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ABSTRACT This paper considers the stabilization of continuous-time Markovian jump systems (MJSs)
via a restricted controller. It is actually a period and random switching controller. It also contains some
existing controllers as special ones. Sufficient conditions for existence of such a controller are established by
studying a discrete-timeMJS, which are presented in terms of LMIs and depend on its period and probability.
Moreover, an extension about a similar but aperiodic controller is considered. Finally, a numerical example
is used to demonstrate the effectiveness and superiority of the proposed methods.

INDEX TERMS Markovian jump systems, stabilization, period and random switching, semi-Markov
process, linear matrix inequalities (LMIs).

I. INTRODUCTION
It is known that Markovian jump system (MJS) [1], [2] is
a particular kind of hybrid systems. There are two kinds of
mechanisms simultaneously involved. One is time-evolving
and closed to system state over time. The other one is
event-drivenmechanism and named as operationmode driven
by a Markov chain. During the past decades, a lot of
topics on all kinds of MJSs have been studied such as
stability [3]–[6], stabilization [7]–[13],H∞ control [14]–[16]
and filtering [17]–[21], fault detection [22]–[24], estima-
tion [25], [26], adaptive control [27], [28], synchroniza-
tion [29], and so on.

In the above problems, stabilization is one of most impor-
tant problems and could get better performance. By inves-
tigating the references about MJSs, it is found that most
of them are mainly classified as three cases. The first kind
of controller is a usual one and always referred to be
mode-dependent. Because of operationmode available online
and synchronous, it is the least conservative. This is also
its drawback since the above assumption about operation
mode is hard to be satisfied in applications. In order to
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remove this assumption, another mode-independent meth-
ods [30], [31] were proposed and has nothing to do with
mode. Because it ignored operation mode totally even
it is available sometimes, it is said to be an absolute
approach. Recently, a kind of partially mode-dependent
method was presented in [32] and bridged the above
two cases, where a Bernoulli variable was introduced.
By applying the polytopic uncertainty method to a con-
troller, the fault-tolerant control of MJSs was considered
in [34]. Though the above methods can be applied to non-
mode-dependent cases, it is seen that the switchings of
Bernoulli variable and polytopic uncertainty are fast even
instantaneous. It is said that such a fast switching will lead
to a higher cost even a damage to an equipment. In this
case, it is natural to design a controller for an MJS which
could sustain a period. A typical example is semi-Markov
jump systems. Because of its sojourn time being any dis-
tribution, the corresponding switching will be slower than
one of traditional MJSs. Very recently, the stability and
stabilization of discrete-time semi-Markov jump linear sys-
tems subject to exponentially modulated periodic probabil-
ity density function of sojourn time was considered in [35]
and very important to make further research about semi-
Markov jump systems. Particularly, necessary and sufficient
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criterion about mean square stability was first developed.
However, there are still many problems to be further studied
which of themwill be different in essence. For example, when
the considered system is continuous-time, the stability crite-
rion of discrete-time case based on the Lyapunov function
approach will be disabled because of the switching signal
right-continuous and belonging to any distribution instead of
only exponential distribution. Moreover, when some general
kinds of controllers such as ones mentioned above are consid-
ered, how to obtain the easily solvable conditions will be not
easy but necessary and important. Thus, in order to overcome
such as problems and difficulties, some new techniques for
analyzing its stability and giving LMI conditions of such a
generally stabilizing controller are necessary to be developed.
By summarizing a large number of literatures, it is found that
very few of them were considered about such a controller.
All the aforementioned facts and observations motivate the
current research.

In this paper, the stabilization problem of continuous-time
MJSs is studied via a restricted controller. The main contri-
butions of this paper are summarized as follows: 1) A kind of
restricted controller in terms of period and random switching
is proposed, which contains some existing controllers as spe-
cial ones; 2) By studying a discrete-time MJS indirectly, suf-
ficient linear matrix inequality conditions for the controller
are presented, in which both period and conditional switching
probabilities are included. It is shown that our results are
less conservative in terms of having larger application scope;
3) Compared with some traditional controllers, the modes
of original system and proposed controller are not necessary
synchronous. Moreover, its switching is not so fast and has
less damage to equipments; 4)More extension about an aperi-
odic controller is further considered to remove the assumption
of constant period.

Notation: Rn denotes the n-dimensional Euclidean space,
Rq×n is the set of all q× n real matrices. (�,F ,P) is a com-
plete probability space equipped with a filtration {Ft : t ∈
R+} satisfying the usual hypotheses, that is a right-continuous
filtration augmented by all null sets in the P-completion ofF .
Here, � is the sample space, F is the σ -algebras of subsets
of the sample space and P is the probability measure on
F . E [·] denotes the expectation operator. ‖ · ‖ refers to the
Euclidean vector norm or spectral matrix norm. N represents
the set of natural number. λmin(M ) and λmax(M ) denote the
smallest and largest eigenvalues of a symmetric matrix M .
In symmetric block matrices, we use ‘‘∗′′ as an ellipsis for the
terms induced by symmetry, diag {· · ·} for a block-diagonal
matrix, and (M )? , M +MT .

II. PROBLEM FORMULATION
Consider a class of continuous-time MJSs defined on a com-
plete probability space (�,F ,P), it is described as follows

ẋ(t) = Art x(t)+ Brtu(t) (1)

where x(t) ∈ Rn is the system state vector, and u(t) ∈ Rm

is the control input vector. Here, A(rt ) and B(rt ) are known

matrices of compatible dimensions. Process {rt , t ≥ 0} is a
homogeneous Markov process taking values in a finite set
S , {1, 2, . . . ,N }. It is adapted to the filtration {Ft : t ∈
R+} and is Ft -measurable. It is a right-continuous trajectory
and represents the switching among different modes. The
evolution of Markov process {rt , t ≥ 0} with transition rate
matrix 3 = (λij) ∈ RN×N is governed by

Pr{rt+1t = j|rt = i} =

{
λij1t + o(1t), i 6= j
1+ λii1t + o(1t), i = j

(2)

where λij denotes the transition rate from state i to state j, and
λij ≥ 0, if i 6= j, and λii = −

∑
j 6=i λij, for all i, j ∈ S. As for

system synthesis problems such as stabilization, the common
controllers designed for system (1) could be summarized as
follows:

Mode-dependent controller [7], [8]:

u(t) = Krt x(t) (3)

where Krt is the control gain and depends on operation mode
rt all the time;

Mode-independent controller [30], [31]:

u(t) = Kx(t) (4)

where K is the control gain and totally ignores rt ;
Partially mode-dependent controller [32]:

u(t) = Krt x(t)+ (1− α(t))Kx(t) (5)

where both Krt and K are control gains and similar to the
above ones, and α(t) is the Bernoulli variable and denotes the
current operation mode available or not.

Different from the above controllers, the state feedback
controller in this paper is proposed to be

u(t) = K [r̂t ]x(t) (6)

FIGURE 1. The diagram of controller (6).

where K [r̂t ] is the control gain to be determined but different
for the above ones. The detailed construction of controller (6)
is clearly stated. Fig. 1. Here, operation mode r̂t is another
switching signal and defined as

r̂t = r̂kτ ,∀t ∈ [kτ, (k + 1)τ ), ∀k ∈ N (7)
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where τ is a constant and denotes the periodic dwell time
of r̂t . Its random switching on jump points is related to rt and
defined as

ξh`=Pr{r̂kτ = `|rkτ = h}, ∀` ∈ T, {1, 2, . . . ,M},∀h ∈ S
(8)

where operation mode rkτ is the value of rt at instant kτ such
as rkτ = rt=kτ . Then it is said that the implementation of
controller (6) has some restrictions such as (7) and (8). Firstly,
switching signal r̂t is restricted to be a piecewise constant
function, whose dwell time is not very small or instantaneous
but τ . In this case, the fast switching among controllers could
be avoided and lead to fewer damages to equipment of a
controller. However, it is also mentioned that such a dwell
time is constant and will be with some limitation. A more
general assumption about τ is time-varying, which will be
our further work. Secondly, it is defined that the sojourn time
and switching number of operation mode rt = i on interval
[kτ, (k+1)τ ) are τi and ni respectively. Because ni and τi are
very closed to rt = i, ∀t ∈ [kτ, (k + 1)τ ), it is reasonable
that they are stochastic variables and with finite expectations.
In this case, it is naturally assumed that

∑N
j=1 nj ≤ nmax and

τi ∈ [τmin, τmax], ∀i ∈ S, hold for any interval [kτ, (k + 1)τ ).
Here, parameters nmax, τmin and τmax are given in advance, but
the preassumption are without loss of generality. Particularly,
nmax is a natural number, while τmin and τmax are positive
real constants. This assumption is also reasonable in practice,
since the switching of any equipment or system amongmodes
should be finite. So, the accumulated sojourn time of each
mode should also be with upper and lower bounds. For simple
description, the variables such as x(kτ ) and rkτ are simply
denoted as x(k) and r(k) respectively. Then, system (1) is
equal to{

ẋ(t) = (Art + BrtK
[r̂t ])x(t),∀t ∈ [kτ, (k + 1)τ )

x(k) = x(t)|t=kτ
(9)

Remark 1: Compared with the above existing controllers,
controller (6) is better in terms of having less constriction
on current mode rt but doesn’t neglect it at all. In other
words, when the operation mode of controller (3) such
as [7], [8], [12] is not accessible on time, it will be disabled
while controller (6) is an effective choice. Moreover, more
information about the correlation between modes rt and r̂t
are further considered and will be less conservative than
controller (4) referred in [30], [31]. Thirdly, but not the last,
in contrast to controllers (3) and (5) having fast switchings
even instantaneously in [32], [33], the switching of (6) ismore
slower though rt and α(t) are fast switchings. Such a slower
switching will lead to less damage to equipment or system
and have a wider application scope. More importantly, con-
troller (6) could be specialized to be (3) and (4) respectively.
However, it is worth mentioning that there are still some
disadvantages of controller (6). One of them is that the jump
points are periodic, and the dwell times are equal or constant.
This assumption is ideal and will make the application with

some limitations. Thus, more effort will be applied to deal
with this problem.
Definition 1: System (9) or system (1) closed by con-

troller (6)is said to be asymptotically mean square stable,
if for initial conditions x0 ∈ Rn and r0 ∈ S, there is

lim
t→∞

E
[
‖x(t)‖2|x0, r0

]
= 0

Lemma 1: [36] For any real matrix A ∈ Rn×n and
positive-definite matrix P ∈ Rn×n, if an arbitrary scalar ς is
selected to be ς ≥ λmax(P)

λmin(P)
, it is always obtained that

ATPA ≤ ς‖A‖2P (10)

Particularly, by defining two pairs of conditions such as
(a) P ≥ I , P ≤ ς I
(b) P ≤ I , ςP ≥ I

it is known that either of them could imply inequality (10),
while ς ≥ λmax(P)

λmin(P)
could be removed.

III. MAIN RESULTS
Theorem 1: Suppose that there exists a scalar r [`]i . There

is a controller (6) such that the closed-loop system (9)
is asymptotically mean square stable, if for given scalars,
ρ
[`]
i > ρ[`]

i
> 0 and ς > 0, there exist matrices Pi, X

[`]
i ,

S[`] and Y [`], satisfying either of the following conditions

Pj ≥ I ,Pj ≤ ς I (11)

Pj ≤ I , ςPj ≥ I (12)

and

(ρ[`]i )−1I < X [`]
i < (ρ[`]

i
)−1I (13)[

2
[`]
i1 2

[`]
i2

∗ (−S[`])?

]
< 0 (14)

ς

M∑
`=1

N∑
j=1

ξi`πij(max
i∈S
{
ρ
[`]
i

ρ
[`]
i

})2nmaxe
2(
∑

j∈N̄+
`
r [`]j τmin

+
∑

j∈N̄−
`
r [`]j τmax)

Pj)− Pi < 0 (15)

where

2
[`]
i1 = (AiS[`] + BiY [`]

− r [`]i S[`])?

2
[`]
i2 = AiS[`] + BiY [`]

− r [`]i S[`] + X [`]
i − (S[`])T

N̄+` = {i ∈ S|r [`]i ≤ 0}, N̄−` = {i ∈ S|r [`]i > 0}

5 , (πhj == e3τ

The feedback gain of controller (3) is computed by

K [`]
= Y `(S[`])−1 (16)

Proof: Based on system (9) with condition (8), for any
t ∈ [kτ, (k + 1)τ ) with any given r(k) = h, ∀h ∈ S,
a discrete-time MJS is constructed to be{

x(k + 1) = e
∫ (k+1)τ
kτ Ā

[r̂kτ ]
rs dsx(k)

x0 = x(0)
(17)
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where Ā[r̂kτ ]rs , Ars+BrsK
[r̂kτ ]. According to the Kolmogorov

differential equation, the transition probability matrix 5 =
(πhj) ∈ RN×N could be obtained that

5 = e3τ =
∞∑
j=1

(3τ )j

j!
(18)

Its detail is described to be

πhj,Pr{r(k+1)τ = j|rkτ = h} = Pr{r(k + 1) = j|r(k) = h}

(19)

Then, a stochastic Lyapunov function of system (17) is con-
structed as follow

V (x(k), r(k), k) = xT (k)P(r(k))x(k) (20)

Then, for any given r(k) = h ∈ S, it is computed based on
Lemma 1 that

1V (x(k), r(k), k)

= E
[
V (x(k + 1), r(k + 1), k + 1)

]
−V (x(k), r(k), k)

= E
[
xT (k + 1)P(r(k + 1))x(k + 1)|x(k), r(k) = h, k

]
− xT (k)Phx(k)

≤ E

[
ςxT (k)||eĀ

[r̂kτ ]
rtq (kτ+τ−tq)e

Ā
[r̂kτ ]
rtq−1

(tq−tq−1)
. . .

eĀ
[r̂kτ ]
rkτ (t1−kτ )||2P(r(k + 1))x(k)|x(k), r(k) = h, k

]
− xT (k)Phx(k)

≤ E
[
ςxT (k)||eĀ

[r̂kτ ]
rtq (kτ+τ−tq)

||
2
||e

Ā
[r̂kτ ]
rtq−1

(tq−tq−1)
||
2 . . .

||eĀ
[r̂kτ ]
rkτ (t1−kτ )||2P(r(k + 1))x(k)|x(k), r(k) = h, k

]
− xT (k)Phx(k) (21)

where t1, t2, . . . , tq, are switching instants of rt on interval
[kτ, (k + 1)τ ), and q is the switching number of rt on the
same interval. For any real matrix Ā[`]i = Ai + BiK [`] and
∀t ∈ [0,∞), it is known from [37] that

‖eĀ
[`]
i t
‖ ≤ α

[`]
i e−β

[`]
i t (22)

There, parameters α[`]i and β[`]i are computed by

α
[`]
i =

√√√√λmax(H
[`]
i )

λmin(H
[`]
i )

(23)

β
[`]
i = −r

[`]
i (24)

where r [`]i > maxj Re(λj(Ā
[`]
i )), and matrix H [`]

i > 0 is the
solution of Lyapunov equation

(Ā[`]i − r
[`]
i I )TH [`]

i + H
[`]
i (Ā[`]i − r

[`]
i I ) < 0 (25)

Then, formula (21) is further obtained that

E
[
ςxT (k)||eĀ

[r̂kτ ]
rtq (kτ+τ−tq)

||
2 . . . ||eĀ

[r̂kτ ]
rkτ (t1−kτ )||2

P(r(k + 1))x(k)|x(k), r(k) = h, k
]
− xT (k)Phx(k)

≤ E
[
ςxT (k)(α[r̂kτ ]rtq

)2 e−2β
[r̂kτ ]
rtq (kτ+τ−tq)

. . . (α[r̂kτrkτ )
2

e−2β
[r̂kτ ]
rkτ (t1−kτ ) × P(r(k + 1))x(k)|x(k), r(k) = h, k

]
− xT (k)Phx(k)

= E

[
ςxT (k)(α[r̂kτ ]1 )2n1e−2β

[r̂kτ ]
1 τ1 . . . (α[r̂kτ ]N )2nN

e−2β
[r̂kτ ]
N τNP(r(k + 1))x(k)|x(k), r(k) = h, k

]
− xT (k)Phx(k)

≤ xT (k)

ς M∑
`=1

N∑
j=1

ξh`πhj((α[`])
2
∑N

j=1 nje−2β
[`]
1 τ1

. . . e−2β
[`]
N τNPj)− Ph

]
x(k)

≤ xT (k)

ς M∑
`=1

N∑
j=1

ξh`πhj((α[`])2nmaxe
−2

∑
j∈N+

`
β
[`]
j τmin

−2
∑

j∈N−
`
β
[`]
j τmax

Pj)− Ph

]
x(k)

= xT (k)

ς M∑
`=1

N∑
j=1

ξh`πhj((α[`])2nmaxe
2(
∑

j∈N̄+
`
r [`]j τmin

+

∑
j∈N̄−

`
r [`]j τmax)

Pj)− Ph

]
x(k) < 0 (26)

where α[`] = maxi∈S{α
[`]
i }, N

+

` = {i ∈ S|β[`]i ≥ 0}
and N−` = {i ∈ S|β[`]i < 0}. By multiplying both sides
of formula (25) with X [`]

i = (H [`]
i )−1 and its transpose

respectively, it is equivalent to[
(Ai + BiK [`]

− r [`]i I )X [`]
i

]?
< 0 (27)

By condition (14), it is known that S[`] is nonsingular.
Then, it is concluded from formula (16) that inequal-
ity (27) could be guaranteed by condition (14) by multi-
plying its both sides with

[
I Ā[`]i − r

[`]
i I

]
and its transpose

respectively. Based on inequality (13), it is easy to get
that

ρ[`]
i
I < H [`]

i < ρ
[`]
i I (28)

which is further obtained that

α
[`]
i <

ρ
[`]
i

ρ
[`]
i

(29)

Then, inequality (26) could be implied by condition (15). As a
result, one concludes that limk→∞ E

[
‖x(k)‖2|x0, r0

]
= 0.
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At the same time, for any t ∈ [kτ, (k + 1)τ ), it is known
that

E
[
||x(t)||2

]
≤ E

[
xT (k)||8(t, kτ )||2x(k)

]
= E

[
xT (k)||eĀ

[r̂kτ ]
rtm (t−tm)e

Ā
[r̂kτ ]
rtm−1

(tm−tm−1)

. . . eĀ
[r̂kτ ]
rkτ (t1−kτ )||2x(k)

]
≤ E

[
xT (k)||eĀ

[r̂kτ ]
rtm (t−tm)||2

. . . ||eĀ
[r̂kτ ]
rkτ (t1−kτ )||2x(k)

]
≤ E

[
xT (k)(α[r̂kτ ]rtm

)2e−2β
[r̂kτ ]
rtm (t−tm)

. . . (α[r̂kτ ]rkτ )2e−2β
[r̂kτ ]
rkτ (t1−kτ )x(k)

]
≤ E

[
(α[r̂kτ ]rtm

)2e2r
[r̂kτ ]
rtm (t−tm)

. . . (α[r̂kτ ]rkτ )2e2r
[r̂kτ ]
rkτ (t1−kτ )

]
||x(k)||2

<

M∑
`=1

ξh`((α[`])2nmax

e
2(
∑

j∈N̄+
`
r [`]j τmin+

∑
j∈N̄−

`
r [`]j τmax)

||x(k)||2

= γE
[
||x(k)||2

]
(30)

where

γ = max
h∈S
{

M∑
`=1

ξh`((α[`])2nmaxe
2(
∑

j∈N̄+
`
r [`]j τmin+

∑
j∈N̄−

`
r [`]j τmax)

}

is a value with limited bound. It is further obtained that

0 ≤ lim
t→∞

E
[
||x(t)||2|x0, r0

]
≤ γ lim

k→∞
E
[
||x(k)||2|x0, r0

]
= 0 (31)

Then, the closed-loop system (1) is asymptotically mean
square stable. This completes the proof.
Remark 2: For continuous-time MJSs, it is said that the

time-scheduled Lyapunov function method proposed for LTI
control systems [38] is not suitable. The main reason is that
nonlinear term eĀ

[`]
i t has NM modes and is very closed to

stabilizing controller, which cannot be handled by the above
method. In other words, when stabilization problems are
considered, solvable conditions with easy computation forms
such as LMI conditions are not easily obtained. All these facts
will make the analysis and synthesis of system (9) difficult,
and novel methods should be developed. To the contrary,
based on the proposed methods, convex conditions for the
existence of controller (6) are obtained and computed easily.
Moreover, our results will include the deterministic case as
a special one. Thus, the obtained results can be viewed as
extension results on stabilization by a controller with failures
from deterministic systems to stochastic systems.

Remark 3: As for the conditions in this theorem, some
additional explanations are necessary given in the following.
Firstly, all the conditions are given in terms of LMIs and
could be solved directly and easily. However, the complexity
of computation will be larger, especially M and N becomes
very large. There will be (N + 1)M + N variables to be
computed, while N 2

+ (3M + 1)N inequalities are needed
to solved; Secondly, more information about probability (8),
parameters nmax, τmin and τmax are taken into account and
could further demonstrate theirs effect on system analysis and
synthesis. On the other hand, there is also an unavoidable

problem that parameter nmax related to maxi∈S{
ρ
[`]
i

ρ
[`]
i
} plays a

large negative effect in terms of making condition (15) having
smaller region of solvable solution. This phenomenon results
from the switching property of rt on interval [kτ, (k + 1)τ )
and is inevitable. Fortunately, one could reduce this effect
by selecting suitable values of r [`]j , τmin and τmax. However,
how to further reduce this negative effect and obtain less
conservative results with smaller computation complexity are
not easy and will be our further work.

Since the jump points of controller (6) are periodic, another
type of jump system is considered and described as

ẋ(t) = Aηt x(t)+ Bηtu(t) (32)

where {ηt , t ≥ 0} is a jump process and takes values in a finite
set S , {1, 2, . . . ,N }, x(t) ∈ Rn is the system state vector,
u(t) ∈ Rm is the control input vector, and A(ηt ) and B(ηt )
are knownmatrices of compatible dimensions. Different from
Markovian switching rt , ηt jumps randomly. As a result,
the instant of switching is random, whose dwell time of a
given mode is also random and may be not an exponential
distribution. Without loss of generality, the jump points are
denoted as 0 = t0 < t1 < · · · < tk < tk+1 < · · · , k ∈ N.
Here, τ (k) denotes the dwell time of a given switching ηt and
is defined as τ (k) , tk+1 − tk . It is stated above that ηt is
different from rt and not aMarkov signal. In detail, dwell time
τ (k) is time-varying and random but without any statistical
property. The switching among modes is different from (2)
and described as

Pr{rtk+1 = j|rtk = h} =

{
θhj, h 6= j
0, h = j

(33)

where θhj denotes the switching probability from state h to
state j, and θhj ∈ [0, 1], if h 6= j, and θhh ≡ 0. Moreover,
it should also be satisfied that

∑N
j=1 θhj = 1, for all h, j ∈ S.

In other words, the jump happening in the next time should be
changed to another different mode.Without loss of generality,
for any given interval [tk , tk+1), its operationmode is assumed
to be ∀ηt = h ∈ S, ∀t ∈ [tk , tk+1). Thus, system (32) with
above description ∀ηt = h ∈ S, ∀t ∈ [tk , tk+1) becomes to{
ẋ(t) = Ahx(t)+ Bhu(t),∀ηt = h ∈ S,∀t ∈ [tk , tk+1)
x(k) , x(t)|t=tk

(34)
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Similarly, the state feedback controller in this section is also
proposed to be

u(t) = K [η̂t ]x(t) (35)

where K [η̂t ] is the control gain to be determined. And η̂t is
another switching signal and defined as

η̂t = η̂tk , ∀t ∈ [tk , tk+1),∀k ∈ N (36)

Its value is related to ηt and defined as

ωh`, Pr{η̂tk =`|ηtk = h}, ∀

` ∈ T, {1, 2, . . . ,M}, ∀h ∈ S (37)

Since τ (k) is time-varying and random, it is naturally
assumed that τ (k) ∈ [τmin, τmax], where 0 < τmin < τmax.
Similarly, variables such as x(kτ ) and ηkτ are simply denoted
as x(k) and η(k) respectively.
Remark 4: By investigating models (1) and (32), it is

found that the main difference is about the property of switch-
ing signal. In the former one, rt is a traditional Markov
process, and its dwell time belongs to an exponential distri-
bution. The latter ηt is only a switching one, whose dwell
time is arbitrary. Moreover, the current operation mode must
change to another different one at jump points. It may be
seen as a semi-Markovian process. The reason considering
such a system is to remove periodic interval [kτ, (k + 1)τ ),
∀k ∈ N. In this case, the switching of controller (35) is
naturally not instantaneous, and only conditional probabil-
ity (37) is needed considered. However, it is not said that
model (1) could be removed. The reason is either of them
cannot be totally included or specialized as another one,
though some aspects in one model are more general than ones
in the other one.
Theorem 2: Suppose that there exists a scalar r [`]i . There

is a controller (35) such that the closed-loop system (34)
is asymptotically mean square stable, if for given scalars,
ρ
[`]
i > ρ[`]

i
> 0 and ς > 0, there exist matrices Pi, X

[`]
i ,

S[`] and Y [`], satisfying conditions (11) or (12), (13), (14),
and

ς

N∑
j=1

 ∑
`∈N̄[h]

+

ωh`θhj(max
i∈S
{
ρ
[`]
i

ρ
[`]
i

})2e2r
[`]
h τmin +

∑
`∈N̄[h]

−

ωh`θhj

(max
i∈S
{
ρ
[`]
i

ρ
[`]
i

})2e2r
[`]
h τmax

]
Pj − Ph < 0 (38)

where N̄[h]
+ = {` ∈ T|r [`]h ≥ 0}, N̄[h]

− = {` ∈ T|r [`]h < 0}.
Then, the gain of controller (35) could be obtained by (16).

Proof: Based on system (34) closed by controller (35),
for any t ∈ [tk , tk+1) with any given η(k) = h, ∀h ∈ S,
a discrete-time jump system is constructed to be x(k + 1) = e

∫ tk+1
tk

Ā
[η̂tk ]
h dsx(k)

x0 = x(0)
(39)

where Ā
[η̂tk ]
h , Ah+BhK [r̂tk ]. A stochastic Lyapunov function

of system (39) is constructed to be

V (x(k), η(k), k) = xT (k)P(η(k))x(k) (40)

Then, it is computed that

1V (x(k), η(k), k)

= E
[
V (x(k + 1), η(k + 1), k + 1)

]
− V (x(k), η(k), k)

= E
[
xT (k + 1)P(η(k + 1))x(k + 1)|x(k), η(k) = h, k

]
−xT (k)Phx(k)

≤ E
[
ςxT (k)||eĀ

[η̂tk ]
h (tk+1−tk )||2P(η(k + 1))x(k)

|x(k), η(k) = h, k
]
− xT (k)Phx(k) < 0 (41)

Based on inequality (22) implied by conditions (13) and (14),
it is further computed that

E

[
ςxT (k)||eĀ

[η̂tk ]
h (tk+1−tk )||2

P(η(k + 1))x(k)|x(k), η(k) = h, k
]
− xT (k)Phx(k)

≤ E

[
ςxT (k)(α

[η̂tk ]
h )2e−2β

[η̂tk ]
h τ (k)

P(η(k + 1))x(k)|x(k), η(k) = h, k
]
− xT (k)Phx(k)

≤ xT (k)

ς N∑
j=1

(
∑
`∈N[h]

+

ωh`θhj(α
[`]
h )2e−2β

[`]
h τmin

+

∑
`∈N[h]

−

ωh`θhj(α
[`]
h )2e−2β

[`]
h τmax )Pj − Ph

 x(k)
= xT (k)

ς N∑
j=1

(
∑
`∈N̄[h]

+

ωh`θhj(α
[`]
h )2e2r

[`]
h τmin

+

∑
`∈N̄[h]

−

ωh`θhj(α
[`]
h )2e2r

[`]
h τmax )Pj − Ph

 x(k) < 0

(42)

where N[h]
+ = {` ∈ T|β[`]h ≥ 0} and N[h]

− = {` ∈ T|β[`]h < 0}.
It is further obtained by

ς

N∑
j=1

(
∑
`∈N̄[h]

+

ωh`θhj(α
[`]
h )2e2r

[`]
h τmin +

∑
`∈N̄[h]

−

ωh`θhj

(α[`]h )2e2r
[`]
h τmax )Pj − Ph < 0 (43)

which is guaranteed by (38). The next steps are similar to the
ones in Theorem 1, which are omitted here. This completes
the proof.
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Remark 5: Compared with conditions in Theorems 1
and 2, only conditions (15) and (38) are different. Such a
difference is totally determined by the considered different
systems. It seems that the latter one could lead to a higher
probability about solvable solutions. This doesn’t say that
Theorem 2 is better than Theorem 1. The reason is that the
considered problems between them are different, and no any
additional jumps in interval [tk , tk+1) happen in the latter.
Thus, condition (38) could easily obtain solvable solutions.
How to obtain more general conditions containing them both
is not easy and will be our future research topics.

Based on the above analysis, an algorithm for Markovian
jump systems with a period and random switching controller
is presented to solve this problem.

Computation Algorithm:

Step 1: For system (9) with given r`i , i ∈ S, ` ∈ T, and
determine sets N̄+` , N̄

−

` and maximum iteration time
kmax.

Step 2: Select suitable values of ρ[`]i , ρ[`]
i

and ς such as

ρ
[`]
i > ρ[`]

i
> 0 and ς > 0, and set k = 0.

Step 3: Find solvable solutions (Pi,X
[`]
i , S[`],Y [`]) satisfy-

ing (11) or (12), and (13)-(15).
Step 4: If there are solvable solutions, compute control gains

by (16), and exit; Otherwise go to Step 5, and set k =
k + 1;

Step 5: If k ≤ kmax, increasing ρ
[`]
i or decreasing ρ[`]

i
,

while increasing ς or not depends on which one of
conditions (11) and (12) is used, and go to Step 3;
Otherwise exit. It means that there is no solvable
solution to controller (6) for system (9) with given
r`i , i ∈ S, ` ∈ T. In order to obtain solutions, one
could select much more smaller values of r`i such as
r`i < 0, i ∈ S, ` ∈ T. Then, repeat this process from
Step 1.

IV. NUMERICAL EXAMPLES
Example 1: Consider an VTOL helicopter model partly cited
from [39]. Its form is described as (1), whose parameters are
given to be

A1 =


−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.3681 −0.707 1.4200

0 0 1 0



B1 =


0.4422 0.1761
3.5446 −7.5922
−5.5200 4.4900

0 0



A2 =


−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.0664 −0.707 0.1198

0 0 1 0



B2 =


0.4422 0.1761
0.9775 −7.5922
−5.5200 4.4900

0 0



A3 =


−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.5047 −0.707 2.5460

0 0 1 0



B3 =


0.4422 0.1761
5.1120 −7.5922
−5.5200 4.4900

0 0


Here, the state variables x1, x2, x3 and x4 are denoted as the
horizontal velocity, the vertical velocity, the pitch rate and the
pitch angle respectively. Jump parameter r(t) ∈ S , {1, 2, 3}
indicates the airspeed and corresponds to the three airspeeds
during helicopter flight: 135 knots, 60 knots and 170 knots.
Without loss of generality, the transition rate matrix is given
as

3 =

−0.0450 0.0002 0.0448
0.0171 −0.0171 0
0.0894 0 −0.0894


By the traditional methods for designing a mode-dependent
controller such as [7], [8], [12], one could get the correspond-
ing gains as

K [1]
=

[
2.6919 25.9312 −16.6173 −5.7369
5.8135 12.3155 −20.5112 −7.8846

]
K [2]
=

[
−137.6000 −1061.5 705.6 275.6
−280.4000 −147.6 873.5 356.3

]
K [3]
=

[
−69.6 −1141.7 708.0 205.4
−188.5 −164.1 855.9 234.7

]
For this kind of controller, it is said that it is ideal sometimes,
since its operation mode should be available online. In other
word, when its mode experiences general case such as (7),
the desired controller may be disabled. Without loss of gener-
ality, it is assumed here that stochastic process r̂(t) has three
modes such as r̂(t) ∈ M , {1, 2, 3}. Meanwhile, the other
parameters are given as τ = 20, τmin = 10 and nmax = 2.
The 5 is computed to

5 =

 0.6692 0.0258 0.3050
0.2206 0.7148 0.0646
0.6086 0.0151 0.3764


and 4 , (ξh`) ∈ R3×3 is given to be

4 =

 0.3 0.4 0.3
0.7 0.2 0.1
0.3 0.1 0.6


Under initial condition x0 =

[
1 −1 1 −1

]T and after
applying the above controller experiencing condition (7), one
could get the corresponding simulation of the closed-loop
system given in Fig. 2, while Fig. 3 is the simulation
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FIGURE 2. The state responses of closed-loop system.

FIGURE 3. The simulations of operation modes rt and r̂t .

of operation modes rt and r̂t . Based on these simula-
tions, it is seen that the closed-loop system becomes unsta-
ble when controller experiences condition (7). In other
words, general condition (7) plays a negative effect in terms
of reducing system performance even making the stable
system unstable. At the same time, one could design
controller (6) based on Theorem 1. Without loss of gen-
erality, when given ς = 1.1, ρ[`]

i
= 1.1, ρ[`]i = 100,

∀i ∈ S, ∀` ∈ M, r [1]1 = −1.2, r [2]1 = −0.9, r [3]1 =

−0.9, r [1]2 = −1, r
[2]
2 = −0.8, r

[3]
2 = −0.9, r

[1]
3 = −0.9,

r [2]3 = −0.8 and r [3]3 = −0.9, it is obtained by Theorem 1
that

S[1] =


0.0381 0.0231 −0.0491 0.0623
0.0070 0.2446 0.0619 0.0263
−0.0984 −0.0801 0.2293 −0.2200
0.0610 0.0843 −0.0356 0.1133


Y [1]
=

[
−0.0357 0.0787 0.1839 −0.0358
−0.0436 0.0547 0.0727 −0.0483

]

S[2] =


0.1329 −0.2797 −0.1555 0.1539
−0.1117 2.2169 −0.6605 0.2462
−0.2980 −0.5563 1.1295 −0.6872
0.2029 0.0458 −0.4292 0.3499



Y [2]
=

[
−0.1372 0.2731 0.4195 −0.1949
−0.1707 0.3986 0.2920 −0.2195

]

S[3] =


0.1121 −0.1729 −0.1612 0.1462
−0.0591 1.2735 −0.4781 0.1715
−0.2868 −0.4337 1.0633 −0.6444
0.1850 0.0228 −0.4032 0.3239


Y [3]
=

[
−0.1219 0.0978 0.4426 −0.1955
−0.1492 0.2398 0.3046 −0.2133

]
Then, the control gains are computed as

K [1]
=

[
−4.8002 −0.1186 0.2451 2.8248
−2.5711 0.2144 −0.2082 0.5327

]
K [2]
=

[
−3.2539 −0.1294 0.8457 2.6263
−1.1426 0.1147 0.3554 0.4925

]
K [3]
=

[
−3.7277 −0.0206 0.9530 2.9876
−1.4473 0.2551 0.4451 0.7258

]

FIGURE 4. The state responses of closed-loop system (1).

Under the same conditions and after applying the above
controller, one could get the simulation of closed-loop system
given in Fig. 4. It is obvious that it is stable and demon-
strates the utility of the proposed method. On the other hand,
one could also design controller (35) with conditions (36)
and (37) for a jump system described by (33) and (34). Jump
parameters ηt and η̂t take values in sets S and M respec-
tively. The transition probability of 2 , (θhj) ∈ R3×3 is
given as

2 =

 0 0.4 0.6
0.7 0 0.3
0.2 0.8 0


And ϒ , (ωh`) ∈ R3×3 is given to be

ϒ =

 0.3 0.4 0.3
0.7 0.2 0.1
0.3 0.1 0.6


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When the related parameters of Theorem 2 are given to be
same, one has

S[1] =


0.0376 0.0265 −0.0488 0.0619
0.0061 0.2421 0.0674 0.0241
−0.0962 −0.0789 0.2211 −0.2160
0.0598 0.0865 −0.0325 0.1117


Y [1]
=

[
−0.0351 0.0781 0.1820 −0.0347
−0.0429 0.0516 0.0719 −0.0475

]

S[2] =


0.1333 −0.2821 −0.1557 0.1541
−0.1120 2.2524 −0.6768 0.2531
−0.2991 −0.5717 1.1410 −0.6924
0.2034 0.0498 −0.4332 0.3518


Y [2]
=

[
−0.1378 0.2739 0.4211 −0.1958
−0.1712 0.4014 0.2926 −0.2200

]

S[3] =


0.1124 −0.1725 −0.1624 0.1468
−0.0584 1.2822 −0.4857 0.1747
−0.2884 −0.4417 1.0728 −0.6489
0.1857 0.0255 −0.4071 0.3258


Y [3]
=

[
−0.1223 0.0956 0.4453 −0.1968
−0.1496 0.2388 0.3065 −0.2143

]
Then, the control gains are computed as

K [1]
=

[
−4.7226 −0.0622 0.1975 2.7033
−2.5191 0.2484 −0.2398 0.4536

]
K [2]
=

[
−3.2537 −0.1293 0.8456 2.6261
−1.1411 0.1147 0.3556 0.4919

]
K [3]
=

[
−3.7258 −0.0183 0.9543 2.9892
−1.4482 0.2578 0.4471 0.7298

]

FIGURE 5. The simulations of operation modes ηt and η̂t .

Under the same initial condition, one could also obtain the
simulations of the resulting closed-loop system. Particu-
larly, Fig. 5 is the simulation of operations modes satisfy-
ing (33), (36) and (37). FromFig. 6, it is seen that the designed
controller is still effective since the states of closed-loop sys-
tem are stable. Based on such simulations and comparisons,
it is said that our methods are less conservative that they can
be used to more cases in terms of general operation mode of
controller.

FIGURE 6. The state curves of closed-loop system (34).

V. CONCLUSIONS
In this paper, the stabilization problem of continuous-time
Markovian jump systems has been investigated by a restrict
controller. Different from the existing ones, the main restric-
tion about the controller is that the dwell time of each
controller is period, whose switching signal is a piece-
wise continuous function. Moreover, the switching of con-
trollers at jump points is random and conditionally dependent
on the original mode at such jump points. By studying a
discrete-time MJS indirectly, the existence conditions have
been with LMI forms and related to period and conditional
probability. Then, the proposed model and method have been
applied to propose an aperiodic controller. The utility and
advantage of the established results have been proved by
a numerical example. Finally, it is said that there are still
many problems to be considered. Firstly, because of lots of
LMIs and variables to be solved, how to further reduce the
complexity is another important problem; Secondly, it is seen
that in order to obtain solvable conditions, some enlarged
inequalities have been introduced, which also bring some
conservatism. How to further reduce the conservatism is
necessary to be considered; Thirdly, some extensions about
such models could be applied to describe other problems
directly, such as filtering, observer design, and fault detection.
Fourthly, but not the last, it is worth mentioning that there
are still some disadvantages of the proposed controller. One
of them is that the jump points are periodic, and the dwell
times are equal or constant. This assumption is ideal and will
make the application with some limitations. Thus, more effort
will be applied to deal with this problem. In a word, all the
observations are necessary studied, and some of them may be
not easy.
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