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ABSTRACT A set of spanning trees in a graph G is called independent spanning trees (ISTs) if they are
rooted at the same vertex r , and for each vertex v(6= r) in G, the two paths from v to r in any two trees share
no common vertex expect for v and r . ISTs can be applied in many research fields, such as fault-tolerant
broadcasting and secure message distribution in reliable communication networks. Since Cayley graphs
have been widely used to design interconnection networks, constructing ISTs on cayley graphs is worth
studying. The alternating group network is a subclass of Cayley graphs, and the approach of constructing
ISTs in alternating group networks is still unknown. In this paper, we propose a novel and simple top-down
approach for constructing ISTs in alternating group networks. The main ideas of the algorithm are to use
induction to develop small trees to big trees, to use a triangle breadth-first search (TBFS) process to create
a backbone of an IST, and to use breadth-first search (BFS) process to connect the rest of nodes. Compared
to other methods of different interconnection networks in the literature, the uniqueness of our method is that
it does not need to determine the parent of one node by any rule, on the contrary others determine that by
rules. The time complexity in n-dimensional alternating group network ANn is O(n2× n!), where n! is twice
the number of nodes of ANn; hence it is polynomial time. We implement the algorithm in PHP and run cases
from AN3 to AN10. The results reveal that all spanning trees of AN3 to AN10 are independent and that our
algorithm is accurate and efficient.

INDEX TERMS Independent spanning trees, alternating group networks, triangle breadth-first search,
interconnection networks, Cayley graph.

I. INTRODUCTION
A set of spanning trees in a graph G is called independent
spanning trees (ISTs) if they are rooted at the same vertex
r , and for each vertex v(6= r) in G, the two paths from
v to r in any two trees share no common vertex expect
for v and r , namely that they are internally disjoint paths.
The IST problem is appealing and has attracted consider-
able attention. It can be applied in many research fields,
such as fault-tolerant broadcasting and secure message dis-
tribution [1], [2]. These applications are briefly described
below [3]:
• In fault-tolerant broadcasting, assume that there exists k
ISTs rooted at node r in a network M , and M contains
at most k − 1 faulty nodes. Then r can broadcast a
message to every non-faulty node v inM by broadcasting
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the message over all the k trees. Since the number of
faulty nodes is less than k , at least one of the k internally
disjoint paths from r to v is fault free; this assures the
message delivery to every node in the network;

• In secure message distribution, a message can be divided
into k packets where each packet is sent by node r
to its destination using a different spanning tree. Thus,
each node in the network receives at most one of the k
packets except the destination node that receives all the
k packets.

In this regard, the problem of constructing ISTs on graphs
is worth studying. Zehavi and Itai proposed that k ISTs can
be constructed from a k-connected graph [19]. The conjecture
has been proved true for k-connected graphs with k ≤ 4
[20]–[22], but it remains open for k ≥ 5. However, the prob-
lem is very tough for arbitrary graphs, and researchers have
shifted their attention to methods for constructing ISTs in
interconnection networks over the past decade.
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TABLE 1. Comparison of methods in different interconnection networks
whose dimension is n and the number of nodes is N .

A class of graphs called group graphs or Cayley graphs
are crucial for the design and analysis of interconnection
networks for parallel and distributed computing. [12]–[15].
The IST problem has been solved on several interconnection
networks, including twisted cubes [23], cross cubes [24],
Möbius cubes [25], locally twisted cubes [4], [5], parity
cubes [26], hypercubes [7], [8], folded hypercubes [9], and
bubble-sort networks [10], [11]. To the best of our knowledge,
the approach of constructing ISTs in alternating group net-
works is still unknown. In this paper, we focus on alternating
group networks.

The alternating group networks ANn (n stands for dimen-
sions) proposed by Youhu in 1998 [17] differ from the
alternating group graphs AGn introduced by Jwo et al.
in 1993 [16]. The new alternating group networks are also
Cayley graphs and are thus vertex-symmetric. The diame-
ters of ANn and AGn are comparable; however, the node
degree of ANn is only about half that of AGn. Furthermore,
the new graphs are maximally fault-tolerant and share some
of the positive structural attributes of the well-known star
graphs [15]. ANn is a regular graph with n!/2 nodes and
n!(n − 1)/4 edges as well as a node degree n − 1. ANn is
Hamiltonian and has a diameter for which the upper bound is
3(n− 2)/2 [18].

In this paper, we propose a novel and simple top-down
approach for constructing ISTs in alternating group networks.
The main ideas of the algorithm are to use induction to
develop small trees to big trees, to use a triangle breadth-first
search (TBFS) process to create a backbone of an IST, and
to use breadth-first search (BFS) process to connect the rest
of nodes. Compared to other methods of different inter-
connection networks in the literature presented in Table 1,
the uniqueness of our method is that it does not need to
determine the parent of one node by any rule, on the contrary
others determine that by rules. The time complexity in n-
dimensional alternating group network ANn is O(n2 × n!),
where n! is twice the number of nodes of ANn; hence it is
polynomial time.

The remainder of this paper is organized as follows:
Section II explains preliminary considerations; Section III
presents the algorithm; Section IV proves the relevant
claims; SectionV describes the software implementation; and
Section VI concludes the paper.

II. PRELIMINARY CONSIDERATIONS
An n-dimensional alternating group network ANn is defined
to be a Cayley graphG = G(V ,E) in an alternating group An,

FIGURE 1. Three operations in alternating group networks.

FIGURE 2. AN3 and children of node 123.

where V is the set of all even permutations of 〈n〉 =
{1, 2, . . . , n} and E consists of symmetric edges (u, v) such
that any two distinct permutations u and v are connected by an
edge if and only if one can be reached from the other through
operations such as left child, right child, and cross node.
Suppose that n = 3, ANn has the vertex set of even permuta-
tions from {1, 2, . . . , n}; two vertices [a1, a2, a3, . . . , an] and
[b1, b2, b3, . . . , bn] are adjacent if one of the following three
conditions is satisfied.
• The first condition is a1 = b3, a2 = b1, a3 = b2 and
aj = bj for 4 ≤ j ≤ n. As illustrated in Fig. 1(a), node b
is the left child of node a.

• The second condition is a1 = b2, a2 = b3, a3 = b1 and
aj = bj for 4 ≤ j ≤ n. As presented in Fig. 1(b), node b
is the right child of node a.

• The third condition is that there exists i ∈ {4, 5, . . . , n}
such that a1 = b2, a2 = b1, a3 = bi, ai = b3, and
aj = bj for j ∈ {4, 5, ..., n}\{i}. As shown in Figure 1(c),
node b is cross node i of node a.

AN3 is shown in Figure 2(a). Because odd permutations
are prohibited and because the permutation 213, 132, 321 are
all odd permutations, node 213, node 132, and node 321 do
not exist in AN3. Accordingly, AN3 has three nodes and
there edges and is a triangle. Node 123 has two children,
as illustrated in Figure 2(b) and 2(c).
AN4 is displayed in Figure 3. The set {1, 2, 3, 4} has

24 permutations, namely 12 even permutations and 12 odd
permutations.We require only even permutations; hence,AN4
has 12 nodes and 18 edges. Node 1234 has two children
and one cross node as presented in Figure 4. AN5 consists
of 60 nodes and 120 edges, as displayed in Figure 5, and is
composed of five instances AN4.

III. ALGORITHM
Notations used in the following paragraphs:
• the root: node 123456 . . . n;
• group A: a set of nodes whose last character is A;
• the root group: the set of nodes whose last character is
identical to that of the root. In ANn, the root group is
group n;

• T nj : the jth IST of ANn, and its backbone whose last
character is j;

• tid : the last character of the bone seed, namely j of T nj .
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FIGURE 3. AN4.

FIGURE 4. Children and cross node of node 1234 in AN4.

FIGURE 5. AN5.

ANn is partitioned into n instances of ANn−1. Every node is
classified into a group by its last character. Thus, ANn has n
groups. For example, AN4 can be divided into four instances
of AN3. AN4 has four groups, as illustrated in Figure 6.

Each node in ANn−1 can be transformed into some node in
ANn if one character ’n’ is appended to the tail of the sequence
in the n position. We thus construct the ISTs of ANn by taking
advantage of that of ANn−1.
In ANn, the root has n− 1 edges and connects n− 1 nodes.

In the n − 1 nodes connected by the root, n − 2 nodes can
be constructed from those in ANn−1 if one character ’n’ is
appended to the n position, but the cross node n is a new node.
Each of the n−2 nodes has a new edge that connects to a node
that is called a bone seed and the cross node n itself is also a
bone seed. We use bone seeds to create a backbone to connect
other groups.

The concept is illustrated in Figure 7. Each of the central
white nodes can be formed from some node in ANn−1 if a
single character ’n’ is appended to the n position. The left

FIGURE 6. Colored depiction of AN4.

FIGURE 7. Bone seeds.

child of the root in ANn uses its new edge to make the bone
seed of T n1 . The right child of the root in ANn uses its new
edges to make the bone seed of T n2 . The root in ANn uses its
new edge to make the bone seed of T n3 . The cross nodes 5 to
n−1 of the root in ANn use their new edges to make the bone
seeds of T n5 to T nn−1. T

n
4 does not conduct any bone function;

consequently, it has no bone seed.

A. MAIN ALGORITHM
We use the following global variables in Algorithm 1.

• tree: an array of the trees of this iteration; it is a
two-dimensional array, and tree[ id ][ node ] represents
its parent. Therefore, every tree includes all nodes. If the
node has not yet been visited, its value is 0; tree[ id ]
[ node ] = 0.

• ptree: an array of the trees of the previous iteration.
• arrow: an associative array for storing all direct edges.
Initially, an arrow[ from ][ to ] value of 1 represents an
unused direct edge; an arrow[ from ][ to ] value of 0
represents a used direct edge.

AN3, the basic part, is a triangle, having two independent
spanning trees that are illustrated in Figure 8.
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Algorithm 1Main Algorithm
Input : size: problem size, ex. 10 means AN3 to AN10
Output: the ISTs from AN3 to ANsize

1 for t = 3; t ≤ size; t = t + 1 do
2 if t == 3 then
3 basic part, a triangle;

4 else if t ≥ 4 then
5 Copy previous trees of the previous iteration to

the trees of this iteration;
6 Make a bonelist; F an array to store the bone
7 F seeds
8 for every bone seed in the bonelist do
9 Execute bone operation;

10 //spark block
11 if t == 4 then
12 for i = 0; i < 2; i = i+ 1 do
13 for from tree 1 to tree 3 do
14 if i == 0 then
15 spark(tree id , true);

16 else
17 spark(tree id , false);

18 else if t ≥ 5 then
19 spark(4, true); F (1)
20 // Spark three times. F (2)
21 for i = 0; i < 3; i = i+ 1 do
22 for j = 1; j ≤ t − 1; j = j+ 1 do
23 if j 6= 4 then
24 if i == 0 then
25 spark( j, true);

26 else
27 spark( j, false);

28 spark(4, false);

29 spark(3, false); F (3)

30 ptree = tree;

31 /*
32 Comments:
33 (1) First, Tree 4 executes a spark operation to produce

cross nodes along the root group, Tree 4 first occurs in
AN5, and it copies Tree 3 of AN4 to its own tree array,
namely tree[4].

34 (2) Second, every tree executes spark operations, and
Tree 4 is the last tree to execute those operations.

35 (3) Relative to other trees, Tree 3 requires one more
spark operation to connect the root group.

36 */

1) COPY PREVIOUS TREES
Weuse an array to store trees in every iteration.We implement
the algorithm in PHP and employ PHP associative arrays.

FIGURE 8. ISTs in AN3 and all paths.

FIGURE 9. Tree 1 of AN4, its parent table, and PHP code.

TABLE 2. Tree id and previous tree id mapping.

Associative arrays differ from numeric arrays in that asso-
ciative arrays use descriptive names for id keys.

Array keys serve to identify nodes with values storing their
parents. For example, in AN4, the parent of node 3241 is node
2314 in Tree 1, the information is stored in an array, namely
tree[ 1 ][ ’3241’ ] = ’2314’. These quotation marks are used
to indicate string constants. At the end of each iteration,
the corresponding trees must be stored in another array ptree
so that correct information can be used in the next iteration.
The tree array ptree stores the previous trees. At the start of
every iteration, the program should copy previous trees to the
tree array tree. The data structure of each tree uses an array
to associate nodes with their parents. Tree 1 of AN4 is shown
in Figure 9. Note that the parent of node 1234 is set to 9,
a dummy value to prevent the root from being visited again.

Every tree has a tree id. Each tree id is the last character of
the bone seed. Table 2 presents the mapping a new tree and
an old tree. In a typical iteration, T n1 copies information from
T n−11 and T nn−1 copies information from T n−13 . T n3 is a new
tree, and thus no previous tree is copied.
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FIGURE 10. Bone seeds (nodes with dark brown outlines) in AN4.

2) CREATE A BONELIST
A bonelist is an array for storing the bone seeds. The bone
seeds are created from the root (123456. . . ). In AN4, we can
create three bone seeds, namely 3241, 1342, 2143 to establish
backbones, as shown in Figure 10.
For example, AN5 has four trees and three bone seeds:

32541 in T 5
1 , 13542 in T 5

2 , 21543 in T 5
3 , as presented Fig-

ures 13, 14, and 15, respectively. As indicated in Figure 16,
Tree 4 does not execute any bone operation, but it does
conduct spark operations.

B. BONE FUNCTION
A backbone tree can be constructed from a bone seed
through a triangle breadth-first search (TBFS) process. How-
ever, the TBFS process must stop when it encounters a
node of which the last character differs from that of the
bone seed. First, we review the BFS process. The BFS is
a graph traversal approach using a queue, in contrast to a
depth-first search process, which uses a stack. For example,
Figure 11 presents a graph that can be traversed using the
BFS process.

BFS order. In the bone function, every node in the bone
queue must visit all hitherto unvisited nodes connected to it
in the following order:

1. left child; 2. right child; 3. cross nodes 4, 5, 6, . . . , n.
TBFS process.Because ANn is symmetric, the graph illus-

trated in Figure 12(a) is derived. We remove the last visited

FIGURE 11. BFS steps.

FIGURE 12. BFS and TBFS processes.

edge (blue X) and use another edge (blue arrow) to visit
the node. Thus, the triangle shape is preserved. Figure 12(b)
presents this concept.

The Basic functions corresponding to the aforementioned
processes are presented in the following passages. The bone
procedure is specified in Algorithm 2.

• function leftchild(parent): returns the left child of
parent;

• function rightchild(parent): returns the right child of
parent;

• function crossnode(parent , p): returns the cross node
p of parent by swapping first and second characters,
as well as the third and the pth (p 6= 1, 2, 3) characters
of parent .

For example, in Figure 17, the backbone nodes and bound-
ary nodes of T 5

1 are indicated by ellipses with blue and brown
borders respectively. When the TBFS process encounters
different color nodeswhose last character is different from the
bone seed, it does not put them into the queue. These nodes
are called boundary nodes.

C. SPARK FUNCTION
The spark functions shown in Algorithm 3 must con-
nect all unvisited nodes by one step at a time from a
tree after the bone operation. For example, in Figure 18,
the spark nodes of T 5

1 in the first and second spark execu-
tions are indicated by ellipses with gold and gray borders
respectively.
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FIGURE 13. Tree 1 bone seed: 32541 in AN5.

FIGURE 14. Tree 2 bone seed: 13542 in AN5.

FIGURE 15. Tree 3 bone seed: 21543 in AN5.

D. PATH COMPOSITION
According to the algorithm, the output paths from the root
to other nodes include the backbone part and the spark part,
as displayed in Figure 19. The backbones of trees except for
Tree 4 have a bone seed.

Because Tree 4 done not execute a bone operation, the last
character of the root is appended to its previous tree as
its backbone. For example, in Tree 4 in AN5 (Figure 16),
the green nodes originate from Tree 3 in AN4, and the last
character ’5’ is appended to construct the backbone in AN5.
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FIGURE 16. Tree 4 in AN5 has no bone seed due to no bone operation.

FIGURE 17. Backbone nodes (blue border) and boundary nodes (brown border) of T 5
1 after bone function.

FIGURE 18. Spark nodes (gold and gray border) of T 5
1 after spark function.

IV. PROOF
Lemma 1: Every node in ANn belongs to a

triangle.
Proof: Assume that one node abcd belongs to two

triangles. In Figure 20, nodes abcd , bcad , and cabd form

a triangle with characters a, b, and c. Node abcd con-
nects to the cross node badc. The triangle with charac-
ters b, a, and d cannot have another edge connected to
node abcd . Accordingly, the aforementioned assumption is
impractical.

VOLUME 8, 2020 112339



J.-F. Huang et al.: Top-Down Construction of ISTs in Alternating Group Networks

Algorithm 2 Create a Backbone
Input: seed and tid F the bone seed and tree id

1 Function bone(seed, tid)
2 boneQueue = array(seed);
3 F put seed into boneQueue initially
4 /*
5 From node seed , search left child, right child and

cross nodes. During searching,if the visited node is
in the same group as seed , it will be put into
boneQueue. */

6 for j = 0; j < |boneQueue|; j = j+ 1 do
7 v = boneQueue[j]; F get the jth element of
8 F boneQueue
9 lchild = leftchild(v);
10 rchild = rightchild(v);
11 // Case 1: visit left and right children
12 // left and right children are unvisited;
13 // both edges from v to them are unused
14 if tree[tid][lchild] == 0 and

arrow[v][lchild] == 1 and
tree[tid][rchild] == 0 and
arrow[v][rchild] == 1 then

15 // visit left child
16 tree[tid][lchild] = v; F (1)
17 arrow[v][lchild] = 0; F (2)
18 boneQueue[] = lchild ; F (3)
19 // visit right child
20 tree[tid][rchild] = v; F (1)
21 arrow[v][rchild] = 0; F (2)
22 boneQueue[] = rchild ; F (3)
23 end
24 // Case 2: TBFS
25 // left child is unvisited, its edge unused;
26 // right child is visited, its edge unused
27 if tree[tid][lchild] == 0 and

arrow[v][lchild] == 1 and
tree[tid][rchild] 6= 0 and
arrow[v][rchild] == 1 then

28 // visit left child
29 tree[tid][lchild] = v; F (1)
30 arrow[v][lchild] = 0; F (2)
31 boneQueue[] = lchild ; F (3)
32 //
33 // set the edge (from the right child’s
34 // parent to the right child) unused
35 // (from 0 to 1)
36 arrow[tree[tid][rchild]][rchild]++;
37 tree[tid][rchild] = 0; F (4)
38 // visit right child
39 tree[tid][rchild] = v; F (1)
40 arrow[v][rchild] = 0; F (2)
41 boneQueue[] = rchild ; F (3)
42 end
43 // continued on next page

44

45

46 //Case3: TBFS
47 //left child is visited, its edge unused;
48 //right child is unvisited, its edge unused
49 if tree[tid][lchild] 6= 0 and

arrow[v][lchild] == 1 and
tree[tid][rchild] == 0 and
arrow[v][rchild] == 1 then

50 // set the edge (from the left child’s
51 // parent to the left child) unused
52 // (from 0 to 1)
53 arrow[tree[tid][lchild]][lchild]++;
54 tree[tid][lchild] = 0; F (4)
55 // visit the left child
56 tree[tid][lchild] = v; F (1)
57 arrow[v][lchild] = 0; F (2)
58 boneQueue[] = lchild ; F (3)
59 // visit the right child
60 tree[tid][rchild] = v; F (1)
61 arrow[v][rchild] = 0; F (2)
62 boneQueue[] = rchild ; F (3)
63 end
64 // visit cross nodes
65 for i = 4; i ≤ the number of characters of one

node; i = i+ 1 do
66 cnode = crossnode( v, i );
67 if tree[tid][cnode] == 0 and

arrow[v][cnode] == 1 then
68 tree[tid][cnode] = v; F (1)
69 arrow[v][cnode] = 0; F (2)
70 if the last character of v == the last

character of cnode then
71 boneQueue[] = cnode; F (3)
72 end
73 end
74 end
75 end
76 /* Comments:
77 (1) Set the parent of the left child, right child,

or cross nodes.
78 (2) Set the edge used (from 1 to 0).
79 (3) Put the left child, right child or cross nodes into

boneQueue.
80 (4) Set the right or left child unvisited. */
81 End Function

Lemma 2: If one node has one child (either right or left) in
the backbone part, it must have the other child.

Proof: Because we use the TBFS process in the
bone function, every parent in the backbone will have two
children.
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Algorithm 3 Connect the Unvisited Nodes by One Step
at a Time From Tree tid
Input: tid and first F tree id and

F first execution (boolean value)
1 Function spark(tid, first)
2 // global means using global variable
3 global spkQue; F a two-dimensional array for
4 F storing nodes visited by Tree tid not to traverse
5 F all nodes in Tree tid each time
6 global spkQueIndex; F the start position in
7 F spkQue[tid] of Tree tid each time
8 if first == true then
9 // first execution

10 for every node v in tree[tid] do
11 //only Tree 4 can grow from the root group
12 if v has parent and ( ( tid 6= 4 and the last

character of v 6= the last character of the
root) or tid == 4) then

13 lch = leftchild( v );
14 rch = rightchild( v );
15 // visit the left child
16 if tree[tid][lch] == 0 and

arrow[v][lch] == 1 then
17 tree[tid][lch] = v; F (1)
18 arrow[v][lch] = 0; F (2)
19 spkQue[tid][] = lch; F (3)
20 end
21 // visit the right child
22 if tree[tid][rch] == 0 and

arrow[v][rch] == 1 then
23 tree[tid][rch] = v; F (1)
24 arrow[v][rch] = 0; F (2)
25 spkQue[tid][] = rch; F (3)
26 end
27 // visit the cross nodes
28 for i = 4; i ≤ the number of characters

of one node; i = i+ 1 do
29 cn = crossnode( v, i);
30 if tree[tid][cn] == 0 and

arrow[v][cn] == 1 then
31 tree[tid][cn] = v; F (1)
32 arrow[v][cn] = 0; F (2)
33 spkQue[tid][] = cn; F (3)
34 end
35 end
36 end
37 end

Lemma 3: Every node in ANn provides an incoming edge
to every tree.

Proof: ANn is connected and has n − 1 trees. If some
node provides its two incoming edges to some tree, then
the tree will visit this node twice. The concept is illustrated
in Figure 21, where different colors mean different trees.

38

39 else
40 qsize = count( spkQue[tid] );
41 F current size of spkQue[tid]
42 /*
43 new element will be put into spkQue[tid], but

will be checked in next execution
44 */
45 for y = spkQueIndex[tid]; y < qsize;

y = y+ 1 do
46 v = spkQue[tid][y];
47 if (tid 6= 4 and the last character of v 6= the

last character of the root ) or tid == 4 then
48 lch = leftchild( v );
49 rch = rightchild( v );
50 // visit the left child
51 if tree[tid][lch] == 0 and

arrow[v][lch] == 1 then
52 tree[tid][lch] = v; F (1)
53 arrow[v][lch] = 0; F (2)
54 spkQue[tid][] = lch; F (3)
55 end
56 // visit the right child
57 if tree[tid][rch] == 0 and

arrow[v][rch] == 1 then
58 tree[tid][rch] = v; F (1)
59 arrow[v][rch] = 0; F (2)
60 spkQue[tid][] = rch; F (3)
61 end
62 // visit the cross nodes
63 for i = 4; i ≤ the number of characters

of one node; i = i+ 1 do
64 cn = crossnode( v, i );
65 if tree[tid][cn] == 0 and

arrow[v][cn] == 1 then
66 tree[tid][cn] = v; F (1)
67 arrow[v][cn] = 0; F (2)
68 spkQue[tid][] = cn; F (3)
69 end
70 end
71 end
72 end
73 spkQueIndex[tid] = y;
74 F store the position for next execution
75 end
76 /* Comments:
77 (1) Set the parent of the left child, right child,

or cross nodes.
78 (2) Set the edge used (from 1 to 0).
79 (3) Put the left child, right child or cross nodes into

spkQue[tid]. */
80 End Function

Lemma 4: Every tree can visit all nodes in group 4 in most
two steps.
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FIGURE 19. Path composition.

FIGURE 20. Each node belongs to one triangle.

FIGURE 21. Incoming and outgoing edges.

FIGURE 22. Connections of group 4.

Proof: Tree 4 does not conduct any bone operation. The
edges in group 4 are all unused. Every node in group 4 is
connected directly by some tree. If some node in group 4 is
not directly connected by some tree, it can connect its left
child, right child and cross nodes to reach some tree. Consider
one node abcd4 in group 4. This node will be connected
directly by tree c, and trees a, b, and d reach it in two steps,
as displayed in Figure 22.
Lemma 5: The spark part has five patterns: P1, P2, P3, P4,

and P5, as displayed in Figure 23.
Proof: P1:

The node in P1 is a boundary node, the third character
of which is the same as the last character of the objective
backbone nodes.

FIGURE 23. Five spark patterns.

P2:
The node in P2 can reach tree backbones by its left child,

right child, or cross nodes according to the appropriate tree
id.

P3:
Assume that node v whose last character is s must have

an edge e to walk to the backbone of Tree t through the
character t . However, e has been used in the backbone of Tree
s. Because Tree 4 does not execute any bone operations and it
uses the last character n of the root as the last character of its
backbone nodes, node vwill utilize the character 4 to walk an
edge to the next node u according to Lemma 4. Subsequently,
node u can utilize its character t to the backbone of Tree t .
The following examples illustrate P1, P2, and P3(type 1 and
type 2).

Ex. AN6: five paths from the root to node 625431 can be
calculated as follows:

The last character of node 625431 is 1; therefore, this node
is the backbone node of Tree 1. The parent of node 625431 is
node 263451 in Tree 1; the parent node uses 3 to traverse node
625431, and consequently Tree 3 cannot use 3 to traverse
node 625431. Node 625431 uses 4 to approach the backbone
of Tree 3.
123456→231456→326451→263451→625431 (backbone)
123456→312456→136452→613452→165432→651432
→562431→625431 (P2)
123456→216453→621453→264153→625143→261543
→623541→264531→625431(P3 type1)
123456→214356→421356→243156→425136→254136
→521436→256431→625431(P2)
123456→215436→126435→261435→625431 (P1)

Ex. AN6: five paths from the root to node 624351
The last character of node 624351 is 1; therefore, this node

is the backbone node of Tree 1. The parent of node 624351 is
node 263451 in Tree 1; this parent uses 3 to traverse node
624351, and consequently, Tree 3 cannot use 3 to traverse
node 624351. Node 624351 uses 4 to approach the backbone
of Tree 3.
123456→231456→326451→263451→624351 (backbone)
123456→312456→136452→613452→164352→641352
→462351→624351 (P2)
123456→216453→621453→264153→623154→261354
→624351 (P3 type2)
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123456→214356→421356→246351→624351 (P2)
123456→215436→126435→261435→624135→263145
→621345→265341→624351(P2)
P4:

Similar the case of P3, node vwhose last character is smust
have an edge e1 to walk to the backbone of Tree t through the
character t . However, e1 is used in the backbone of Tree s.
Node v will utilize the character 4 to walk an edge to the next
node u according to Lemma 3. Node u subsequently requires
an edge e2 to walk to the backbone of Tree t through the
character t . However, the edge e2 is still used in the backbone
of Tree s. u will utilize the character 4 to walk an edge to the
next node w according to Lemma 3. Here, the third character
of node u is 4; therefore the last character of nodew is 4. Node
w will utilize its character t to reach the backbone of Tree t .
According to Lemma 4, node w will just pass one node in
group 4 to reach the backbone of Tree t . P4 is demonstrated
in the following example.
123456→231456→326451→632451→365421→653421
(backbone)
123456→312456→136452→613452→165432→651432
→562431→653421 (P2)
123456→216453→162453→615423→561423→653421
(P1)
123456→214356→421356→243156→432156→345126
→534126→351426→536421→653421(P2)
123456→215436→126435→612435→163425→614325
→165324→651324→564321→653421(P4)
We assess the parent of node 564321 in T 6

1 . We deter-
mine that its parent is node 645321 and that the third
character of node 645321 is still 5. Therefore, node
564321 in T 6

5 should utilize the character 4 to approach
group 5.
123456→231456→326451→263451→624351→462351
→645321→564321 (backbone)
123456→312456→136452→613452→164352→615342
→561342→652341→564321 (P2)
123456→216453→162453→615423→561423→653421
→564321 (P2)
123456→214356→142356→415326→541326→456321
→564321 (P2)
123456→215436→126435→612435→163425→614325
→165324→651324→564321 (P3 type 2)

P5:
This pattern is just for the root group in Tree 3. This

group comprises nodes whose last character is the same as
that of the root. These nodes are attached to their parents
(which belong to P4). This is illustrated by the following
example.
123456→231456→325416→532416→351426→135426
123456→312456→135426
123456→216453→124653→412653→145623→514623
→153624→315624→134625→316425→135426(P5)
123456→214356→142356→413256→134256→315246
→132546→314526→135426
123456→215436→152436→513426→135426

FIGURE 24. P3 does not occur in backbones.

FIGURE 25. AN4 group and bone seeds.

Lemma 6: For the path from the root to a node v in group
A, the backbone path of group A and the spark parts of other
groups will not have any common node except for v and the
root.

Proof: According to Lemma 5, the spark part has five
patterns: P1, P2, P3, P4, and P5. For P1 and P2, assume that
Tree t is going to connect node v.
P1:
The third character of v is identical to t and node v can

be connected to Tree t by a cross node operation directly.
Therefore, no common node exists in the backbone path of
Tree A.
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TABLE 3. Bone seeds in ANk+1.

TABLE 4. Graph size and execution time.

TABLE 5. AN3 spark pattern.

TABLE 6. AN4 spark pattern.

P2:
Node v is connected to Tree t by a middle node u in group

A. Because edge u → v is not used in the backbone of Tree
A and node u can be connected to Tree t by a cross node
operation directly, no common node exists in the backbone
path of Tree A.
P3:
Assume that nodes are composed of ‘‘abcde . . .’’ and the

tail part is omitted. The possibilities are exhausted by the
following three cases.

Case 1: a triangle
Assume that node bcade requires a node whose third

character is c to reach the backbone of Tree c, as dis-
played in Figure 24(a). Because we use the TBFS pro-
cess, there is no node like node abcde, which has only
a left child, according to Lemma 2. Therefore, this case
in which a collision occurs in node abcde will not
exist.

Case 2: child backbone
As illustrated in Figure 24(b), node cabde in group A requires
the character c to go to the backbone of Tree c, but c is
used by node abcde. Thus, node cabde uses the charac-
ter b to go to node acdbe. Subsequently, node acdbe goes
to node dacbe, and finally, node cabde goes back to the
backbone of Tree c. If a collision has occurred in node
dacbe in the backbone of Tree A, the following path would
occur: abcde → badce → adbce → dacbe (red lines).

TABLE 7. AN5 spark pattern.

TABLE 8. AN6 spark pattern.

We use the TBFS process in bone functions. If the pro-
gram has visited node dacbe, it will not use the red lines to
visit node cabde during the backbone construction process.
Instead, it will use the purple lines to visit node cabde.
Therefore, the case does not occur because of the shortest path
rule.

Case 3: cross node backbone As presented in Fig-
ure 24(c), node acdbe in group A requires the character b to
go to the backbone of Tree b, but b is used by node cabde.
Thus, node acdbe uses d to go to node caebd . Subsequently,
node caebd goes to node acbed , and finally, node acdbe goes
back to the backbone of Tree b. If a collision has occurred
in node acbed in the backbone of Tree A, the following path
would have existed: acbed → caded → acedb → cabde
(red lines). We use the TBFS process in executing the bone
functions. If the program has visited node acbed , it would
not use the red lines and the blue line to visit node acdbe
during the backbone construction process. Instead, it would
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TABLE 9. AN7 spark pattern.

use purple lines to visit node acdbe. Accordingly, the case
will not occur because of the shortest path rule.

P4:
As illustrated in Figure 23, we has known that P2 can not

occurs in the backbone and Tree 4 does not execute any bone
operations. Therefore, no collision can exist in the backbone.

P5:
it is only used by the root group in Tree 3. Therefore,

no collision occurs in the backbone.
Lemma 7: In Tree 3, the nodes of the root group must

ultimately be connected.
Proof: Nodes in the root group belong to the previous

trees. Because the incoming edges of the root group nodes are
not used and Tree 3 does not have the previous tree, the root
group nodes must ultimately be connected. For example,
in AN6, the paths of trees 1-5 from node 123456 to node
135426:
123456→231456→325416→532416→351426→135426
123456→312456→135426
123456→216453→124653→412653→145623→514623
→153624→315624→134625→316425→135426
123456→214356→142356→413256→134256→315246
→132546→314526→135426
123456→215436→152436→513426→135426

Node 135426 in trees 1, 2, 4, and 5 belongs to the previous
trees in AN5. In tree 3, node 135426 must be connected
ultimately.
Theorem 1: n− 1 independent spanning trees in ANn con-

structed by the algorithm are independent.

TABLE 10. AN8 spark pattern.

Proof: In the context of building small trees into larger
trees, we use induction. If we know ANn, then we know
ANn+1. When n = 3, basic part holds. There are two
independent spanning trees, Tree 1 and Tree 2 as illustrated
in Figure 8.

When n = 4, AN4 is composed of four instances of AN3.
We divide nodes into groups by the last characters of each
nodes.

First, we copy T 3
1 to T 4

1 and T 3
2 to T 4

2 . Second, we find bone
seeds (marked as ellipses with brown borders) as illustrated
in Figure 25. Third, we use bone functions to create back-
bones. Fourth, we use spark functions to create spark parts.
As displayed in Figure 10, since group 4 of T 4

1 and T 4
2 come

from nodes of T 3
1 and T 3

2 with a character ’4’ appended in
the end. The paths from the root to group 4 in T 4

1 and T 4
2

are internally vertex-disjoint. In T 4
3 , group 4 are connected

by group 1, 2, and 3. Therefore, for group 4, T 4
1 , T

4
2 , and T

4
3

are independent. For group 1, 2, and 3, T 4
1 , T

4
2 , and T

4
3 are

also independent. Thus, T 4
1 , T

4
2 , and T

4
3 are independent.

Suppose that ANk holds. When n = k + 1, ANk+1 is
composed of k + 1 instances of ANk . We divide nodes into
groups according to the final character of each node. First,
we copy T k1 to T k+11 , T k2 to T k+12 , T k3 to T k+1k , T k4 to T k+14 ,
T k5 to T k+15 , . . . and T kk−1 to T

k+1
k−1 . Second, we find bone seeds

as explained in Table 3.
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TABLE 11. AN9 spark pattern.

Third, we use the bone function to create backbones.
Fourth, we use spark functions to create spark parts. For group
k + 1, all trees in ANk are independent and T

k+1
3 visits group

k + 1 through other groups; therefore, all paths from the root
to group k + 1 of all trees must be internally vertex-disjoint.
For other groups, each path consists of backbone and spark
parts. The backbone parts are different and the spark parts of
all paths belong to one spark pattern of P1, P2, P3, P4, and P5,
which does not have any node in common with the backbone
part according to Lemma 6. Therefore, k ISTs of ANk+1
are independent. By induction hypothesis, the algorithm can
construct n− 1 ISTs in ANn accurately.

V. IMPLEMENTATION
We program in PHP and create illustrations in Graphviz.
From AN3 to AN10, we test whether any collision would
occur. The results prove that no collision occurs. The algo-
rithm is correct. We analyze the spark patterns as explained
in theAppendix. The sizes of the graphs and the running times
on a Dell R730 server are present in Table 4.

Because every node and every directed edge are traversed
once, the time complexity of ANn is the summation of the
numbers of nodes and directed edges from AN3 to ANn. The
number of nodes in ANn is n!

2 and the number of directed

TABLE 12. AN10 spark pattern (the root is 1234567890).

edges in ANn is n!
2 × (n − 1). The time complexity is O(n ×

( n!2 +
n!
2 × (n− 1))) = O(n2 × n!).

VI. CONCLUSION
In this paper, we propose a novel and simple top-down
approach for creating independent spanning trees in alter-
nating group networks. The main ideas of the algorithm
are to use induction to develop small trees to big trees,
and to use triangle and normal breadth-first search (BFS)
processes, namely bone and park functions. Compared to
other methods of different interconnection networks in the
literature, the uniqueness of our method is that it does not
need to determine the parent of one node by any rule, on the
contrary others determine that by rules. The time complexity
is polynomial time.We code this approach in PHP and test the
implementation with inputs ranging from AN3 to AN10. The
results prove that all trees of AN3 to AN10 are independent
and that our algorithm is accurate and efficient.

APPENDIX A
SPARK PATTERN
See Tables 5–12.
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