was introduced by Krause et al in 2016. It combines the
long short-term memory (LSTM) and multiplicative recurrent
neural network architectures; the input, output and forget
gates that provide continuous analogues of write, read and
reset operations for the cells. It is demonstrated in [92] that
mLSTM outperforms standard LSTM and its deep variants
for a range of character level language modelling tasks.
Bidirectional LSTM (BiLSTM) involves duplicating the
first recurrent layer in the network so that there are now two
layers side-by-side, then providing the input sequence as-is
as input to the first layer and providing a reversed copy of
the input sequence to the second. BiLSTM has two networks,
one access past information in forward direction and another
access future in the reverse direction.
Another most influential idea in the Deep Learning com-
munity is called Attention mechanism, which is used in var-
ious problems like neural machine translation, human action
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recognition [93] and so on. The attention mechanism can
focus on discriminative features in a longer sequence, which
can be used in many difficult tasks. Bidirectional LSTM with
attention mechanism combines birdirectional LSTM with
attention network [94].

C. DEEP BELIEF NETWORK (DBN)

Deep belief network (DBN) is a multilayered probabilistic
generative graphical model is composed of multiple layers of
stochastic, latent variables and can learn to probabilistically
reconstruct its inputs. The latent variables are often called
hidden units or feature detectors that typically have binary
values. The top two layers that have undirected, symmetric
connections between them. The lower layers receive top-
down, directed connections from the layer above. The states
of the units in the lowest layer represent a data vector. After
learning the top-down through layer by layer procedure,
the values of the latent variables in every layer can be inferred
by a single, bottom-up pass that starts with an observed data
vector in the bottom layer and uses the generative weights in
the reverse direction.

When binary stochastic neurons are connected in a directed
acyclic graph it is called a Sigmoid Belief Net (Radford
Neal 1992). When binary stochastic neurons are connected
by using symmetric connections, it is called a Boltzmann
Machine (Hinton & Sejnowski, 1983). RBM is a two-layer
stochastic network including visible layer V and hidden
layer h. The hidden or invisible layers are not connected to
each other and are conditionally independent. DBNs integrate
Restricted Boltzmann Machines (RBMs) with Deep Feed
Forward Neural Networks (D-FFNN).

RBMs (Restricted Boltzmann Machine) are stacked
together to form a deep belief network and training is pro-
vided using the greedy layer wise method. The two phases of
DBN training are Pre-training Phase and Fine-tuning Phase.
For the first phase, an unsupervised learning approach is
used. In the first step, a layer of properties is trained by
inputting the original data and fixing up the parameters and
the input signals are obtained from the pixels directly. The
output is then used as the input of the second RBM and the
rest is done in the same manner. At last a DBN with several
layers is created whose parameters are suitable to extract the
features of this kinds of data. For the second phase, a super-
vised learning approach is used. In the second step, a suitable
classifier is added (such as back propagation algorithm) to
the end of the DBN to to provide fine tuning of whole neural
network [95], [96].

V. DETECTING HUMAN DRIVER INATTENTIVE AND
AGGRESSIVE DRIVING BEHAVIOR USING

DEEP LEARNING

In this section, we comprehensively review deep learning
based methods and techniques in the literature for detecting
Human Driver inattentive driving behavior including Distrac-
tion, Fatigue/Drowsiness and Aggressiveness according to

105019



IEEE Access

M. H. Alkinani et al.: Detecting Human Driver Inattentive and ADB Using DL

TABLE 1. Comparative study of Driver Distraction Detection Techniques (DDDT).

Study Category Detected  Driver = Measure Tools and Archi-  Classifiers Plateform Dataset Efficiency
of Dis-  Behavior tectures
traction

[97] Manual Texting, talking over Face, hands VGGI16, Linux Multi-stream LSTM Simulations COCO dataset 91.25%
phone, eating and  and skin de- PC (Intel i7- and CNN State Farm
drinking tection 5930K, 12 cores, dataset Distracted

3.5 GHZ) with Driver  dataset.
NVIDIA Quadro Part Affinity
P6000 24GB Fields (PAFs)
GPU
[98] Visual Using mobile phone Face, hands ASUS ZenFone CNN - Self-created 90%
and and skin de-  smartphone dataset
Manual tection (Model
ZD551KL)
rear camera,
DS325 Sony
DepthSense
camera 5
AlexNet and
5 InceptionV3)

[99] Manual texting, talking on  Posture a computer with ~ Combination of - State Farm, AUC 96.23%,
the phone, operating an Intel core 16.0  HRNN and LSTM 92.36%
the radio, drinking, GB of RAM and
reaching behind, fix- a 64-bit Windows
ing hair and makeup, 10 OS. ResNet
and talking to the
passenger

[100] Manual Texting on mobile Hand move- GoPro Hero CNN - a self -created 92.8%
phone ments 5 camera, blind dataset

Inception V3,
Python , Google
TensorFlow

[33] Manual using in-vehicle ra- Hand move- Kinect camera, CNN Real Vehicle Self  -collected 91.4%
dio device, texting,  ment Intel Core i7 dataset
and answering the 2.5GHzCPU,
mobile phone C++ based on

the Windows
Kinect SDK
and OpenCV.
NVIDIA MX150
2GB GPU

[101] Mnaual Texting (using right, - a workstation ~ Fusion models  Real vehicle Kaggle state -
left hand), talking equipped with  based -Wide group farm  distracted
on the phone (using Intel Xeon Silver  densely (WGD) driver  detection
right, left hand), 4110 CPU, 128G network, Wide database
operating the radio, RAM, CentOS  group residual
drinking, reaching 7 and PyTorch  densely (WGRD)
behind, hair and 1.0.0, Nvidia network, Alternative
makeup, talking to Titan V GPU card ~ wide group residual
passenger densely (AWGRD)

network

[102] Manual Texting, eating, - OpenCV  vision  a plain CNN, two-  Mock-up Self-collected 81.66%
drinking, searching, library,  Python, stream CNN (TS-  car cockpit  dataset
talking, watching, 1-2 NVIDIA  CNN) environment
gaming, preparing TITAN X and

Tesla K40M
GPUs

our driver inattentive driving behavior (HIADB) classifica-

tion done in Section 2.

A. COMPARATIVE STUDY OF DRIVER DISTRACTION
DETECTION TECHNIQUES (DDDT) BASED ON

DEEP LEARNING
The focus of this subsection is the review of the latest
research attempts in detecting human driver distraction using
deep learning algorithms. The comparative analysis of detec-
tion techniques for human driver distraction is presented
in Table 1.

Behera et al. [97] have proposed a novel Multi-
Stream Long Short-Term Memory (M-LSTM) net-work for
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recognizing fine grained driver distracted activities that are
difficult to distinguish. M-LSTM integrates the concepts of
LSTM and CNN for recognizing driver distraction activi-
ties like texting, talking over phone, eating and drinking.
M-LSTM network is evaluated from one stream up-to four
streams. The proposed architecture has three components
Transferable deep CNN features, contextual cues involving
body pose and body-object interaction and the proposed
Multi-stream LSTM (M-LSTM) for sequence modeling and
activity recognition. The authors have proposed Contextual
descriptors to represent high-level knowledge involving
human pose and human-object interactions and relation-
ships between body parts and objects (cup, bottle, phone).
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Body-pose descriptor translates the body parts configuration
to a feature vector by encoding relationships between vari-
ous body parts. Body-object descriptor captures the pairwise
relationship between the body joints and involved objects,
encoding the relative position of an object with respect to a
given joint in a scene. 70% of the dataset is used for training
and the rest 30% for validation. The inputs are per-frame
appearance and contextual features which are based on trans-
fer Learning (TL) i.e. CNN features and object and body parts
detectors are not trained/fine-tuned on the target dataset. The
two LSTM layers have been used for capturing the sequential
information in the M-LSTM. The first layer is in individual
stream and the second layer is after the fusion. The authors
have used unseen drivers for testing in their experiments.
The proposed network is flexible to accommodate more input
streams depending on the target application. Moreover, it is
light-weight and can be trained using CPU.

Eraqi et al. [98] have proposed a reliable deep learning-
based solution for the detection and identification of driver
distraction. They have obtained RGB images from a camera
mounted above the dashboard and trained multiple convo-
lution neural network architectures on raw images, skin-
segmented images, face images, hands images, and face +
hands images. Finally they have evaluated a weighted sum
of all network’s outputs, and final class distribution is done
using a genetic algorithm.

Alotaibia and Alotaibi [99] have developed a system for the
detection of distracted driver posture and they have enhanced
the performance of detecting the distracted behaviors of
drivers by using a combination of deep learning modules,
the inception module with a residual block and a hierarchical
recurrent neural network (HRNN). They have used 10several
percentages to divide the data into testing and training sets
like they have used 10 They have calculated the overall accu-
racy as the number of all images that are classified correctly
divided by the total number of all samples in the test set. The
proposed method is also applied to our method to the AUC
distracted driver data-set in which the authors have used 75%
of the data set for training and the remainder for testing. The
authors have compared their proposed method with ResNet
whose accuracy was 95.31% and they have concluded that
the larger architectures such as Xception, Inception, VGG
and ResNet50 can not be optimized easily on the State Farm
Distracted Driver data set.

Celaya-Padilla er al. [100] have proposed a novel ubiqui-
tous oriented methodology to detect distracted drivers who
are using cellphones. The authors have mounted a wide-
angle camera on the roof to compile a video of the driver
and then each video is is split into 24 pictures. The final
images are then used to feed a CNN algorithm in order to
train it to accurately detect driver’s distraction. The authors
have implemented the pre-trained Google CNN architecture
Inception v3 in this research work. In this work, the authors
have chosen Inception CNN was chosen because CNN can
be exported for low cost hardware such as Raspberry Pi and
can be deployed in Android platforms. Moreover, the CNN
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architecture involves multiple convolution filters, edges are
detected by the first layer, and the over all design is tackled
by the second layer. After applying the filters on the data set,
the results were then concatenated and passed forward.

Xing et al. [33] have designed a driver activities recogni-
tion system based on the deep convolution neural networks
(CNN) to detect whether the driver is distracted or not.
The authors have identified seven common driving activities
among them three of them are distracted driver activities.
They have collected raw RGB images by using the low cost
Kinect camera that enables the collection of multi-modal
signals, such as the color image, depth image, and audio
signals. For the naturalistic data collection, ten drivers are
involved. Then, the images are cropped and Gaussian mixture
model (GMM) algorithm is used for the segmentation that
extracts the driver body from the background. Finally, the seg-
mented images are passed to the CNN models for training
and testing. Three pre-trained CNN models namely AlexNet,
GoogLeNet, and ResNet50 were adopted and evaluated. For
reducing the cost, transfer learning method is applied to fine
tune the pre-trained CNN models. In this study no tempo-
ral information is considered, and each image is processed
individually.

Huang et al. [101] have proposed three video-based behav-
ior detection techniques for abnormal driving using three
deep learning-based fusion model. The proposed models
WGD (wide group densely network), WGRD (wide group
residual densely network) and AWGRD (alternative wide
group residual densely network) are motivated by DenseNet
which is based on the densely connected convolutional net-
work. To enhance the width, cardinality and generalization
efficiency in WGD model without increasing the number
of parameters, the group, and wide convolution replace the
DenseNet’s conventional convolution. To improve the learn-
ing efficiency of WGRD over WGD and DenseNet models,
additional complex features, superposition of previous lay-
ers along with residual networks are employed. In AWGRD
model, the training efficiency of WGRD is improved by con-
sidering the superposition of (I — 1) previous layers. On the
other hand, in WGRD superposition of all previous layers are
considered.

Zhang et al. [102] have designed a dedicated Interwoven
Deep Convolutional Neural Network (InterCNN) architecture
that uses all four-dimensional (time, height, width, RGB
channels) multi-stream inputs including side video streams,
side optical flows, front video streams, and front optical
flows for accurate classification of driver behaviors in real-
time. The authors have build a mock-up environment to
emulate self-driving car conditions and in order to record
the body movements and facial expressions side and front
facing cameras were deployed. a total of 50 drivers (72 male
and 38 female,) participated in the experiments. The hier-
archical InterCNN has two components involving two sim-
pler architectures, first is the plain CNN, which uses only
the side video stream as input an second is the two-stream
CNN (TS-CNN) which takes the side video stream and the
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TABLE 2. Comparative study of Driver Fatigue or Drowsiness Detection Techniques (DFDDT).

Study Category Detected  Driver = Measure Tools and Architectures Classifiers Dataset Efficiency
Behavior
[103] Fatigue Driver visual based Yawning, nodding, PC with Alienware R17, Ubuntu 16.04 LSTM 92.7%
features slow blink rate LTC, 8G GPU, and 16G RAM. Tensor-
Flow
[104] Fatigue Driver visual based  spatial-temporal fea-  Infrared camera, MTCNN CNN + LSTM specialized 95.83%
features ture of eyes dataset  named
TIPU-FDD
[105] Fatigue Driver visual based Optical flow of Keras framework, MTCNN, GTX CNN National 97.06%
features mouth and the left 1080 Ti Tsing Hua
eye area University Driver
Drowsiness
Detection dataset
(NTHU-DDD)
[106] Drowsiness  Driver’s physiologi-  Brain waves Optodes,  wave-imaging ~ system  DNN and CNN 99.3%
cal features (DYNOT, NIRx, Medical

Technologies

side optical flow as input. The entire dataset is divided into a
training set (30 videos), a validation set (10 videos) and a test
set (10 videos).

B. COMPARATIVE STUDY OF DRIVER FATIGUE OR
DROWSINESS DETECTION TECHNIQUES (DFDDT)

BASED ON DEEP LEARNING

The focus of this subsection is the review of the latest research
attempts in detecting human driver fatigue or drowsiness
using deep learning algorithms. The comparative analysis of
detection techniques for human driver fatigue or drowsiness
is presented in Table 2.

Ed-doughmi and Idrissi [103] have proposed an RNN
(recurrent neural network) based driver drowsiness detection
technique for road safety. The LSTM (long short-term mem-
ory) algorithm using a video public dataset is employed for
the training and validation of the proposed driver drowsi-
ness technique. The dataset is split into 7s short scenes
for optimal learning and the detection of drowsiness using
supervised auto-learning calculations. After data prepara-
tions, the LSTM algorithm is applied for training and pre-
diction of the driver’s drowsiness. The experimental results
show that the proposed technique achieved 92.71% accuracy.
However, the proposed technique requires a change in the
posture of the driver after a period of time as it classifies the
actions of the drivers based upon its different postures. If the
diver remains still or unable to change his/her posture over a
long period of time, then the proposed technique will fail to
detect the drowsiness.

Xiao et al. [104] have proposed driver fatigue detection
method using driver’s eyes blinking duration and sequences.
In the proposed detection method, for training and testing of
driver’s eyes sequence through images the CNN with LSTM
is employed. The eyes regions extracted from videos using
multi-task framework based on deep cascading and using
deep CNN and LSTM spatial features of driver’s eyes are
learned. Finally, the driver fatigue is detected using the dura-
tion and sequences of his/her eyes. The experimental results
shows that the proposed technique achieved high detec-
tion rate for the detection of driver’s fatigue. However, the
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proposed method is evaluated using author’s private dataset
which limits the applicability and achieving claimed high
accuracy results of the proposed methods with other available
dataset (captured under various real driving condition and
driving scenarios) and real-time captured videos.

Liu et al. [105] have proposed a driver fatigue detec-
tion algorithm using two-stream network models with multi-
facial features. The proposed algorithm is comprised of
four parts. In the first part, mouth and eye Positioning
is done with multi-task cascaded convolution neural net-
works (MTCNNGs). In the second part, the static features
are extracted from a partial facial image. in the third part,
the dynamic features are extracted from a partial facial optical
flow. in the fourth part, both static and dynamic features are
combined using a two-stream neural network to make the
classification. MTCNN consists of three network architec-
tures, Proposal Network (P-Net), Refine Network (R-Net),
and Output network (O-Net). P-Net structure was responsible
for obtaining the regression vector of the candidate window
and bounding box in the face area. R-Net structure was
responsible for removing the false positive region by employ-
ing bounding box regression and non maximum suppression.
O-net structure was used to make result of processing finer
by using one more convolution layer than in R-Net. O-Net
has similar working as R-Net but it supervised the face area
and five obtained coordinates including the left eye, the right
eye, the nose, the left part of the lip, and the right part of
the lip. O-Net was responsible for face classification and
facial landmark localization. The proposed algorithm first
performed face detection of the driver and then intercepted
the left eye area and the mouth area into the fatigue detection
network, combined with the optical flow image of the left eye
and mouth. The drivers were detected whether they were in a
normal, speaking, yawning or dozing state.

Tanveer et al. [106] have proposed a driver-drowsiness
detection model using deep learning techniques for BCI
(brain-computer interface). The proposed detection model
is evaluated through fNIRS (functional near-infrared spec-
troscopy). The driver’s passive brain signals were captured
using a car simulator and the fNIRS system is used to measure
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TABLE 3. Comparative study of Driver Aggressiveness Detection Techniques (DADT).

Study Type of Parame-  Measure Classifiers Dataset Efficiency
ter
[107] Vehicle state and ~ Speed, Acceleration, Car position rel- ~ FCN-LSTM UAH-DriveSet 95.8% (with 5 min
environment ative to lane center, time of impact window size)
to ahead vehicle, Car angle relative to
lane curvature, Road width
[108] Vehicle state Average speed, Speeding, Accelera-  Auto-Encoding Replicator Neural Net-  Luxembourg SUMO  93%
tion, Number of lane changes, Mini- works (RNNs) and (LSTM) Traffic (LuST) scenario
mum gap
[109] Vehicle state Speed, Lateral and longitudinal po- LSTM- 1-80 and US-101 freeway

sition, Velocity, Acceleration, Jerk,
Space headway, Time headway

datasets

[111] Vehicle state
switch, Longitudinal and lateral accel-
erations, Steering wheel angle and Ve-
hicle speed

Throttle pedal position, Brake light ~GMM

Self collected data using
Sedan/ SUV type vehicles

Improve efficiency by
10% as compared to
other related studies.

the brain signal in a continuous wave. For the classification
of drowsiness and active state of the driver, DNN (Deep neu-
ral networks) were utilized and CNN (convolutional neural
networks) were used for training and testing of the proposed
model. The experimental results show that for differentiate
between drowsiness and active state of the driver the proposed
model achieved 99.3% accuracy.

C. COMPARATIVE STUDY OF DRIVER AGGRESSIVENESS
DETECTION TECHNIQUES (DADT) BASED ON

DEEP LEARNING

The focus of this subsection is the review of the latest
research attempts in detecting human driver aggressiveness
using deep learning algorithms. The comparative analysis of
driver aggressiveness is presented in Table 3.

Moukafih et al. [107] have proposed a driver aggressive
behavior detection scheme using two deep learning algo-
rithms LTSM (Long Short Term Memory) and FCN (Fully
Convolutional Network). For the classification of driver’s
behavior, testing and validation of the proposed technique,
a public dataset “UAH-DriveSet” is utilized. Various vehi-
cles and environmental features (e.g., vehicle position on
the road, distance from the vehicle ahead, acceleration and
speed) are used for the detection of aggressive behavior of the
driver. The results show that the proposed technique performs
well as compared to other existing techniques in terms of
processing time window size. However, for larger window
size (i.e., > 5 minutes), the performance of the proposed
technique decreases.

Matousek et al. [108] have proposed a neural network-
based aggressive driver behavior detection technique. The
proposed technique employed LSTM and RNNs (auto-
encoding Replicator Neural Networks) for driver behavior
detection using pedals, steering wheels and most recent his-
tory of the vehicle. SUMO (Simulation of Urban Mobility)
is used for dataset generation. After the detection of driver
aggressive behavior, the diver assistant tries to reduce the
aggressiveness of the driver and using C2X communica-
tion alert the surrounding vehicles for the possible incident.
The simulation results show that the proposed technique
performed better than the previously proposed techniques.

VOLUME 8, 2020

However, to achieve high and reliable detection of driver
behavior the proposed technique heavily dependent upon the
post-processing of the recent history of the vehicle.

Xing et al. [109] have proposed a joint time-series model-
ing approach called personalized joint time series modeling
(JTSM) for predicting leading vehicle trajectory while con-
sidering different driving styles. JTSM is based on the Long
Short-Term Memory (LSTM) Recurrent Neural Network
model (RNN) which contains a common LSTM layer and
different fully connected regression layers for three different
driving styles, namely moderate, conservative and aggres-
sive. The proposed method has following three parts, Next
Generation Simulation (NGSIM) data processing, Gaussian
Mixture Model (GMM)-based driving style recognition, and
representative feature evaluation for the driving styles with
the Maximal Information Coefficient (MIC) method. In the
first part, NGSIM vehicle trajectory data were collected from
a different region at a different time, which can reflect con-
gested and moderate traffic conditions, and then a data pre-
processing is applied to clean the raw data set. In the second
part, GMM unsupervised clustering method was applied to
generate the most distinctive driving styles for the connected
vehicles. A specific driving style is generated by GMM for
each vehicle based on the speed, acceleration, jerk, time,
and space headway features of the leading vehicle. In the
third part, the MIC algorithm is used to analyze the mutual
dependence between the GMM learned driving styles and the
hand-crafted feature vector. The JTSM model is trained based
on the following-leading pairs extracted from the NGSIM
data set. The proposed approach JTSM was tested for making
predictions one to five seconds ahead that the results of evalu-
ation indicated significant advantage of JTSM over the base-
line algorithms, Constant Kalman Filter (CKF), LSTM, and
Multiple LSTM and achieved more precise prediction. The
authors in [110] have estimated future energy consumption
and the speed of a vehicle by proposing a personalized energy
consumption analysis and prediction framework. They have
deigned a personalized joint time series modeling system
based on the long short-term memory by considering different
driving styles. They have calculated the energy consumption
for highway vehicles based on the energy required at the
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wheel function. Then they have classified the different energy
consumption levels for the car and truck users based on the
energy consumption map. Finally, they have found that heavy
energy consumption users have distinctive driving behaviors
that involve a higher speed, larger acceleration, more head-
way space, and less time headway.

Lv et al. [111] have proposed a CPS-based co-design
optimization framework for an automated electrical vehi-
cle (EV) considering different driving styles based on Plat-
form Based Design (PBD) methodology. The authors have
developed a driving style recognition algorithm using unsu-
pervised learning method. The authors have synthesized
vehicle control algorithms for typical driving styles, mod-
erate, aggressive and conservative, with different protocol
selections. The requirements for vehicle design and control
involve dynamical performance, energy efficiency, and ride
comfort. In order to capture driver’s behavior, Maximum
speed and acceleration time were used as proxies for indicat-
ing dynamic performance of the driver. The comfort level of
a vehicle called drivability, was assessed by vehicle’s jerk j,
which is the second derivative of the vehicle’s longitudinal
velocity. The energy efficiency of a vehicle was represented
by the energy consumed during a certain trip. The simulations
were implemented iteratively with developed models under
defined driving events at each operating point for the three
driving styles.

VI. REQUIREMENTS FOR THE DETECTION OF HUMAN
DRIVER INATTENTIVE BEHAVIOR

In this section we have highlighted the enabling require-
ments for the Detection of Human Driver Inattentive
Driving Behavior (HIADB), including driver Distraction,
Fatigue/Drowsiness and Aggressiveness.

A. ACCURATE AND RELIABLE DETECTION OF

HUMAN BEHAVIOR

The successful avoidance of road accidents is highly depen-
dant upon the accurate and reliable detection and prediction
of human driver behavior. So it is a fundamental requirement
to accurately and reliably detect and predict human abnormal
driving behaviors like distraction, fatigue, drowsiness and
aggressiveness. The human driver behavior detection system
is comprised of two parts, first, the equipment or hardware
part which includes video cameras, and various vehicle sen-
sors (GPS, accelerometer, Gyroscope etc) for monitoring,
braking, location etc., and second, the software part which
includes the feature extraction algorithms and classifiers for
classifying human driver behavior like distraction, fatigue,
drowsiness and aggressiveness. In order to accurately and
reliably detect and predict such human behaviors while driv-
ing which may lead to severe accidents on the road, both
the integral parts of the detection system are required to be
working accurately and reliably.
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B. EFFICIENT COLLABORATION BETWEEN
MULTI-SUBSYSTEMS

In order to generate a complete human driver behavior profile,
for accurate detection of human driver distraction, drowsi-
ness, Fatigue and aggressiveness, multiple sub systems work
together. For drowsiness/fatigue detection of human driver,
driver’s eye state, facial expressions, driving posture, and
vehicle related features like speed, acceleration, steering
wheel angle, brake pedal etc., are required to analyze. For
driver distraction, driver’s manual distraction like talking on
the phone, eating and drinking and other distractions like cog-
nitive or auditory etc., are required to be analyzed. Similarly,
for detecting aggressiveness detection of a human driver, dif-
ferent vehicle related features like risky speedy, sudden accel-
eration and de-acceleration, throttle pedal, steering wheel
angle and driver’s maneuvers like, traffic light violence, lane
changing, car following etc., are needed to be analyzed. The
effective coordination between these subsystems is funda-
mentally required, so that human abnormal driving behaviour
could be efficiently and accurately detected.

C. SECURE AND RELIABLE CONNECTIONS

Autonomous, connected driving and driver assistance sys-
tems utilize the power of internet for getting real-time infor-
mation about road conditions, accidents, traffic, and current
weather. The data that the connected vehicle can gather
regarding the objects on the road, speed bumps, and other
vehicles can benefit the human driver in avoiding traffic
jams and possible accidents making controlling the vehicle
and parking much easier and even contact the emergency
services in the event of an accident. Besides all these bene-
fits, connected cars are vulnerable to cyber-security attacks
and leakage of personal data due to security breaches can
result in vehicle theft. Thus, vehicle-to-vehicle communi-
cation, vehicle-to-infrastructure communication and cloud
data are needed to be more secure in internet connected
vehicles. Additional protection including Advanced hardware
firewalls, and incorporated network-level security elements
are also required to tackle the security and privacy issues of
interconnected vehicle systems that are capable enough to
detect human abnormal driving behaviour like fatigue and
drowsiness.

D. FAST AND REAL-TIME EXECUTION OF

DRIVING ACTIONS

The human driver’s actions (Distraction, Aggressive Driving)
and Behavior (Fatigue and drowsiness) which are the major
cause of road accidents must be accurately detected. After
detection, the systems like advanced driver assistant systems
(ADAS) assist the driver according to their level of automa-
tion regarding controlling the vehicle, obstacle detection,
location finding, collision avoidance etc. The level 1 ADAS
systems acquire information from the sensors, present the
relevant information to the driver and aid the drivers by
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enhancing their perception about the driving environment but
do not provide warning alerts. The level 2 ADAS systems
assess the criticality of hazards after acquiring the informa-
tion and then provide passive mitigation of hazardous through
warnings. The level 3 ADAS systems are a bit more advanced
and complex systems. They provide assistance in controlling
the vehicle and actively mitigate the hazards through inter-
vening on their own by using evasive measures e.g., adjusting
the speed by applying the brakes for the headway within a
certain threshold. Besides all these technology advancements
and important enhancements in such systems, there is much
room for the improvement and low cost camera based solu-
tions that can be fully integrated with all the vehicle modules
are needed which are capable enough to more accurately pre-
dict all the possible human behavior like aggressive driving
and various situations like when a collision between two cars
appears imminent.

E. TRUST MIODELS FOR INTELLIGENT

VEHICLE TECHNOLOGIES

In order to utilize the benefits of intelligent vehicle tech-
nologies like efficiency, safety, and flexibility, the exchange
of information and data between different road users and
elements of the infrastructure is a necessity. This repre-
sents the higher possibilities of security and privacy breaches
(combination of physical and digital threats) due to lack of
security updates and inadequate privacy protection which
degrades the user (human driver) trust upon intelligent vehi-
cles and thus, it is the major obstacle in the public acceptance.
Most recently [112], [113] the researchers identified trust
as most influential factor for the acceptance of any new
technology. Hence, it is required to comprehensively address
the factors (diversity) through which the adoption of intel-
ligent vehicular technology can be promoted and impeded.
In order to increase driver acceptance to the output methods,
the researchers need to find ways to provide assistance to
drivers (elderly or young) in a way that is appropriate and
that would not annoy them. Moreover, it is essential for the
developers to investigate the technology acceptance during
the development phase. The researchers and developers need
to understand the perceptions of human drivers about intel-
ligent vehicular technologies that can detect their abnormal
driving behaviours.

VII. RESEARCH CHALLENGES AND FUTURE DIRECTIONS
Detection of Human driver Inattentive Driving Behavior
(HIADB) provides useful and effective insights for prevent-
ing road accidents and saving precious human lives. However,
there are several challenges that need to be addressed in
order to detect and predict the HIADB successfully. In this
section, we discuss some major challenges faced by HIADB
techniques.

A. ADVERSARIAL ATTACKS
The core purpose of HIADB techniques is an accurate clas-
sification between normal and abnormal driving behaviors.
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Most of the HIADB techniques are based on images or videos
collected using a camera that is usually mounted on the
car dashboard. These images and videos are used as input
by HIADB deep learning algorithm for training, testing
and finally detection/ prediction purposes. However, deep
learning-based HIADB techniques are vulnerable to the most
sophisticated and dangerous attacks known as adversarial
attacks. In a survey [114] the authors focused on the adver-
sarial examples of deep learning models and reviewed current
research efforts on attacking various deep neural networks in
different applications. Another attempt in [115] presented a
comprehensive survey on adversarial attacks on deep learn-
ing in Computer Vision. Another most recent survey [116]
conducted a comprehensive review for adversarial attacks on
textual deep neural models and proposed different classifica-
tion schemes to organize the reviewed literature.

In adversarial attacks, even a minor alteration into the input
images lead to completely wrong results with a high accuracy
rate in deep learning-based algorithms. In the presence of
adversarial attacks, accurate and reliable detection or pre-
diction of human driving behavior is a challenging task.
Therefore, practical solutions and methods are needed to
successfully tackle the adversarial attacks so that HIADB
detection can be accurately done using a deep learning
algorithms.

B. REAL-TIME PROCESSING OF HETEROGENEOUS DATA
The creation of a complete human driving behavior profile
through deep learning algorithms using real-time processing
of heterogeneous data is a challenging task because of a large
set of output classes and large number of free parameters.
Processing of heterogeneous data is very important to avoid
accidents and it entails the processing of huge amount of vari-
ous types of real-time data generated by different subsystems.
The driving data can be unstructured, semi structured or struc-
tured data. For example, for the detection of various driving
behaviors (fatigue, drowsiness, distraction and aggressive-
ness) data from video cameras, various sensors, other near by
vehicles and road side infrastructures (RSUs) are required for
processing and after successful detection of driving behavior,
a fast-appropriate action (e.g., generating alert for the human
driver, sending alerts to other nearby cars, slowing down the
car automatically, call emergency response agencies in case
of critical error or accident etc.) is also needed. Such a great
varieties of data require a deep learning algorithm to identify
hidden relationships among heterogeneous data. Also train-
ing a deep learning network with centralized architectures is
tedious, so distributed architectures are favorable.

The processing of various types of heterogeneous data
(specially images and video data captured under different
lighting conditions or images of drivers wearing sunglasses)
and involvement of many subsystem inputs (location, speed,
breaking data under various types of roads or mountains),
traffic, locations (in tunnels, covered and under bridges),
weather conditions might result in processing delays. Thus,
efficiency can be achieved without compromising accuracy
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by a collection CPUs and GPUs that can enhance the speed
of training. Another common challenge in this regard is that
the deep learning process cannot resolve conflicts of informa-
tion [117]. Deep learning solutions for the detection of driver
distraction, fatigue/drowsiness and aggressiveness frequently
process data coming from a single sensor modality, most of
times cameras, and in some cases process data from various
modalities, for example LiDAR and camera. However, there
is still a lot of uncertainty on how to process and combine data
from heterogeneous sensors in the best way to detect different
kinds of human driving behaviors [118].

C. COMPLICATED AND DIVERSE REAL-LIFE

DRIVING SCENARIOS

Detection of various human driving behaviors depends upon
the driving styles of the driver and real-time driving scenarios.
Modeling a generic driving behavior using deep learning
algorithms is a very complicated and challenging task as
every human has different driving styles and driving behav-
iors under various driving scenarios. In real-life there are
many factors which can affect or influence the human behav-
ior while driving. These factors include multi-agent envi-
ronment (many participants), diver age (senior/young and
experienced/inexperienced drivers), road condition, traffic
conditions (congestion, peak and low traffic hours), driving
under trauma (emotionally disturbance due to sad or happy
incidents), driving styles (Left hand and right-hand driving),
lack of awareness with driving rules and finally people with
different fiscal appearance (e.g., small or big eyes, habitual
fast eyes blinking and yawning etc. Moreover, the develop-
ment of a one-for-all solution to detect and predict human
driving behavior through only deep learning algorithm alone
may not be appropriate or effective solution. Therefore, more
research efforts are required to overcome the challenges of
complicated, diverse real-life driving styles, behaviors and
scenarios effectively through integration and collaboration of
various subsystems available for monitoring and predicting
the driveling behavior, vehicle functioning and performance.

D. ACCEPTANCE OF INTELLIGENT BEHAVIOUR
TECHNOLOGIES BY DRIVERS

A complex socio-technical innovation of Autonomous driv-
ing has profound potential impact on our society and econ-
omy, having massive benefits like it gives access to mobility
to people who are disabled, drastically reduces the number
of accidents, deaths and injuries; reduces traffic congestion
and pollution and boosts the economy. Besides all these
advantages, a key barrier to its adoption is the public trust
in driver-less cars and unfortunately, due to lack of trust,
the general public doesn’t appear to be ready to consume
Autonomous Vehicle (AV) technology [119]. According to
AAA’s survey [120], there is an increase from 63% (2017)
to 71% (2019) Americans who claim to be afraid to ride in
a self-driving car. One major reason about such a negative
trend of people towards AV is that the AV industry has had
its setbacks; For example, the most recent one of Uber’s fatal
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self-driving car accident in March 2018 that has damaged the
public opinion about AVs.

The usage and success of new technologies is dependent
upon the acceptance of its consumers. Many factors affect
and influence the consumer behaviour, which makes the con-
sumer acceptance complicated and challenging for new tech-
nologies. The detection of HIADB is a part of an intelligent
vehicle system or advance driver assisted system (ADAS)
which is also facing the challenge of acceptance by its users
due-to many factors. These factors include the reliability
of driver-less cars, the security of ADAS (from hackers),
deep learning based HIADB detection systems, sensed data,
hardware, communication, privacy of human driver and its
credentials (location tracking and surveillance), and finally,
the accuracy of deep learning algorithms under adversarial
attacks. Lack of strong security and user privacy in such
critical systems may lead to lack of trust upon these systems
and ultimately results in low acceptance from its users and
hampering its development. Moreover, acceptance models for
HIADB detection are not available and so far no research
study is conducted for the exploration of user acceptance.
Therefore, for the successful usage and acceptance of HIADB
detection systems more research efforts are required which is
a major challenge for the researchers and developers.

VIil. CONCLUSION

Road accidents are a global scourge in which Human driv-
ing behavior is an important factor, affecting road safety
that ultimately leads to loss of human lives. Safe driving
behavior requires human driver to be alert and attentive while
making fast cognitive decisions in a dynamically chang-
ing road environment. In order to improve road safety and
avoid severe road accidents, there is a need for monitoring,
detecting and early prediction of human abnormal, Inatten-
tive and aggressive driving behavior. In this study, we clas-
sified and discussed the human driver’s Inattentive driving
behavior (HIDB) into two major categories; Distraction and
Fatigue/Drowsiness. The detection of driver distraction and
driver fatigue/drowsiness was classified according to the fea-
tures selected for the detection of human driving behavior
in the literature. Aggressive driving behavior being another
more risky human driving behavior was also explained and
discussed, high-lighting the causes and effects of different
aggressive driving styles on human safe driving. The detec-
tion of human driver aggressive driving behavior (HADB)
was classified according to the aggressive driving styles
adopted by aggressive drivers. The most recent deep learning
based solutions for human driver Inattentive and Aggressive
Driving Behavior (HIADB) detection were reviewed system-
atically and comprehensive comparative analysis (quantita-
tively and qualitatively) was performed, highlighting their
detection accuracies. The enabling and fundamental require-
ments for detecting human abnormal and inattentive driving
behavior from developing trust of ADAS systems to including
trust, security and privacy of such automated systems were
presented and discussed. In the end, the imperative open
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research challenges in the field of HIADB detection were
identified. These challenges are discussed as future research
directions that need to be addressed for the accurate detection
of abnormal human Aggressiveness.

We conclude that HIDB and HIADB can be efficiently
detected and accurately assessed by using multiple sources
of information. So far, deep learning innovative technologies
have shown the potential to extend advanced strategies and
methods in detecting and predicting abnormal, inattentive and
aggressive driving behavior of a human driver and thus many
attempts have been made to detect, predict and classify these
behaviors while driving. However, low cost solutions are
still research targets and high performance can be achieved
by utilizing and employing other deep learning models and
strategies like deep reinforcement learning and Q-learning.
Moreover, considering the fact that every driver drives in
a risky manner, either more often or rarely, we suggest
that there is a need to provide drivers with incentives for
improving their abnormal, inattentive and aggressive driving
behaviors.
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