
Received April 19, 2020, accepted May 12, 2020, date of publication June 2, 2020, date of current version June 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999341

Active Object Detection in Sonar Images
LONGYU JIANG 1,2,3, (Member, IEEE), TAO CAI1,
QIXIANG MA1, FANJIN XU1, AND SHIJIE WANG1
1Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
2Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing 210096, China
3Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China

Corresponding author: Longyu Jiang (JLY@seu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61871124 and Grant 61876037, in part
by the National Defense Pre-Research Foundation of China, in part by the fund of Science and Technology on Sonar Laboratory under
Grant 6142109KF201806, in part by the Stable Supporting Fund of Acoustic Science and Technology Laboratory under
Grant JCKYS2019604SSJSSO12, and in part by the Fundamental Research Funds for the Central Universities under
Grant 2242019K40090 and Grant 2242020K40042.

ABSTRACT Object detection in sonar images has always been a challenge due to the low resolution of
sonar images and the strong noise existing in them. Although convolutional neural networks (CNNs) have
been applied to detect objects in sonar images, successful detection is impeded by the lack of large annotated
sonar images.Manual annotation is not only tedious and time consuming but also demands specialty-oriented
knowledge and skills, which are not easily accessible. To dramatically reduce the heavy annotation cost, this
paper proposes three simple but effective active-learning-based algorithms for object detection, which can
reduce the annotation cost by seeking themost informative images from unlabeled data and then continuously
retraining a model by merging newly annotated samples in each iteration into an already labeled dataset to
enhance the CNN’s performance. The results of the experiments illustrate that the proposed active framework
with approximately 35% data can achieve competitive results compared to the CNN’s performance using all
data.

INDEX TERMS Sonar image, active learning, object detection, deep learning, convolutional neural network.

I. INTRODUCTION
Object detection in sonar images focuses on analyzing and
processing the sonar image after acoustic echo imaging.
It aims to recognize possible objects and locate them. Object
detection technology based on sonar images is widely used
in military and civil applications, such as in detecting sea
mines [1] or in identifying and tracking fish [2]. However,
correct and robust detection is a challenge due to the reso-
lution determination with changes in operation and environ-
mental conditions and the presence of reverberation, ambient
noise, and self-noise.

Because it provides accurate and general results, deep
learning has been widely applied to image classification [3],
object detection [4]–[7] and image segmentation [8]. At the
same time, recent advances in deep learning have also
achieved promising results in image classification or object
detection in sonar images. For example, Valdenegro-Toro [9]
used convolutional neural networks (CNNs) for feature
extraction and cross-entropy loss for network classification.
The author compared the performance of CNNs with those
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of the commonly used template matching methods for object
detection and showed that CNNs can provide better per-
formance in terms of accuracy and can be well gener-
alized to detect unseen data. Kim et al. [10] designed a
classifier model to select positive images having higher target
existence probabilities and then applied the YOLO [11]
object-detection algorithm to them. Valdenegro-Toro [12]
presented a CNN approach for objectness estimation and
detection proposal generation for forward-looking sonar
images, and it works well, especially for detecting objects
that are not present in the training set, which is a desirable
property for any object detector. Kim et al. [13] found that
sliding window recognition based on CNNs has higher recog-
nition accuracy than general template-matching algorithms.
However, acquiring annotation data in sonar image classifi-
cation or detection is difficult due to the low image quality
and difficulty in accessing the specialty-oriented knowledge.
Therefore, how to effectively reduce the cost of data annota-
tion is an important issue that first needs to be solved when
considering using the deep learning technique.

Active learning [14], which allows the learning model
to select training data, provides a way to solve the above
problem. The key assumption is that if the learning algorithm
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is allowed to choose the data from which it learns according
to the informativeness, it will perform well with less data
training. The active learning system attempts to overcome the
labeling bottleneck by selecting unlabeled instances and then
sending them to human annotators for annotation. Through
the use of active learning, we can select only the data that
contain the most informative instances from unlabeled data
for labeling, which can significantly reduce the annotation
cost and can overcome the problem of an unbalanced data
distribution.

Active learning has been studied for image classifica-
tion [15], [16] but has not been much explored for object
detection. Recently, Vijayanarasimhan et al. [17] introduced
a novel part-based detector amenable to linear classifiers
and showed how to identify its most uncertain instances
in sub-linear time with a hashing-based solution. However,
this method is based on a traditional grid-based variant of
the jumping window method and is not suitable for cur-
rent popular detection frameworks such as Faster-RCNN [7].
Roy et al. [18] proposed a version-space-based active learn-
ing method for object detection in a weakly supervised
setting. However, it is a kind of weakly supervised set-
ting and still relies on the selective search method [19]
to generate approximately 2000 candidate windows for
each image. Rhee et al. [20] combined active learning and
semi-supervised learning to leverage the strong points of both
learning methods to achieve better performance in object
detection. However, this method is proposed for datasets with
imperfect training samples, and the implementation of the
algorithm is complicated.

Thus, we propose three active learning algorithms and
develop an active object detection framework for sonar
images in this paper. In particular, we extend the existing
active learning algorithm for image classification to the case
of object detection through the use of a proper number of
candidate boxes acquired by the detector model to calculate
the informativeness of the instance. In addition, we exploit the
location information provided by the object detection model
as a new way to select data. Our proposed methods integrate
active learning into object detection tasks in a continuous
fashion to make CNNs more amenable to sonar image analy-
sis to dramatically reduce the annotation cost.

The remainder of this paper is organized as follows.
We describe the proposed methods in detail in Section II. The
comparative experimental results and a brief discussion of
them are provided in Section III. In Section IV, we present
the conclusions.

II. THE PROPOSED METHODS
A. OVERVIEW
We first describe the proposed active learning algorithms in
detail in section B.We then provide a brief introduction to the
Faster-RCNN object detection framework. This is followed
by an overview of the architecture of the proposed active
learning framework for object detection in section D.

B. THE PROPOSED ACTIVE LEARNING ALGORITHMS
1) UNCERTAINTY SELECTION
For classification problems, uncertainty sampling is the sim-
plest and most commonly used query framework. In this
framework, an active learner queries the most uncertain
instances for the probabilistic learning models. For simplic-
ity, we use Pθ (y/x) to denote the probability that sample x
belongs to category y under model θ . The general uncertainty
sampling strategy usually uses entropy [21] as a measure of
the uncertainty, which is computed by

x∗H = argmax
x
−

L∑
i=1

Pθ (yi/x) logPθ (yi/x), (1)

where yi i = 1, · · · ,L ranges over all the possible cate-
gory labels, and x∗H refers to the most informative instance
according to the uncertainty selection from all training data.
However, this strategy cannot be applied directly to solve
object detection tasks because an image may contain multiple
objects to be detected. To overcome the difficulty caused
by the uncertain number of objects in each image, in this
paper, we develop an approximate method comprising two
steps. First, we count the number of objects in each image;
however, in actual active learning object detection problems,
images are not annotated, and the number of objects in each
images is unknown. Based on the current detection model,
we assume that detected object windows with higher scores
are more reliable than ones with lower scores. Thus, for
active learning object detection, we assume that the object
windows with confidences higher than a threshold gt are
ground-truth boxes in each unlabeled image. The thresh-
old gt , which is used to approximately select the ground-truth
boxes. As in actual active-learning-based object detection
problems, the images are not annotated, and we have to
first estimate the ground-truth boxes based on the current
model. The selection process is similar to determining the
correct detections in the output. At the output end, each output
box is associated with a category label and a softmax score
in [0,1]. Thus, the detected object boxes with confidences
higher than a threshold gt are used as the ground-truth boxes
of the objects in each unlabeled image. In this paper, we fol-
low the most popular architectures, namely, two-stage archi-
tectures (eg. Faster RCNN [7]) and one-stage architectures
(eg. SSD [6]) A softmax score threshold of 0.6 is used to
select the output box in [7] and [6], which indicates that this
threshold can effectively select the output box that performs
well, therefore we use 0.6 as the empirical threshold. gt is an
empirical value, and we will not set it too high because in
the first few iterations, the detection model cannot generalize
well, and a high threshold will filter out many real objects.
Then, we can obtain the average number of objects in each
image Navg by dividing the total number of objects by the
number of images. Based on the estimated object number
in each image, we obtain Nmost , which is the number of
objects exceeding that in the majority of the images. More
specifically, in our experiments, 80% of the images in our
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dataset contain at most Nmost objects, but the percentage
should be determined based on the dataset. We recommend
that the choice of this value not be less than 80%, as the
selection ofN is a rough estimate, to ensure that each instance
can calculate the informativeness using a number of candidate
boxes that is no less than the number of its real objects,
but this inevitably produces errors in the informativeness
calculation of instances where the number of real objects is
less than N ).
Once we have determined the value of the parameter N ,

we select the N boxes with the largest probability from all
the candidate boxes as the samples for uncertainty measure-
ment according to the confidence scores of all the candi-
date boxes. For an instance x, we use Entropy to measure
these boxes: entropy is an information-theoretic measure that
represents the amount of information needed to encode a
distribution. Therefore, we use entropy to calculate the uncer-
tainty of each bounding box. Assuming that for each image i,
we have B bounding boxes(bi, · · · ,B) and C classes, then for
each bounding box, Faster RCNN predicts its softmax prob-
abilities for each object class and background. p(bic) denotes
the probability that bounding box bi belongs to class c.
Finally, we can use entropy as a measure of the uncertainty
of the bounding box bi:

Ebi = −
C∑
c=0

p(bic) log(p(bic)) (2)

where c = 0 represents the background.
where p(bic) is the softmax probabilities with the correspond-
ing class. (In the object detection framework Faster RCNN,
every bounding box is predicted by softmax probabilities for
each object class and background.) It is the possibility that
the candidate box contains objects with the corresponding
category based on the existing detection model. N is the
number of candidate boxes considered for calculation.

As mentioned above, we first roughly estimate the value
of N , so in the actual calculation, we further screen the prob-
ability information to achieve more accurate informativeness
calculations by setting a threshold denoted by thresh. If the
probability of a candidate box is less than the threshold thresh,
we do not take it into consideration but use g to record this
As in the previous step, we choose Nmax as the estimated
number of objects in all the figures, which is a relaxation
estimation. We further select partial bounding boxes by set-
ting the probability threshold thresh for removing the hard
examples contained in part of the figures for a more accurate
informativeness calculation. In [5], [7] they used a threshold
of 0.1 to filter out easy negative examples and sample object
proposals that have a maximum IoU with the ground truth
in the interval [0.1, 0.5) as background examples, in this
paper, we set thresh to 0.1 by default. We add this operation
based on the truth that N is a rough estimate, and there must
be some instances for which the number of objects is less
than N . Thus, if we use N candidate boxes to calculate the
informativeness, we inevitably take mis-detected boxes into
consideration. For example, if N is set to 5 and an image only

has 2 objects, then we find that only two of all the candidate
boxes have a probability that is greater than 90%, and the
probability of the other mis-detected boxes is less than 15%
or even 5%; these low-probability mis-detected boxes have
an adverse effect on uncertainty selection, so we ignore them.
During the experiment, the selection of the threshold should
be set according to the specific situation. It is an empirical
value, and it should be guaranteed that in the worst case,
the threshold can filter out as many useless candidate boxes as
possible. However, there is a special case that needs attention.
If the value of g is equal toN, then Ex = 0, and the image will
be directly filtered out. However, the existing model has poor
detection in this image and is in great need of such an image
to improve the model, so the index of this picture is there-
fore directly added to the final candidate queue. The overall
uncertainty selection algorithm is presented in Algorithm 1.

Algorithm 1: Uncertainty Selection
Input:
Unlabeled dataset Du, pre-trained CNNM0
Batch size b
output:
Labeled candidates Dl
Retrained CNN model at iteration t: Mt
Initialize:
Set Dl = ∅, randomly select b images from Du, then label
them, add them to Dl , remove them from Du, and set

t = 1
Method:
Step 1:

Train an initial detection modelM1 using Dl
Repeat
Step 2:

for each image Ci ∈ Du do
Obtain the detection informationWi fromMt and
set Obji = 0 (the number of objects in Ci)
for each detected object window wk ∈ Wi do

if p(bkc > gt then
Obji = Obji + 1

end
end

end
Step 3:

Determine Nmax based on Obji
N = Nmax

Step 4:
for each Ci in Du do

Set ECi = 0, g = 0 and select the top N scoring
detected object windows.
for each wj in them do

if p(bjc) > thresh then
ECi = ECi − log(p(bic)

else
g = g+ 1

end
end
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end
Sort Du according to the ECi , add those examples
whose g = N to Dl , and count their number b1
Query labels for the top b − b1 candidates, generate

Q
Step 5:

Dl = Dl
⋃
Q; Du = Du \ Q; t = t + 1

Train detection modelMt based on Dl
Until the object detection performance is satisfactory

or the model tends to be stable

2) UNCERTAINTY + DIVERSITY SELECTION
Although the use of uncertainty selection can achieve some
considerable results, it may result in the additional selection
of noise or redundant samples. Thus, the uncertain-labeled
samples must be filtered by a diversity criterion to produce
diversity-labeled samples with the minimum redundancy,
which are highly representative samples. Specifically, diver-
sity selection is achieved through the K -medoids clustering
algorithm, which is an improvement of the K -means algo-
rithm [22]. Unlike the K -means algorithm, the K -medoids
algorithm can be used with any distance measure in place of
the generally used Euclidean distance that is consistent with
themean computation. Statistically, theK -medoids algorithm
is more robust to the outliers and strong noise in the images.
The algorithm is summarized as follows.

K -medoids
Input:
n samples and number of clusters k
output:
k clusters with corresponding instances
Initialize:
randomly select k of the n data points as the medoids
Method:
Repeat
Step 1:

Associate each data point with the closest medoid;
(‘‘closest’’ here is defined using any valid
distance metric, most commonly the Euclidean dis-

tance,
Manhattan distance or Minkowski distance)

Step 2:
For each medoid m do

For each non-medoid data point o do
Swap m and o, and
compute the total cost of the current state

end
end

Step 3:
Select the state with the lowest cost

Until there is no change in the medoid

The total number of object categories in the dataset is
directly used as the parameter K in the clustering, and the
output of the last convolutional layer in the network is also
directly used as the high level features of each image. How-
ever, this output is three dimensional, and the computational
complexity when directly using it is too high. Thus, the fea-
ture map is first converted into a feature vector by using the
channel-wise mean [23] method to reduce the computational
complexity and facilitate the use of the clustering method.
After obtaining the clustering results, we select the same
number of D images in each category as the final sampling
result. If min{Numk : k = 1 . . .m} > D, whereNumk denotes
the number of instances in the k th category, we randomly
select D images from each category as the final result. If this
value is less than D, we select all images of categories with
Numk less than D, and the remaining images are evenly
selected from those categories with Numk greater than D.
We repeat the above selection until the number of images
that are set reaches a total of b images per iteration. The
uncertainty + diversity selection algorithm is presented in
Algorithm 2.

Algorithm 2: Uncertainty + Diversity Selection
Input:
Unlabeled dataset Du, pre-trained CNNM0
Batch size b
output:
Labeled candidates Dl
Retrained CNN model at iteration t: Mt
Initialize:
Set Dl = ∅, randomly select b images from Du, label
them, add them to Dl , remove them from Du, and set

t = 1
Method:
Step 1:

Train an initial detection modelM1 using Dl
Repeat
Step 2:

Use the uncertainty method to first choose 2b candi-
dates

Df from Du
for each Ci in Df do

The output of the last convolution layer can be
viewed as high level features C f

i of Ci;
Then calculate the channel-wise mean of C f

i to
generate condensed features Cc

i as the final
image

descriptor.
end

Step 3:
RunK−medoids on theDf using featuresCc

i to obtain
the clustering results. Select the set of diversity sam-

ples Dd
by taking a total of b samples from the clusters in
uncertainty sample set Df .
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A human annotates the images in Dd
Step 4:

Dl = Dl
⋃
Dd ; Du = Du \ Dd ; t = t + 1

Train detection modelMt based on Dl
Until the object detection performance is satisfactory

or the model tends to be stable

3) LOCATION INFORMATION SELECTION
Unlike in image classification problems (in which each image
represents one object), multiple object windows may exist in
one image in object detection problems such that it is impos-
sible to directly determine the uncertain number of objects in
each image. In addition, for object detection, the output of the
model not only provides the probability of the presence of an
object at each spatial position but also provides the position
information of the candidate box, which can be used to select
the most representative images.

The maximum mean discrepancy method was first intro-
duced by Gretton et al. [24] to analyze and compare two
different distributions, which they used to construct statistical
tests to determine if two samples are drawn from different
distributions. Thus, in this work, we can use the MMD to
select the most representative images from a dataset by nar-
rowing the difference between the object location distribution
of selected images and that of all training images. To deter-
mine which images should be selected from the unlabeled
dataset and which object windows should be used to calcu-
late the difference between two distributions [25], we first
define M as a matrix of size Ni × Nw comprising zeros and
ones to measure the distribution of the image over its object
windows. If the jth object window belongs to the ith image,
letM(i, j) = 1; otherwise, set it equal to 0.
By utilizing M, the most representative images can be

selected by minimizing the cost function as below:

argmin
α
||

Ni∑
i=1
αi ∗

Nw∑
j=1

Mi,j ∗ φ(xj)+
Nl∑
i=1
φ(xi)

Ns + Nl
−

Nf∑
i=1
φ(xi)

Nf
||
2

s.t. α ∈ {0, 1}, αT 1I = Nsi, (3)

where α is a vector composed of zeros and ones, which
represents whether the image is selected or not. φ is a func-
tion in the unit ball of the reproducing kernel Hilbert space.
Ns is the number of object windows in the selected images.
Nsi is the number of selected images. Ni is the number of
unlabeled images. Nw is the number of object windows in
the unlabeled images. Nl is the number of object windows
in the labeled images. Nf is the number of object windows in
all the images. 1I is an Ni × 1 vector, the elements of which
are all equal to 1.

For ease of calculation, the problem can be transformed
into a quadratic programming problem by simultaneously
relaxing α from having only two values, 0 or 1, to having

a continuous value in [0,1].

min 0.5αTHα + f Tα

H =
MKUUMT

(Ns + Nl)2

f = [
1TLKLUM

T

(Ns + Nl)
−

1TFKFUM
T

Nf ∗ (Ns + Nl)
]T + const,

s.t. α ∈ [0, 1], αT 1I = Nsi, (4)

where U is the set of unlabeled object windows, L is the
set of labeled object windows, F is the set of object win-
dows in all the images, and all of the object windows are
stored as upper-left and lower-right normalized coordinates.
KUU , KLU , and KFU are three kernel Gram matrices between
the object window datasets U and U, L and U, and F and U.
The Gaussian kernel is used in this work. 1F is an Nf × 1
vector, and 1L is an Nl × 1 vector, the elements of which are
all equal to 1.

In (3), only Ns is unknown. Ideally, Ns represents the total
number of objects in the selected image. However, since the
number of objects in each image is unknown, it is difficult
to determine the value of Ns. In this paper, we estimate it
as Ns = Nsi × N , where N denotes the average number of
objects in each image. The determination of N follows the
same principle as choosing the value of N in the uncertainty
selection subsection.

However, the above algorithm is based on the assumption
that the position information of all the images is known;
however, in most cases, the information is unknown. There-
fore, in the actual calculation process, we will determine the
category probability and the location distribution information
of all the unlabeled data according to the existing model.
We set a threshold to determine how many objects exist in
each image based on the presence probability of each object’s
windows instead of using the top K scoring detections as
reliably detected windows. Although using the top K scoring
detections allows Ns to be easily determined, the assumption
that the number of objects in each image is the same does
not conform with the actual situation. The overall location
information selection algorithm is presented in Algorithm 3.

Algorithm 3: Location Information Selection
Input:
Unlabeled dataset Du, pre-trained CNNM0
Batch size b
output:
Labeled candidates Dl
Retrained CNN model at iteration t: Mt
Initialize:
Set Dl = ∅, randomly select b images from Du, label
them, add them to Dl , remove them from Du, and set

t = 1
Method:
Step 1:

Train an initial detection modelM1 using Dl
Repeat
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Step 2:
Obtain the detection information Wi from Mt , set

j = 0
Define M as a matrix of size Ni × Nw, set all the

elements
in M equal to 0
for each detected object window wk ∈ Wi do

if Scorek > gt then
M (i, j) = 1; j = j+ 1

end
end
Add the corresponding information in Dl to M

Step 3:
Solve Eq.4 using quadratic programming solvers, for

example,
CVX
Obtain b candidates for set Dp from Du
A human annotates the images in Dp

Step 4:
Dl = Dl

⋃
Dp; Du = Du \ Dp; t = t + 1

Train detection modelMt based on Dl
Until the object detection performance is satisfactory

or the model tends to be stable

C. OVERVIEW OF THE FASTER-RCNN FRAMEWORK
We use the Faster-RCNN framework for object detection [7],
which is shown in Fig. 1. The Faster-RCNN framework not
only takes convolutional feature maps used by region-based
detectors to generate region proposals but also shares convo-
lutional features with the detection network, enabling nearly
cost-free region proposals, which is also an effective way
of improving object detection accuracy. It comprises the

following two parts: (i) a region proposal network (RPN)
generating a set of rectangular object proposals with the
objectness scores and (ii) a fast-RCNN with an RoI-pooling
layer and a few fully connected layers that output the class
probabilities and the bounding boxes. The RPN takes the last
shared convolutional feature map as input and runs a small
network over it to modify the anchors. It has two sibling
layers (for cls and reg). The region proposals generated by
the RPN are then sent to the fast-RCNN for more accurate
classification and regression. The fast-RCNN take an image
and numerous region proposals from the RPN as inputs and
then uses a region of interest (RoI) pooling layer to generate
a fixed size feature vector for the final two output layers:
(i) softmax probabilities for each object class including the
background class and (ii) refined bounding box coordinates.
In the active object detection framework, we update the
Faster-RCNN model at each iteration and use the updated
model to detect unlabeled images, storing the test results for
subsequent use of the active learning algorithms. However,
the RPN and the fast-RCNN are two separate networks and
need to be trained independently. Thus, in our experiment,
we adopt an approximate joint training. That is, we combine
the RPN and fast-RCNN losses as one total loss, and the
backward propagation takes place as usual. It is faster to
implement and perform end-to-end learning while maintain-
ing good accuracy.

III. EXPERIMENTS
In this section, we examine the performances of the pro-
posed active learning approaches for object detection. The
comparison to recent state of art in active learning for object
detection (Specifically, Roy et al. [18] took inspiration from
the paradigm of the querying-by-committee method [26] and

FIGURE 1. Training procedure of the object detection network based on Faster-RCNN. A region proposal
network (RPN) takes an image (of any size) as input and outputs a set of rectangular object proposals, each
with an objectness score to estimate the existence probability of an object belonging to a category. The input
image and multiple object proposals are then input into an RoI (region of interest) pooling layer, and each
object proposal is pooled into a fixed-size feature map and then mapped to a feature vector by fully
connected layers (FCs). The network has two output vectors per object proposal: softmax probabilities and
per-class bounding-box regression offsets.
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FIGURE 2. The proposed active-learning-based framework for object detection in sonar images.

uses the disagreement between the convolution layers in
the SSD [6] architecture to query images. Kao et al [27]
presented two different metrics –the ‘‘localization tightness’’
and the ‘‘localization stability’’ to quantitatively evaluate the
localization uncertainty of an object detector and combine
them with the classification uncertainty.) are also considered
in this section.We considered a detection correct when the
area of overlap a0 between the predicted bounding boxBp and
ground-truth bounding box Bgt exceeds 50% by the for-
mula: a0 =

area(Bp∩Bgt )
area(Bp∪Bgt )

[28], [29]. We will first introduce
our dataset and evaluation metrics. The detection results of
the proposed active learning methods and the comparative
method are then shown. Finally, a comprehensive analysis is
provided.

A. ACTIVE LEARNING PERFORMANCE
1) DATA
We focus on the subject of object detection of sonar images
in the context of underwater search and rescue. There is no
public dataset and almost no possibility to perform a real
experiment to obtain many more images. The purpose of our
active learning algorithms is to maintain the performance of
detectionmodels with less data training on a group of selected
images. To this end and according to the general standard of
building a dataset of natural images, we built a sonar image
dataset that satisfies the following three requirements:

(a)The dataset contains remarkable variety in terms of
object size, illumination, position and noise distribution;
(b) it is important that the dataset does not illustrate sys-
tematic bias such as a preference for images that contain
centered objects with ideal illumination and orientation;
(c) the annotations of each image need to be consistent, pre-
cise and exhaustive in both procedures of collecting images

and choosing classes. Following the above three standards,
the specific process is described as follows:

Step 1: We gathered a set of 216 sonar images that were
captured by side scan sonar (SSS) and synthetic aperture
sonar (SAS) from public photo-sharing websites in the con-
text of underwater search and rescue. None of these images
were previously used with the purpose of object detection,
which guarantees that these images are not biased. Then,
by random cropping, we obtained 25 samples from each
original image for the purpose of data augmentation. The
cropping size was 80% of the original size on the along-track
and across-track directions, respectively.

Step 2: We resized the 5400 samples to the size of the
images in 600*600 pixels in image annotation procedures and
marked each object in the samples with an annotation that
contains two attributes following the guideline of building a
PASCAL VOC dataset [28]. (One attribute is a class, which
indicates the category to which the object belongs. The other
attribute is an axis-aligned bounding box that surrounds the
extension of the visible part of the object in the image.

Step 3: Finally, we split the samples into two datasets, one
of which is composed of 4300 samples for training, and the
other contains the remaining 1100 samples for testing. None
of the samples from the same original images are split into
two different datasets, which guarantees that there are no
intersections between the training set and the testing set.

The dataset for this experiment includes the corpse,
shipwreck and plane wreckage categories and a total
of 5400 images.We split it into two datasets, one dataset com-
prising 4300 images for training, and the other one containing
the residual images for testing. First, b = 100 images were
randomly selected according to the proportion of the cate-
gories in all the data. (This operation is based on some exper-
imental results from [25], [31], in which they find at the first
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FIGURE 3. Some detection results obtained with the proposed active-learning framework detector trained on 1500 images for the three categories
(corpse, shipwreck, and plane wreckage). The active-learning framework provides accurate localization in most of the test images, while the inaccurate
positioning is mainly caused by the existence of deep shadows in the images. It can also be found that the intersection-over-union(Iou) of uncertainty
and uncertainty + diversity for correct detections yields a bit better performance than that of random selection method.

step that random selection yields the best performance. The
uncertainty selection strategy is an informativeness-based

approach. Informativeness-based approaches completely rely
on labeled data for constructing the initial model to select
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the query instance, which means that the model is always
unstable when too few initial training data points are used in
the first steps. In contrast, representative-based methods [32]
may achieve a relatively better performance when there are
little or no initial labeled data.) Then, a fixed number of data
points (100 in our experiments) is continuously selected from
the remaining 4200 images according to the principles of the
proposed active learning algorithms. Because ground-truth
boxes are not given and the number of objects in each images
is also unknown, in this experiment, we take object windows
whose Score is higher than gt = 0.5 as a reliable detection.
The last thing to note is that the distribution of the entire
dataset is unbalanced. Corpse occupies nearly 10%, plane
wreckage occupies almost 20% of total data, and the remain-
ing is shipwreck.

2) EVALUATION METRICS
Evaluating the performance of a classifier always occurs
through observing how the precision and recall values change
when the threshold changes. A better classifier performs as
follows: the proportion of the target objects in the identi-
fied image is relatively large, and as many target objects
as possible are correctly detected before identifying other
objects. That is, let recall growwhile maintaining precision at
a high level, which leads to a higher average precision (AP)
from the perspective of computation. Thus, we use the mean
average precision (MAP), which is commonly used in most
international detection competitions, in this experiment.

3) IMPLEMENTATION DETAILS
For our sonar dataset, we use the pre-trained resnet
model [33] adopted in [7] to initialize our network. The
parameters of newly added convolutional layers and fully
connected layers are initialized with Xavier [34]. The input
image is resized for better detection of small objects such that
its shorter side has 600 pixels. All experiments are fine-tuned
on the pre-trained ImageNetmodel. The baselinemodel using
all images is trained for 20K iterations with an initial learning
rate of 0.001, which is then divided by 10 at 10K iterations
for better convergence of the model. The experiments of
the random selection method are repeated 5 times, and the
average performances are reported. For the data selected by
the proposed methods, we train the network multiple times
to obtain the best results. We use horizontal image flipping
as the only form of data augmentation unless otherwise
noted. The entire network is trained with stochastic gradient
descent (SGD) with a momentum of 0.9 and a weight decay
of 0.0001 on a single NVIDIA GeForce GTX TITAN XGPU
with 12 GB memory. Each mini-batch involves only 1 image
per GPU and 512 RoIs per image. The classification loss is
the softmax loss, and the standard smooth L1 loss is used for
box regression [5]. Some of the test results are shown in Fig.7.

4) UNCERTAINTY SELECTION RESULTS
We set the value of thresh to 0.1 and train the initial Faster-
RCNN [7] model on the first set of randomly selected

FIGURE 4. Mean average precision curve of different active learning
methods (these results are obtained using Faster R-CNN as the detector)
on our sonar dataset. The uncertainty, uncertainty + diversity selection
and LS+C methods achieve better performance than random selection
after the first fine-tuning step, and with only 1500 selected images, they
achieve almost the same results as those of random selection using all
the images. Although location information selection is not stable in the
first few iterations, it still reaches its best performance when querying
approximately 2000 samples.

100 images. We then use the trained Faster-RCNN [7] model
to test the remaining unlabeled images and set N = 1 for the
first step of uncertainty selection based on the testing results.
The MAP performance is illustrated in Fig.4. It can be found
that constantly selecting new data for training through uncer-
tainty selection can make the MAP rise steadily, and using
nearly 35% of all the data achieves almost the same result
as when using all the images. Uncertainty selection methods
quickly surpass random selection after the first fine-tuning,
as they select important samples for fine-tuning, making the
training process more efficient than just randomly selecting
from the remaining training dataset. We can also find that the
greatest MAP increase (from 0.37 to 0.664) is obtained by
uncertainty selection when the first group of 500 images is
selected. The remaining images, which continuously increase
from 500 to 3800, only make the MAP increase by 0.127.
The steeper red solid curve indicates improvement in the
accuracy on the test set using fewer images and verifies the
effectiveness of the uncertainty selection algorithm, which
can select the most informative samples. A possible expla-
nation is that the first group of selected images based on
uncertainty already has the most informative instances for
training and that the remaining instances are not as informa-
tive as the first selected 500 images. Fig.5 shows the average
precision performance for the three categories. In Fig.5(a),
a notable point is that the corpse average precision (AP)
based on 1500 selected images (0.612) is higher than that
based on all the training images (0.543). This result more or
less reflects the possibility that the uncertainty algorithm can
alleviate the imbalance of the data distribution to some extent
and obtain better corpse AP performance. This is because
the number of corpses is the lowest, and the model may
not be able to fully learn the features of this category and
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FIGURE 5. Performance comparison for three different categories (these results are obtained using Faster R-CNN as the detector), (a) corpse,
(b) shipwreck and (c) plane wreckage. The graphs are plotted as average accuracy (y-axis) vs. number of training images (x-axis). The general
performance is consistent with the MAP curves shown in Fig. 4. The AP for detecting shipwrecks is stable for all the methods, as the number of
images in this category is dominant in the training set. There are some fluctuations in the results for corpses and plane wreckage for different
selection methods.

accurately locate objects. However, the uncertainty algorithm
selects more images that contain corpses, causing the model
to have better detection performance for corpses. In Fig. 5(b),
the MAP of the shipwreck category is almost saturated when
600 images were selected. There are three reasons: (1) the
number of pictures of the shipwreck is dominant in the train-
ing set; (2) the shipwreck features are are usually similar to
each other. and (3) the shapes and fragments around plane
wreckage objects are irregular, which results in a large differ-
ence in features between objects. In Fig. 5(c), the red solid
line continues to fluctuate as the number of selected pictures
increases. This is mainly caused by the large-scale varia-
tion across object instances in plane wreckage images which
inevitably hampers the accuracy of detectors and makes the
detection performance unstable.

5) UNCERTAINTY + DIVERSITY SELECTION RESULTS
Diversity selection is performed subsequently after uncer-
tainty selection. First, we choose 200 images based on the

above uncertainty selection and then run K -medoids on
them to finally choose 100 images. In general, the MAP
grows stably when more images are selected, yielding a
slightly better performance than uncertainty in the first group
of 1500 images selected from the dataset, and can achieve
almost the same result as that when using all the images.
Different from uncertainty selection, the AP of which has
a greater improvement when detecting the corpses with
1500 images than when using all the training images, the AP
values for detecting all three categories via uncertainty +
diversity are very close to those using all the training images.
This is attributed to combining the diversity selection with
uncertainty selection because the diversity selection can fur-
ther efficiently maintain the balance of the numbers of the
three categories in the candidates selected from uncertain
instances first selected by uncertainty selection. To a certain
extent, this approach avoids the extreme situation in which
all selected images are from the currently poorest detection
category.
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FIGURE 6. The numbers of corpses, shipwrecks and plane wrecks selected by the four methods in each group of samples. The orange bars
represent the selected number of shipwrecks, the blue bars denote that of corpses, and the gray bars represent that of plane wrecks. More than
80% of the corpse images are selected from the unlabeled dataset after the first uncertainty selection, making the ratios of the three categories
close to approximately 1:2:1, which greatly alleviates the unbalanced data distribution problem and obtains a better corpse average
precision (AP) performance.

6) LOCATION INFORMATION SELECTION RESULTS
As α is a continuous value in [0,1], we choose the top b = 100
indexes as the selected results. Based on the detection model
trained on the first group of 100 images, which is randomly
selected, we set Ns = Nsi * 1 for the first time of the selec-
tion. Generally, the green MAP dash-dot line of location
information selection in Fig.4 shows an upward trend when
more images are selected, and the use of 2000 images can
achieve almost the same result as that obtained by using all
the images. In Fig.6(c), we can also find that the location
information selection performance is not very stable in the
first few steps. This fluctuation is caused by some inaccurate
location prediction. In the first few steps, the detection model
does not generalize well due to the lack of sufficient data,
so there must be some mis-detected object windows or actu-
ally existing but undetected objects, which inevitably affect
the selection of this algorithm.

7) OVERALL RESULTS
In this section, we compare the three proposed active
learning methods with random selection and conduct an

overall analysis. The performance of each method becomes
saturated after querying 2500 labels. Uncertainty and uncer-
tainty + diversity converge faster among the four methods
and yield better overall performance. This is attributed to
the informativeness calculation method proposed for uncer-
tainty selection. The uncertainty and uncertainty + diversity
selection methods with only 1500 images can achieve the
same performance as that of the random selection method
with 3000 selected images. Compared to random selection,
50% of the labeling cost could be saved by the uncertainty
and uncertainty + diversity methods. When 1500 images are
selected by the uncertainty or uncertainty+ diversity method,
the detection model tends to be stable. The same situation
occurs when 2000 images are selected by the location infor-
mation method and when 2500 images are selected by the
random selection method.

Our sonar dataset is unbalanced, andwe have already noted
the possibility that the uncertainty algorithm can alleviate the
data distribution imbalance in the above discussion. Further-
more, we test the ratio of the three categories in the images
selected by the proposed methods. We set b = 500 for
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FIGURE 7. Result comparisons of the three detectors. (a) Results of YOLO-based framework; (b) Results of SSD-based framework;(c) Results of
Faster RCNN-based framework.

this experiment, as more data can better reflect the distri-
bution of data. Fig.6 shows the number of selected images
in each category by the uncertainty, uncertainty + diversity,
location information and random selection methods. As we
expected, more than 80% of the corpse images are selected
from the unlabeled dataset after the first uncertainty selec-
tion, making the ratios of the three categories approximately
close to 1:2:1, which greatly alleviates the problem of the
unbalanced data distribution and achieves a better average
precision (AP) performance for corpse. Uncertainty selection
and uncertainty + diversity control the balance of the num-
bers of selected images in the three categories and cause the
model’s detection capability to grow rapidly and steadily. For
random selection, the ratio is nearly the same as for the entire
training dataset. In the first few steps of location information
selection, the selected numbers of corpses and plane wreck-
age are very close. However, there are gaps between these
numbers and that of shipwrecks. This is because the number
of shipwreck images is dominant in all of the training sets,
and the location information selection method takes the entire
training dataset’s distribution into consideration.

8) EXTENSION TO THE OTHER COMPETING DETECTORS
In this subsection, we also combined the proposed
active-learning algorithms with the other competing detectors
(YOLO and SSD) and compared these three detectors to
improve the quality and usefulness of the results. The results
and the corresponding analysis are shown in Fig.7.

Generally, the three active-deep learning frameworks
all work while the SSD-based and Faster-RCNN-based
frameworks perform better than the YOLO-based one. The
uncertainty-type frameworks generally perform better
according to the effective selection ability of the more
informative images. Thus, the proposed active-deep-learning
framework is extensible and has a strong generalization
ability.

IV. CONCLUSION
To reduce the annotation cost as much as possible, in this
paper, we propose three active learning algorithms. They
all start with a randomly selected dataset and incremen-
tally improve the CNN’s performance through continuous
retraining by actively selecting the most informative and
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representative images. Their performances are tested in our
sonar dataset for object detection, and the results demonstrate
that the annotation cost can be reduced by at least 60%. In the
future, weakly supervised object detection methods [35], [36]
may be utilized to replace the previously trained model for
generating detected object windows. Moreover, since the
proposed active learning methods retrain the detection model
at each iteration, which is time consuming, more efficient
updating strategies will be explored in future work.
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