IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE (Al)-
EMPOWERED INTELLIGENT TRANSPORTATION SYSTEMS

Received May 4, 2020, accepted May 22, 2020, date of publication June 3, 2020, date of current version June 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999662

Traffic Data Imputation Using Deep
Convolutional Neural Networks

OUAFA BENKRAOUDA'-4, BILAL THONNAM THODI?4, HWASOO YEO3, (Member, IEEE),
MONICA MENENDEZ 24, (Miember, IEEE), AND SAIF EDDIN JABARI24

! Department of Urban and Regional Planning, University of Illinois at Urbana—Champaign, Champaign, IL 61820, USA
2Department of Civil and Urban Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
3Department of Civil and Urban Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

4Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Corresponding author: Saif Eddin Jabari (sej7 @nyu.edu)

This work was supported by the New York University Abu Dhabi (NYUAD) Center for Interacting Urban Networks (CITIES), funded by
Tamkeen, through the New York University Abu Dhabi (NYUAD) Research Institute Award under Grant CG001, and in part by the Swiss
Re Institute through the Quantum Cities™ Initiative.

ABSTRACT We propose a statistical learning-based traffic speed estimation method that uses sparse
vehicle trajectory information. Using a convolutional encoder-decoder based architecture, we show that a
well trained neural network can learn spatio-temporal traffic speed dynamics from time-space diagrams.
We demonstrate this for a homogeneous road section using simulated vehicle trajectories and then validate
it using real-world data from the Next Generation Simulation (NGSIM) program. Our results show that
with probe vehicle penetration levels as low as 5%, the proposed estimation method can provide a sound
reconstruction of macroscopic traffic speeds and reproduce realistic shockwave patterns, implying appli-
cability in a variety of traffic conditions. We further discuss the model’s reconstruction mechanisms and
confirm its ability to differentiate various traffic behaviors such as congested and free-flow traffic states,
transition dynamics, and shockwave propagation. We also provide a comparison against a widely used
adaptive smoothing technique used for the same purpose and demonstrate the superiority of the proposed
approach, even with probe vehicle lower penetration levels.

INDEX TERMS Convolutional neural networks, data expansion, data imputation, estimation, filtering,

traffic dynamics, traffic state estimation.

I. INTRODUCTION

Recent studies have shown that connected and autonomous
vehicles (CAVs) can ease traffic flow instabilities at low CAV
penetration levels [1]-[4]. To do so, these systems require
accurate knowledge of traffic conditions. In general, most
advanced traffic management and control tools require accu-
rate inputs. However, measurements remain sparse in today’s
road traffic networks and high penetration levels of CAVs are
not expected in the coming decade or two. In the meantime,
traffic state reconstruction methods are needed to fill this gap.
Most traffic state estimation techniques in the literature have
focused on reproducing traffic conditions at aggregate levels
(averaged over segment lengths greater than 100 meters and
time intervals greater than one minute [5], [6]). Advanced
traffic management tools (e.g., adaptive traffic signal con-
trol) require knowledge of traffic conditions at a much finer
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scale [7]-[13]; see [14] for a comprehensive review of past
traffic state estimation methods.

We present here a data driven methodology to estimate
traffic speeds across a road section at fine spatio-temporal
resolutions and using limited probe vehicle information.
Characterizing traffic speed across small intervals of space
and time is especially challenging because of the inherent
stochastic nature of traffic flow and noisy sparse traffic
observations [15]-[17]. Researchers often resort to different
statistical learning methods to model traffic speed variations
from historical datasets [18]-[20]. However, the majority of
these methods only succeed in capturing recurring traffic
patterns such as daily variations or within-day variations, and
do not necessarily learn the actual flow dynamics. A few
studies have focused on modeling the sharp discontinuities
found in spatio-temporal traffic dynamics (e.g., caused by
transition from free flow to congested state). Nonetheless,
the low interpretability of these non-linear models poses reli-
ability and robustness issues when applied [5], [19], [21].
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Various kernel-based estimation schemes have also been
proposed to interpolate spatio-temporal macroscopic traffic
speeds from heterogeneous data sources, mainly, loop detec-
tors and probe vehicles [22]-[26]. However, these interpola-
tion methods need field calibration of static model parameters
(offline or online) such as shockwave speeds and free flow
speeds, which can dynamically change depending on the
local-traffic conditions, leading to biased results.

In this paper, we propose a method for traffic state recon-
struction of traffic speeds dynamics using vehicle trajectory
information obtained from sparse probe data (with as low as
5% penetration rate). We employ a deep convolutional neural
network (CNN) [27], [28] to learn the traffic speed dynamics
from a time-space diagram plotted using partial observations
of vehicle trajectories. Using an encoder-decoder architec-
ture [29], we develop a CNN that learns the local spatial
and temporal correlations (or features) from the time-space
traffic speed profiles, and reconstructs the full (macroscopic)
traffic speed dynamics for any given sparse vehicle trajec-
tories. We show that a well trained deep CNN can learn
to reproduce short-term non-recurring traffic features such
as congestion waves and free flow speed dynamics, which
state-of-the-art estimation methods often fail to capture. The
proposed learning method can adapt to local traffic speed
conditions, and reproduce observed shock-wave patterns and
stop-and-go traffic. This is highly relevant for freeway mon-
itoring, especially incident response applications [30], [31].
We further provide critical insights into the learned neural
network model to understand the essential features detected
while reconstructing the full speed map. Such insights can
help unlock some of the black-box features of neural net-
works when applied to traffic state estimation problems.

In the rest of the paper, we formally state the traf-
fic speed estimation problem and motivate the use of an
encoder-decoder based convolutional neural network archi-
tecture to learn the spatio-temporal traffic speeds in Sec. II.
We perform numerical experiments using the proposed model
on a homogeneous road section and discuss its efficacy in
reconstructing the traffic speed maps on a simulated scenario,
as well as on a dataset obtained from the Next Generation
Simulation (NGSIM) program in Sec. III. This is followed
by a brief discussion of the model’s interpretability and the
role played by the hidden layers in the estimation of speed
dynamics. We close Sec. III with a comparison against an
adaptive smoothing technique that is widely employed in
this context. We conclude the paper with a discussion of the
main insights and suggest potential future research directions
in Sec. IV.

Il. METHODOLOGY

A. TRAFFIC SPEED ESTIMATION PROBLEM

Consider a set of vehicles A passing through a given road
section of length X = |X| over time period T = |7|. Let
(x;, t;, v;) denote the coordinates of vehicle i € A/, where x;
and v; represent its relative longitudinal position (with respect
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to the starting position of the road section) and speed at
time 7;. We denote by G := {(x;, t;, v;) | i € N} the setof all N
vehicle trajectories. Let G, € G represent the trajectories of
sampled vehicles in A/ (with sampling percentage p), within
the space-time domain X x 7. Note that the cardinalities
of G and G, can vary depending on the number of vehicles
in the system and the resolution of vehicle coordinates (the
sampling cadence).

The estimation problem is to determine an arbitrary func-
tion from the domain of partial trajectories G, to the full tra-
jectories G (or some function of G, such as macroscopic traffic
speeds or traffic density). However, the variable (and not
necessarily known) sized nature of G (and G,,) presents a chal-
lenge, as a unique mapping function may not exist. Hence,
we represent G (and G,) on a two-dimensional space-time
plane as plotted vehicle trajectories, and color code it with
the respective speed data; see Fig. 1 for an example.
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FIGURE 1. Vehicle trajectories plotted on a space-time diagram and color
coded with speeds (X = 800 m, T = 60 sec).

To interpret this graphical representation, we discretize
the entire space-time domain into finite regions called cells,
each of which has dimensions x and ¢, the cell’s length and
time duration, respectively. The values in each cell represent
the traffic state in that cell, defined by a three-scale color
value based on the RGB format. The three-scale color rep-
resentation of traffic states allows us to clearly differenti-
ate between the empty cells (where there are no vehicles),
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free flowing cells (where vehicles travel at the free-flow
speed), and heavily congested cells (where vehicles can-
not move). For example, empty cells are represented by a
white color with RGB value (255, 255, 255) whereas heavily
congested cells are represented by a red color with RGB
value (231, 11, 5). Colors ranging between red and blue
represent traffic states in between free-flow and heavily
congested. Using this representation, we encode the vehi-
cle trajectory information as a three-dimensional tensor,
denoted by z € {1, ..., 255/X*T*C where C is the number
of color channel arrays. Note here that when treating the
time-space diagrams as images using RGB, the tensor val-
ues are restricted to the set {1, ..., 255}. Let zP denote the
respective tensor with partial trajectory information, and z
the tensor with full vehicle trajectory information. The traffic
state estimation problem can be stated as one that seeks to
determine a mapping function g, such that g(zP) = z', where
zP and z' are now fixed sized tensors. We refer to the mapping
function g as the traffic speed reconstruction model.

B. REPRESENTATION OF SPEED

RECONSTRUCTION MODEL

We approximate the speed reconstruction function g using a
neural network model. We chose an encoder-decoder convo-
lutional neural network architecture [27], [29] to represent the
reconstruction model as shown in Fig. 2a. The encoder model
g® extracts the primary features from the sparse input vehicle
trajectory tensor zP and maps them into a latent space repre-
sentation 4, which can be thought of as an abstract projection
of the sparse-vehicle trajectory information contained in zP
onto some higher dimensional space (often unintrepretable).
The decoder model, gd, uses the information contained in A&
to reconstruct the output tensor Zf, which in this case is the
macroscopic traffic speed map.

The encoder model (g°) is a sequence of CNN layers
A stacked horizontally, where each layer / € A consists
of three operations - convolution, non-linear activation and
down-sampling (up-sampling for the decoder model); see
Fig. 2b. The convolution operation is performed using a set
of layer-specific kernels o = [95{1)],(e K, where KO
denotes the set of kernels in layer /. Each kernel is a tensor
0\ ¢ RM*NxC where M x N is the kernel size (a hyper-
parameter) and C is the number of color channels used in the
feature maps. The convolution operation is given by

7= Y 270l k=1.....K. leA (1)
ieMU-D
where 2\~ P"™ is the ith input feature map and MY is the

set of feature maps in layer / — 1, while z(kl)’C is the convolved
feature map produced using the k£ kernel in layer /. Note that
the dimensions of z(kl)’C are the same as the dimensions of
2\"D"™ This is achieved by padding the input matrix with
zeros so that the information around the boundary of the
time-space plane is effectively utilized during the convolu-
tion. However, the number of feature maps in the convolved
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FIGURE 2. Representation of the speed reconstruction model using a
convolutional encoder-decoder neural network architecture.

layer I, | M|, and those in the input layer [ — 1, M~ D|, can
differ. The convolution is followed by a clipping operation
using a non-linear activation function o':

20 =o(2"), k=1,...,K, leA, ©)

where 2. is the kth activated feature map in layer /. The ker-

nels G)(lk) represent the primary feature detectors in layer (/),
where each kernel Og) detects distinct patterns (or features)
from the input feature maps z()-i" = [z( )],e Mm@ . For instance,
the initial layer can detect discrete traffic states such as free
flow and congested traffic. Successive layers detect more
complex patterns such as shockwave propagation and tran-
sient dynamics. We provide a more detailed interpretation of
the kernels in Sec. I1I-B.

In the encoder model (Fig. 2b), the activated feature maps
undergo a down-sampling operation to produce an abstract
(lower dimensional) representation of the feature activations
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as shown below:

z(l),dn — pdn (z([),a)

= max (z(l)’a -u(m, n)) , leA, 3)
m,n

where u(m, n) is a two-dimensional spatial-window applied
to the input tensor z(»2. Note that these depend on the
kernel dimensions M x N. The down-sampling (3) returns
the largest value of z* (a.k.a. max pooling function [32]).
Note that (3) reduces the dimension of z()-2 by a factor
of (m x n), where (m, n) represents the max-pooling filter
size. The max-pooling operation summarizes the primary fea-
tures detected over various spatial regions in the time-space
diagram using the information contained in its smaller
sub-regions.

The down-sampling operation can handle the sparsity in
the vehicle trajectory information contained in the input
tensor. We illustrate this using an arbitrary (sparse) input
vehicle trajectory dataset, and its corresponding activated
feature map obtained before and after the down-sampling
operation in Fig. 3. The traffic state information contained
in cells (2, 3) and (3, 2) is absent from the activated feature
maps (middle part of Fig. 3). However, the down-sampling
operation provides an improved estimate of the states of
these cells (as free flow and congested states, respectively) by
utilizing information contained in neighboring cells (left part
of Fig. 3). This partially explains why the spatial distribution
of probe vehicles along a road section can affect state esti-
mation accuracy [33], [34]. The output of the down-sampling

b @2 6) @ @ 2)
0 "-:. "‘-: s 4 (1)| Free-flow | Free-flow
(2),
I ® — (2)|Congested [Transition
3 a— ¢ .'-m (3)| Free-flow |Transition
; (6 ]

Sparse input trajectory Before sub-sampling  After sub-sampling

FIGURE 3. lllustrating the need for down-sampling to handle the sparsity
in vehicle trajectory information.

operation, z(-4" serves as the input into the next layer in the
encoder model g®, or to the hidden state representation h.
The decoder model g4 also consists of a similar set of layers
as g°, except that the down-sampling operation is replaced
by an up-sampling operation; see Fig. 2c. The most common
up-sampling operation is the nearest neighbor function [32],
defined as

2O = p® (0 =2 Q@ Ly, LeA, @)

where ® is the Kronecker product and 1,5,/ is an m’ x n/
matrix of ones. The dimensions m’ x n’ depend on the size
of the full feature maps X x T. The up-sampling opera-
tion in (4), besides scaling the activated feature maps by
(m’ x n'), enforces a plausible and logical reconstruction of
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traffic states by drawing inferences from super-regions. For
example, in the left part of Fig. 3, one can reconstruct the
traffic states in its sub-regions by logically looking at the
states in the neighboring regions.

The motivation to use a CNN layer as opposed to a naive
feed forward neural network in the encoder-decoder archi-
tecture (Fig. 2) is the parameter sharing and sparse connec-
tivity properties of CNNs [27]. For traffic data, parameter
sharing implies that a specific set of learned features ©
(such as for recognizing the free flow speed, congested traf-
fic, and transition dynamics) can be used anywhere in the
time-space plane (in other words, it is translation invariant).
Sparse connectivity ensures that the speed estimates in cer-
tain regions in space and time heavily depend on the states
in the immediate (local) surroundings, which is especially
true for traffic dynamics [23]. Moreover, the estimation from
sparse data problem can be thought of as a spatial imputa-
tion/interpolation problem, to which CNNs are well suited.

C. PARAMETER OPTIMIZATION

The output from the decoder model, gd is the reconstructed
speed map denoted as ig, and is a function of the kernel set
0 = {G)(]), e, ®(|A|)}. Thus, the traffic speed estimation
problem is cast as a kernel set learning problem:

O®* = argmin L, 22)), 5)
(C]

where £ denotes a loss function over the estimated and
actual speed values. Here, (5) is a differentiable function in
0" ¢ @, and any gradient based optimization technique
can be used to find the optimal kernel set [27]. Note that (5)
only optimizes the kernel set @, and does not include other
hyper-parameters such as the number of CNN layers, |A],
in the encoder and decoder model (g® and g9), the number
of kernels in each layer ({IKXD|};en), the kernel dimensions
(M and N), the down-sampling filter dimensions (m and n),
and the up-sampling filter dimensions (m’ and n’). These
hyper-parameters have to be fine tuned separately.

Ill. EXPERIMENTS AND RESULTS

Here we demonstrate the proposed speed reconstruction
model for a homogeneous road segment (a freeway section)
using both simulated data and real-world data. By looking at
different initial and boundary conditions, we produce various
traffic conditions corresponding to free-flow, congested, and
stop-and-go traffic. The trajectories of all vehicles passing
through the segment are recorded at a one second cadence.

A. LEARNING SPEED RECONSTRUCTION MODEL

FROM DATA

Using the simulated vehicle trajectories (for a 3-lane road
that is 800 m long), we generate input-output samples for
training the speed reconstruction model, with the following
parameters: X = 800 m, 7 = 60 sec,x = 10 m, and 7 = 1
sec. The input samples are generated using a p = 5% penetra-
tion rate sampled from an unknown probability distribution.
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TABLE 1. Hyper-parameters for the speed reconstruction model.

Layers Convolution operation Non-linearity  Sampling operation
Input layer Identity - -
CNN-1  Convolution (5 x 5 x 8) Relu Max-pooling (2 x 3)
Encoder model =~ CNN-2  Convolution (5 X 5 x 32) ReLU Max-pooling (2 X 2)
CNN-3  Convolution (5 X 5 X 64) RelLU Max-pooling (2 x 2)
CNN-4  Convolution (3 x 3 x 64) RelLU Nearest neighbour (2 X 2)
Decoder model CNN-5  Convolution (5 X 5 x 32) RelLU Nearest neighbour (2 X 2)
CNN-6  Convolution (5 X 5 X 8) RelLU Nearest neighbour (2 X 3)
Output layer Convolution (5 X 5 X 3) o -

This ensures that the sampling replicates actual field observa-
tions and no bias in the spatial-distribution of probe vehicles
is introduced. The output samples are generated using all
vehicle trajectories. In each sample, the vehicle trajectories
are color-coded using a fixed speed gradient of 0-60 kmph,
where 0 kmph is represented by red and 60 kmph is repre-
sented by blue; see Fig. 1 for example. These figures are then
converted to 80 x 60 x 3 tensor, where 3 corresponds to the
RGB channel arrays.

We now test our model using two different datasets. The
first set is generated from the simulated vehicle trajectories
for the same road section used to train the model but under dif-
ferent traffic demand conditions. The second set is produced
from the NGSIM vehicle trajectory dataset from Highway
1-80 in Emeryville, California, U.S.A. [35]. The NGSIM
program provides real-world vehicle trajectory data collected
at three different sites. The dataset includes positions and
speeds of all vehicles that traversed each of the three sites over
the study period (45 minutes). The time cadence of the data is
0.1 seconds and it is extracted from video data. This allows us
not only to test the transferability of our model, but to validate
it against real world field data, and check its applicability to
traffic behaviors not seen in the training sets. For both datasets
we sample 5% of vehicle trajectories as input data.

The encoder and decoder models used here consists of
three CNN layers, and the kernel size, number of kernels,
and sampling stride for each layer are shown in Table 1.
We use a random search technique to determine the best
number of layers, the number of kernels in each layer, and
the kernel sizes. One can also resort to more sophisticated
approaches such as Bayesian-optimization to determine the
optimal hyper-parameters [36]. For all the layers we use
a rectified linear unit (ReLU) for activation (defined as
ReLU(z) = max(z, 0) for any given input z) except for the
last layer which has a Sigmoid activation function (defined as
o(z)=(1 —i—exp(—z))_1 for any given input z). As we treat the
reconstructed speed maps as images, the (normalized) model
outputs are bounded between 0 and 1, and this can be obtained
using a sigmoid activation function.

We use a larger kernel size (5 x 5) for the initial and the
final CNN layers as opposed to the smaller (3 x 3) kernels
commonly found in traditional image processing architec-
tures (see [28] for instance). This is because our input tensor
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is very sparse (only 5-10% of the pixels have values other
than 1), and as the convolution operation primarily detects
local correlations in the data, smaller kernels may fail to
detect essential features in the input tensor, and can hence
produce unrealistic results. We overcome this by resorting
to larger kernels, which when convolved can better learn
the spatio-temporal speed dynamics, especially the back-
ward propagating shockwave patterns, even from sparsely
observed speeds.

Notice that the number of kernels in the middle layers of
the CNN (the bottleneck region) is larger than the number
of kernels in the boundary layers of the CNN (see Table 1).
This is attributed to the feature learning capability of each
layer in the network. For instance, kernels in the initial layers
can be considered as primary feature detectors, useful for
example, to detect colors (corresponding to congested and
free-flowing traffic) and slow moving traffic, which are prim-
itive and can be characterized using fewer kernels. However,
subsequent layers use these primary features to capture more
complex patterns such as free flowing regimes and transition
dynamics, which may require a larger number of kernels to
capture all relevant patterns. We use an iterative optimization
algorithm known as “Adam” [37] to train the model. The
Adam optimizer employs first-order gradient descent with an
adaptive learning rate, and is found to have good convergence
rates in practice. The test results and discussion are presented
below.

B. RESULTS AND DISCUSSION

We first provide a visual comparison between the actual
vehicle trajectories and the reconstructed speed map for the
test datasets, and quantify the reconstruction error using a
Structural Similarity Index. We then analyze and interpret
the model’s reconstruction behavior by visualizing what the
kernels learned from the data and its representation behavior
in the latent space.

1) RECONSTRUCTION PERFORMANCE

The test results are presented in Figures 4— 6. From Fig. 4,
we can see examples where the proposed approach repro-
duced the traffic speeds correctly. We observe that the model
has learned to reconstruct the actual spatio-temporal speed
maps and can clearly differentiate between the direction and
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regime of free flow (blue), congested (red), and transient by tying together the limited information obtained from
dynamics (orange, yellow, and cyan). Interestingly, it suc- the sparse trajectories. In other words, the model is able
ceeds in tracing backward propagating shockwave patterns to reconstruct shockwave patterns with varying sizes and
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FIGURE 6. Selected examples from the reconstruction of the NSGIM dataset.

shapes depending on the local traffic conditions, rather
than using a mere interpolation assuming a constant wave
speed [4], [38]-[44]. Fig. 4 (i, iv, v) shows a scenario where
the model captured the dynamic stop-and-go traffic regime
(red regions), which cannot be characterized by a single
shockwave speed.

Moreover, the model cleverly extrapolates the shockwave
occurrence using few speed measurements obtained from the
transient dynamics (or the onset of congestion). This can be
clearly seen in the lower pane of Fig. 4 (i, iii), where the probe
trajectories only capture slowing traffic (cyan color), yet the
model still managed to detect the occurrence of a shockwave
and reconstruct it accordingly. Also, in cases when there was
a sufficient number of representative trajectories, the neural
network learned to reconstruct smaller shockwaves and their
dissipation behavior as seen from Fig. 4 (i, iv, v).

There are, however, a few cases where the method did
not perform well. Where probe trajectories are very sparse,
the method produces poor estimates of the propagation length
and dissipation behavior of the shockwaves. As a result,
the reconstructed upstream and downstream jams are either
exaggerated or missed; see Fig. 5 (i, ii, v). Another shortcom-
ing is the model’s extrapolation of nonexistent shockwaves.
The model learns that with the occurrence of any lower speeds
(cyan or yellow), a congestion instance will take place, which
is not always true (see Fig. 5 (i, iv)). This is caused by
insufficient information about the local traffic conditions.
The backward propagation of stop-and-go traffic depends on
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the local densities, and if the observed trajectories failed to
capture this, then the model may overestimate a shockwave
occurrence. Also, if the sample trajectories are very sparse
(as in Fig. 5 (iii)), the model only succeeds in predicting the
represented parts and fails elsewhere by completely ignoring
the section for which no information exists. Additionally, one
can notice the random reconstruction of white areas which
depict the absence of vehicle trajectories. If the areas are too
large, the model almost always fails in reconstructing these
areas as they don’t follow any specific pattern. Notice, how-
ever, that the undesirable cases described above are very few,
and not representative of the model’s overall performance.
They are just included here for completeness.

In order to assess the model’s estimation precision with
respect to real traffic behavior, we now validate it against
NGSIM data in Fig. 6. The reason behind cross validating
our model with unseen and real data is to ensure that the
encoder-decoder neural network has in fact learned to mimic
traffic behavior rather than memorizing images similar to
the training data. Results show that the method successfully
captures most of the shockwaves and their varying character-
istics. However, since the neural network was only trained on
simulation data, it preforms less accurately when estimating
shockwaves than in Fig. 4. In real traffic, congestion and
free flow patterns depend on unobservable aspects that a
simulator cannot always reproduce, and therefore we can see
how the model didn’t accurately reconstruct the shockwave
propagation, for example in Fig. 6 (v). The same applies to
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the free flow regimes. The method was not trained on cases
with pure free flow behavior, which explains the encoder-
decoder’s poor estimation power in uncongested areas, see
Fig. 6 (iii, iv).

To properly quantify the error difference between the
reconstructed and the actual traffic speed maps, we use the
Structural Similarity Index Method [45], SSIM. Unlike con-
ventional distance functions such as mean squared error,
SSIM captures changes occurring in the image’s structural
information. It is defined as:

SSIMa. b) = 2(2Ma;;b + C1)(226ab Jrzcz) ’
(M3 + my, +c1)(oy + oy +¢2)
where a and b represent a sliding Gaussian window with a
size of 11 x 11, py and puy, are the means of a and b respec-
tively, ag and ‘713 are the variances of a and b, respectively, oap
is the covariance of a and b, ¢1 and c; are stabilizing variables
where ¢; = (kjL)? and ¢ = (koL)?, L is the dynamic range
of pixels, k1 and k; are default constants set to 0.01 and 0.03,
respectively (as defined by [45]). The resulting SSIM index
value ranges between [—1, 1] where 1 and —1 indicate perfect
similarity and O indicates no structural similarity. We com-
pute the SSIM for the free flow and congested regimes sep-
arately and the results are shown in Fig. 7 for the validation
datasets.

We observe that the average SSIM for simulation data in
the congested and free flow regimes are 0.6 and 0.5 respec-
tively (Fig. 7a), implying the model’s strong reconstruction
power. On the other hand, the average SSIM values for the
NGSIM data are lower with 0.4 and 0.45 for congestion and
free flow regimes respectively (Fig. 7b). However, having
SSIMcong > SSIMgiee in both cases, indicates that the model
is better at estimating slow-moving traffic than free flowing
traffic. This, however, could probably be changed if the model
was better trained with pure free flow behavior.

(6)

2) INTERPRETING THE SPEED RECONSTRUCTION MODEL
We provide here a visual interpretation of the features or
patterns that each kernel in the encoder model has learned
to detect. Each kernel is activated if it sees a specific pattern
in the input space, and this is determined as follows [46]:

z; = argmax L’ (Zg)’a(@,(cl))) (N
.a

k

where z,(cl)’a((-),(f)) is the activated feature map in layer (/)
using kernel k, and £'(-) can be any monotonically increasing
function (such as L'-norm or L?-norm) defined over the
activated feature map for the kernel k in layer (/). Thus, (7)
computes an input space zx, which produces the maximum
activations for the kernel G),((l). This is shown below in Fig. 8
for a selected subset of kernels in the first 3 layers of our
trained speed reconstruction model.

Interestingly, we see that the patterns or features learned
by the model are more relevant to the macroscopic traf-
fic speed states. For instance, the kernels in the first layer
(Fig. 8a) detect discrete traffic states such as congestion
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(a) Simulation data
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(b) NGSIM data

FIGURE 7. Histogram showing similarity indices between the actual and
reconstructed spatiotemporal maps for the congested and free flow
regimes.

(pale red color), free flow (purple color), slow moving traffic
(red stripes) and vehicles in the transition regime (yellow).
In the second layer (Fig. 8b), the kernels detect informa-
tion propagation for congested and free flow traffic as seen
from the sloped green, red, and purple regions. The third
layer (Fig. 8c) combines these primitive features and pro-
duces more realistic spatio-temporal patterns such as a free
flow regime, a congested regime, and transient dynamics
(from free flow to congestion and vice-versa). This clearly
illustrates the model’s ability to recognize different traffic
phenomena, and the mechanisms by which this information
is used to reconstruct the complete spatio-temporal speed
maps.

To further understand the reconstruction abilities of the
model, we investigate the latent space representation (h)
for different probe levels. Here, h € RU19%3%64) contains
64 feature maps, each of which has a dimension of (10 x 5)
(see Table 1). We take the (normalized) sum of all these
feature map activations in order to visualize them over a
two-dimensional plane; this is shown in Fig. 9 for probe levels
of 1%, 5%, 10%, and 100%.
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(a) Learned kernels in layer 1
FIGURE 8. Primary features learned by each layer of the trained speed reconstruction model (only a subset of kernels in each layer are shown

(b) Learned kernels in layer 2

(c) Learned kernels in layer 3

here).
800 1.0
700
0.8
600
500 06
400 A
3004 0.4
200 A
0.2
100 4
0- 0.0
0 2 4 0 2 4 0 2 4 0 2 4
(a) Full trajectory () 1% (©) 5% (d) 10% (e) 100%

FIGURE 9. Normalized latent space activations for different probe levels. To reduce the variance, the input trajectories are sampled 100 times and
average activations are shown.

Recall that h encodes the primary information from the only depends on h. Assuming that the visualized activa-
sparse input vehicle trajectories, and the decoder model tions in Fig. 9 are a surrogate for the information contained
uses this encoded information to reconstruct the macro- in h, we see similar patterns at 100% and 5% probe levels
scopic speed states; i.e., the output from the decoder model (in Fig. 9c and Fig. 9e), implying that the reconstructed speed
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FIGURE 10. Comparison results between the proposed model and GASM (parameters used: cgee = 60 kmph,
Ccong = —15 kmph, Vi, = 25 kmph, AV =5 kmph, 1 =50 m, = 15 sec).

states will also be the same. This explains why the estimation
model performs well even at 5% probe penetration rates.

C. COMPARISON RESULTS WITH ANOTHER TRAFFIC
SPEED RECONSTRUCTION METHOD

We now provide a comparison of the proposed method with
another popular traffic reconstruction methodology called
the Generalized Adaptive Smoothing Method (GASM) [23].
It is a traffic speed interpolation technique over the
two-dimensional time-space plane, and takes into account
information propagation velocities in free flow and in con-
gested traffic. GASM is different from the proposed method
in that it uses a single asymmetric filter to interpolate
unknown traffic speed on a time-space plane as opposed to a
combination of several filters that are employed by our CNN.
In addition, the asymmetric filter is fine-tuned manually using
certain parameters, namely the free flow speed, the backward
shockwave speed in congested traffic, and a threshold traffic
congestion speed, whereas the CNN filters are learned from
traffic speed data directly. In other words, GASM needs
a priori information on three traffic parameters. More details
of the GASM are provided in Appendix A.
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In Fig. 10 we show a comparison of our method using
5% penetration rate and GASM reconstruction using 5% and
20% penetration rates. Using GASM, the results from a 20%
penetration rate (Fig. 10e) are evidently better than those
from a 5% rate (Fig. 10d). However, when compared to the
real trajectories (Fig. 10a) and the results from the proposed
approach (Fig. 10c), they still fail to capture the appropriate
shockwave speeds. Below, we provide more insights from
this comparison. (i) In general, GASM provides poor traffic
speed estimation results at lower probe levels in compari-
son to the proposed method; see the GASM reconstruction
results with 5% and 20% probe vehicle data. (ii)) GASM
predicts a constant shockwave speed for stop-and-go traf-
fic, whereas the actual shockwave is dynamically varying
and can be reproduced using our method (as demonstrated
in Sec. III-B1). Moreover, the shockwave speed inferred by
GASM differs from the actual speed (see Fig. 10d). Shock-
wave speeds in GASM are likely sensitive to the input
parameter for the information propagation speed in congested
traffic. A proper sensitivity analysis [47] could shed further
light into these relations. CNN filters, on the other hand,
learn these characteristics from the data, leading our model
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to produce backward propagating stop-and-go traffic con-
sistent with actual observations. (iii) When only a limited
amount of information is available on the stop-and-go traffic,
GASM produces implausible results. For instance, in sam-
ple 1, the second vehicle trajectory only witnesses a part
of the shockwave (see Fig. 10b-i), and GASM extrapolated
this observed lower speed to the rest of x — ¢ plane (see
Fig. 10d-1). A similar result is also observed in the sample
3 reconstruction. This is in contrast with our method where
the CNN filters learned the transition behaviors of congested
to free flowing traffic (and vice-versa), even when the input
probe trajectories do not completely capture these transitions;
see our model reconstruction for sample 3. (iv) As previously
mentioned, GASM reconstruction is likely very sensitive
to the model parameters (free-flow speed, congestion wave
speed) at this higher resolution (10 m x 1 sec) traffic estima-
tion, indicating that it needs very careful tuning; an additional
step not required by the model proposed in this paper.

IV. CONCLUSION

In this paper, we address the problem of estimating dynamic
traffic states (namely speeds) from limited probe vehicle data.
We proposed a convolutional encoder-decoder neural net-
work model to learn traffic speed dynamics from space-time
diagrams. We illustrated this for a long road section and the
results showed a sound and accurate reconstruction of macro-
scopic speed maps, even at 5% probe penetration rate. Notice
that in the present setting of expressway traffic, network size
has little effect on reconstruction quality. Data quality (e.g.,
probe vehicle penetration rate) has a more profound effect on
the quality of the reconstruction. The model captured various
spatio-temporal traffic behaviors such as backward propagat-
ing shockwaves, free-flow regimes and transient dynamics,
which existing estimation methods fail to reproduce at low
probe penetration rates. This was further confirmed with an
analysis of the model’s reconstruction mechanism where we
visually observed that the kernels in the initial layers of the
CNN learned to identify discrete traffic states: free flow,
congested, and transient states. Successive layers recognized
more compound patterns such as stop-and-go traffic, free
flow propagation, and transient dynamics.

We also found that the model learned to reproduce dynami-
cally varying shockwave patterns depending on the local traf-
fic conditions, thus circumventing the constant wave speed
assumption widely used in many of the existing estima-
tion tools. Furthermore, when validated against the NGSIM
dataset, the neural network successfully identified all shock-
waves, despite being trained using simulated data. These
insights attest to the viability of data-driven methods for real
world applications. We also performed a comparison with
another estimation method based on an asymmetric filter.
The comparison demonstrated the superiority of the proposed
method in speed reconstruction at lower probe levels. In the
future, our efforts will continue along the lines of rigorous
analysis of the model’s reconstruction mechanism, as well as
further applications to arterials with signalized intersections.
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The latter will serve as a building block for the broader
study of reconstruction of traffic states in a network set-
ting, which is the ultimate aim of this line of research. The
mathematical treatment of traffic across network intersec-
tions differs in a subtle way from that of expressway road
segments. It is notable that traffic state reconstruction for
urban networks has yet to be tackled effectively using classi-
cal techniques, the difficulty stemming from the intersection
dynamics. We believe that the present approach using convo-
lutional neural networks can be extended to networks with a
clever choice of network architecture. We leave this to future
research.

APPENDIX A

GENERALIZED ADAPTIVE SMOOTHING METHOD (GASM)
Define the macroscopic speed field as a function over position
(x) and time (¢) that provides the speeds at every (x, t) pair.
We denote the macroscopic speed field as V (x, t); the GASM
treats V(x,t) as a convex combination of two other speed
fields, the free-flow speed field Vie(x, t) and a congested
speed field Veong(x, £). Given a set of n discrete traffic mea-
surements from probe vehicles {x;, ;, v;}i=1,....n, these speed
fields are calculated as

Vfree(x’t)zN(i I)Z(P(x_xi?t_ti_x_Xi)Vi (Al)

Cfree
and
1 X—X;
\% )= —— —Xi, L —t;— i (A2
cong(x ) N(x, I)Xl: (0] (x Xi i Ccong) vi, ( )

where cfree and ccong are the information propagation speeds
in free flow and congested traffic, respectively. The smooth-
ing kernels ¢;(x, t) are localized functions that decrease with
increasing |x| and |¢|. The GASM uses a bivariate gaussian
kernel, defined as

2 2
$(x, 1) = exp [— (”2);”22 + %)} ¥

where A and t are the widths of the kernel in the x and ¢
directions, respectively. Finally, N(x, t) is a normalization
field that is given by

NG, )= ¢ilx —xi.t — 17).

(A4)

The macroscopic speed field is obtained via a convex
combination as follows:

V(x, 1) = wx, )Veong(x, )+ (1 — w(x, 1)) Viree (x, 1), (A.5)

where the w(x, ) € [0, 1] is a weight field that depends on

the free-flow and congested fields in the following way:

Vinr —min{Viree (x, ), Veong(x, 1)}
AV ’

w(x, )= % |:1 —i—tanh(
(A.6)

where Vi, is a threshold speed and AV is interpreted as
a transition width. These parameters are chosen a priori
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IEEE Access

based on field traffic observations. If the smaller of the two
predictions Viee(x, 1) and Veong(x, t) is large relative to the
threshold parameter Vi, w(x,t) — 0 and, consequently,
V(x,t) = Viee(x, t). On the other hand, if the smaller of the
two is small relative to Vi, then w(x, ) — 1 and V(x, t) —
Vcong (x, 1).
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