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ABSTRACT The improved productivity and reduced time-to-market are essential requirements for the
development of modern embedded systems and, therefore, the comprehensive as well as timely design
verification is critical. Assertion Based Verification (ABV) is a renowned paradigm to timely achieve an
optimum test coverage, either through static or dynamic techniques. However, the major limitation with ABV
is its inherited low-level implementation complexity. In order to simplify its execution, various Model Based
System Engineering approaches provide a higher abstraction layer. Nevertheless, the complete verification
requirements, targeting the static as well as dynamic ABV at the same time in a unified framework, are
not being addressed. Furthermore, the dynamic verification support is provided through some traditional
languages (like C, Verilog) where the advanced ABV features cannot be exploited. Consequently, this
article introduces the MODEVES (MOdel-based DEsign Verification for Embedded Systems) framework
to simultaneously support the static and dynamic ABV. Particularly, the UML (Unified Modeling Language)
and SysML (SystemsModeling Language) diagrams are used to model the structural and behavioral require-
ments. Moreover, the NLCTL (Natural Language for Computation Tree Logic) is proposed to include the
verification requirements for static ABV while the SVOCL (SystemVerilog in Object Constraint Language)
is used to represent the dynamic verification constraints. An open source transformation engine is developed
to automatically generate the SystemVerilog Register Transfer Level (RTL) code, Timed Automata model,
SystemVerilog assertions and Computation Tree Logic (CTL) assertions with minimum transformation
losses. The significance of the MODEVES framework is established through several case studies and the
quantitative analysis shows an improvement of almost 100% in design productivity, as compared to the
conventional low-level implementations.

INDEX TERMS Assertion based verification, computation tree logic, embedded systems, model based
system engineering, systemverilog assertions, timed automata, unified modeling language (UML).

I. INTRODUCTION
The complexity and demand of embedded systems have
increased exponentially. In order to manage the reduced
time-to-market and improved productivity goals, the com-
prehensive design verification in an optimal time duration
is critical [1]. The design verification of embedded systems
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is generally classified into static and dynamic verification
categories [2]. The static verification techniques deal with
the mathematical models to verify the correctness of sys-
tem design [3]. On the other hand, the dynamic verification
techniques are based on the simulation of Register Transfer
Level (RTL) code for system validation. Although, the static
verification techniques provide some sophisticated features,
the issues like state explosion problem [4] and the reliable
tool support restrict their applicability on large and complex
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designs. Similarly, an exhaustive testing is required for the
dynamic verification process to achieve the maximum test
coverage [5].

In order to address the limitations of conventional static
and dynamic verification techniques, Assertion Based Veri-
fication (ABV) is employed which deals with the functional
properties (assertions) of the system in a reduced simulation
time [6], [7]. The two major types of ABV are static and
dynamic [8]. In static ABV, the desired assertions are verified
through formal methods. In this regard, Timed Automata [9]
is a renowned formalism, particularly designed to validate
the correctness of critical temporal aspects. On the other
hand, the code of hardware design languages at RTL is
simulated to perform dynamic ABV. However, in traditional
hardware languages (Verilog, VHDL), ABV is not inherently
supported [10], [11] as such languages mainly deal with
the system design only. In this context, SystemVerilog [12]
is an increasingly popular language that operates at RTL
and provides dynamic ABV support through SystemVerilog
Assertions (SVAs).

Despite the effectiveness of ABV in improving the design
verification process, its low-level implementation complexi-
ties result in several verification delays [30]. In this regard,
Model Based System Engineering (MBSE) plays an impor-
tant role by providing a higher abstraction layer [2]. It first
deals with the modeling phase to capture the design require-
ments and constraints at higher abstraction level (source
models). Subsequently, a transformation phase is employed
to automatically transform the source models into the target
models at lower level of abstraction. Finally, the design veri-
fication (formal and/or dynamic) can be instantly performed
through the automatically generated code. The Object Man-
agement Group (OMG) has introduced a standard Unified
Modeling Language (UML) profile and its extensions like
Systems Modeling Language (SysML) [20] to simplify the
modeling phase.

A. LIMITATIONS OF EXISTING MBSE FRAMEWORKS
Several MBSE frameworks have already been pro-
posed to overcome the low-level complexities of ABV
(e.g. [8], [14], [30] etc.). However, the existing frameworks
either deal with the static or dynamic verification at a time.
On the other hand, the complexity of modern embedded
systems is significantly increased due to a higher degree
of heterogeneity in terms of both software and hardware
components [39]. As a result, the complex designs usually
require the application of both (static as well as dynamic)
types collectively in a unified design environment, to achieve
the maximum verification coverage in an optimum time [7].

In addition to the lack of a unified design environment,
the existing frameworks do not usually include the verifica-
tion properties in the actual design models which creates a
gap between design and its verification. Consequently, there
is a need for a unifiedmodel based framework, where the veri-
fication properties can be directly included in the designmod-
els, to simultaneously support the static and dynamic ABV.

To the best of our knowledge (Section V), an MBSE frame-
work to support both static and dynamic ABV, by means of a
well-known Timed Automata formalism and SystemVerilog
language respectively, is hard to find in the literature and
industrial projects.

B. THE PROPOSED FRAMEWORK
In order to address the limitations of existing frameworks, this
article has proposed the MODEVES (MOdel-based DEsign
Verification for Embedded Systems) framework. The objec-
tive is to improve the design productivity (Section IV-D)
by providing a higher abstraction layer for both static and
dynamic ABV, where the design as well as verification
aspects are modeled collectively. Particularly, the idea is to
enable the accurate transformation of a single/unified design
model into SystemVerilog and Timed Automata simultane-
ously. Furthermore, the verification properties included in the
high-level models are also transformed into SVAs and CTL
assertions.

The overview of MODEVES framework is shown
in Figure 1. A complete end-to-end MODEVES Modeling
Methodology (MMM) is introduced in Section II to model
the structural, behavioral and verification (static as well as
dynamic) requirements collectively. Particularly, a UML and
SysML based approach is introduced to model the system
design (Section II-A) i.e. Block Definition Diagram (BDD)
concepts are used to represent the system structure and
State Machine Diagram (SMD) concepts are employed to
represent the system behavior. Moreover, the NLCTL (Nat-
ural Language for Computation Tree Logic) is proposed
(Section II-B) to include the verification properties for static
verification. Furthermore, the SVOCL [15] is integrated in
the framework for dynamic verification constraints.

Once the modeling of design and verification aspects
is performed, an open source MODEVES Transformation
Engine (MTE) [19] is developed (Section III) to automat-
ically generate the target low level codes. It includes the
SystemVerilog RTL code, SVAs, Timed Automata model
and CTL (Computational Tree Logic) assertions. Particularly,
certain transformation rules are developed to perform a con-
ceptual mapping between BDD/SMD constructs and Sys-
temVerilog RTL/Timed Automata constructs in Section III-B
and Section III-C respectively. Similarly, multiple rules are
also developed to convert the NLCTL verification properties
into CTL assertions while the transformation of SVOCL is
integrated to generate SVAs (Section III-D). Subsequently,
the implementation of transformation rules is performed in
JAVA and Acceleo [16].

While the MODEVES framework proposes a unified
design model for the automatic generation of SystemVerilog
and Timed Automata, it advocates the use of two differ-
ent formalism for the representation of static and dynamic
properties. The reason is that a unified approach is only
beneficial where a single requirement can be simultane-
ously and correctly transformed into the respective SVA and
CTL properties. Therefore, the unified representation for
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FIGURE 1. Overview of the MODEVES framework.

verification constraints is not feasible without compromising
the critical transformation losses due to the significant syntax
and semantic differences between CTL and SVAs.

C. VALIDATION AND QUANTITATIVE ANALYSIS
The validation of MODEVES framework is performed
(Section IV) through eight case studies i.e. Traffic Lights
Controller, Car Collison Avoidance System, Arbiter, Eleva-
tor, Unmanned Aerial Vehicle, Automated Teller Machine,
Train Gate and Bridge Crossing system. The system
design and verification aspects are modeled through the
proposed modeling methodology and the required target
codes are automatically generated through the developed

transformation engine. Finally, the QuestaSIM simulator [17]
and UPPAAL tool [18] are used to perform dynamic and
static ABV respectively. After the successful design ver-
ification, the SystemVerilog RTL code can be deployed
to the target device as shown in Figure 1. The quanti-
tative analysis of MODEVES framework with respect to
the native SystemVerilog and Timed Automata technologies
shows 100% productivity gain (Section IV-D). It is impor-
tant to note that this article only includes the details of
three case studies due to space limitations while the models
of all the eight case studies, along with the source code
of transformation engine, are available at [19] for further
evaluation.
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TABLE 1. Notations for the modeling of system structure.

D. SUMMARY OF NOVEL CONTRIBUTIONS
To summarize, the novel contributions of the proposed frame-
work are as follows:

1) A unified model-based design approach, by utilizing
the standard UML/SysML notations, is proposed. The
high-level models contain the necessary information,
required to concurrently transform them with minimum
transformation losses.

2) A formalism (NLCTL) is proposed to include the
properties in design models with simplicity for
static ABV. On the other hand, the SVOCL [15]
is used to include the verification properties for
dynamic ABV.

3) The design and implementation of transformation rules
to automatically generate the SystemVerilog RTL code,
Timed Automata model, CTL properties and SVAs are
proposed.

II. MODEVES MODELING METHODOLOGY
The modeling phase provides a higher abstraction layer for
some particular low-level technologies [2]. Subsequently,
the transformation is performed to automatically gener-
ate the target low-level codes. Therefore, it is essential to
systematically include the necessary information of the target
technologies in the modeling phase to perform accurate trans-
formations. In the MODEVES framework, we are dealing
with SystemVerilog, Timed Automata, SVAs and CTL tech-
nologies. Consequently, the objective of MODEVES Mod-
eling Methodology (MMM) is to enable the modeling of
general design and verification concepts at higher level while
logically preserving the semantics of target technologies.
This section briefly describes the details of MMM regard-
ing design (Section II-A) and verification (Section II-B)
requirements.

A. MODELING OF SYSTEM DESIGN
In MMM, we select the standard UML/SysML notations
for the modeling of system design (structure and behavior).
The structure of a system includes different variables and
hardware elements like registers, ports etc. The BDD diagram
in SysML, which has been extended from the UML class
diagram, provides several modeling concepts like blocks,
flow ports etc. for a realistic representation of the sys-
tem structure. Therefore, the proposed MMM advocates the
use of particular BDD concepts for the modeling of struc-
tural requirements, as given in Table 1. The first column
‘‘Sr. #’’ represents the serial number of a given modeling
notation. The names and graphical representations are given
in the second and third columns. Finally, the description is
provided in the last column.

While it is relatively simple to model the structural ele-
ments of a system design process, the correct and meaningful
modeling of the system behavior is relatively complex. Partic-
ularly, the behavior of embedded systems involves complex
temporal aspects with several constraints while achieving
the correct sequence of an execution flow. In this context,
the SMD in SysML/UML provides several notations which
are based on the principal of finite-state-transitions. There-
fore, the SMD notations allows a systematic modeling of both
simple as well as complex behavioral requirements, as given
in Table 2.

For a better understating of MMM, consider a guiding
example of Traffic Lights Controller (TLC). The functional-
ity of TLC is to manage the road traffic at North-South (NS)
and East-West (EW) roads intersection. There is a sensor
attached at the EW road to detect the presence of a vehicle.
The EW light should only be turned green to pass the traffic
on the EW road if the EW sensor is activated. An emer-
gency sensor is also deployed at the NS/EW intersection to
manage the passage of emergency vehicles. To demonstrate

104410 VOLUME 8, 2020



M. W. Anwar et al.: Unified Model-Based Framework for the Simplified Execution of Static and Dynamic ABV

TABLE 2. Notations for the modeling of system behavior.

FIGURE 2. Modeling the (a) Structure and (b) Behavior of Traffic Light Controller.

the effectiveness of MMM, the structure and behavior of
TCL is modeled in Figure 2 (a) and Figure 2 (b) respec-
tively where the circled numbers demonstrate the usage of
respective UML/SysML notation in Table 1 and Table 2
respectively. For simplicity, we only consider the model-
ing of NS behavioral requirements rather than complete
TLC system.

Figure 2 (a) shows that the registers, sensors and other
elements are modeled through flow ports (Sr. 1 in Table 1),
while different states are represented through enumeration
(Sr. 3 in Table 1). Furthermore, the built-in clock and timer
are declared with associated variables through block and sig-
nal events (Sr. 4 in Table 1). The modeling of TLC behavior
(only NS) is shown in Figure 2 (b). The different states like

initial state, green, yellow etc. are modeled through state node
(Sr. 1 in Table 2). Furthermore, several transitions (Sr. 2 in
Table 2) are utilized to model the desired flow between
different states by applying the associated trigger and guard
conditions. However, the complete trigger and guard condi-
tions of transitions cannot be represented graphically due to
space limitations and only true/ false is displayed on each
transition as shown in Figure 2 (b).

In order to achieve certain behavioral requirements
between the execution flows of different states, the pseu-
dostate like join (Sr. 4 in Table 2) and choice (Sr. 5 in
Table 2) are used. For example, assume there is a behavioral
requirement that the TLC should only move from yellow to
red state if NS timer for green state is equal to 3 and reset is
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false. The both conditions (i.e. ns-timer= 3 and reset= false)
aremanaged separately through two different transitions from
the yellow state. Subsequently, if both conditions become
true simultaneously, the join pseudostate combines these two
transitions from the yellow state into a single one and take the
system in the red state as shown in Figure 2 (b). Similarly,
other pseudostates like fork, choice are used as per given
behavioral requirements.

To summarize, theMMM is capable of modeling both sim-
ple as well as complex system designs. It is important to note
that we have only explained some of the modeling concepts
here, through the TLC guiding example. However, the model-
ing and transformation capabilities of the MODEVES frame-
work are comprehensively explained in Section IV through
some complete case studies.Furthermore, the interested read-
ers can find the detailed modeling guidelines with examples
at [21].

B. MODELING OF VERIFICATION REQUIREMENTS
While the system design is based on a unified model
(as shown in Section II-A), the system verification in
the proposed framework requires two different formalisms:
(1) the NLCTL is proposed to represent CTL properties in
design models for static ABV, (2) the SVOCL is used to
include SVAs for dynamic ABV. It is important to note that
the SVOCL is already proposed in [15] and only its overview
is provided here for the completeness of the framework.

1) NATURAL LANGUAGE FOR COMPUTATION TREE
LOGIC (NLCTL)
The motivation behind the NLCTL is to provide a simple
and logical modeling approach to include the CTL properties
directly in the design models through a natural language alike
syntax. The CTL [26] is a well-known temporal logic to
specify the branching time constraints and deals with two
temporal operators for paths quantifiers i.e. All and Exist.
Furthermore, it also provides some temporal operators for the
path specific quantifiers i.e. Next, Globally, Finally, Until and
Weak Until.

The proposed framework directly loads the Timed
Automata model and the CTL properties in UPPAAL tool to
perform static ABV instantly [18]. In this context, a subset of
standard CTL is utilized in UPPAAL to express the properties
for the verification of Timed Automata model. Particularly,
five temporal operators, based on the standard CTL concepts,
are used. The Possibly operator deals with the reachability
properties while the Invariantly and Potentially Always oper-
ators deal with the safety properties. Finally, the Eventually
and Leads to operators deal with the liveness properties.
In NLCTL, we consider all the aforementioned five operators
for the modeling and transformation of both simple as well as
complex CTL properties.
Proposed Formalism: We systematically develop NLCTL

by utilizing the concepts of Extended Backus–Naur Form
(EBNF) [27], which is a standard approach for the devel-
opment of new languages e.g. Accellera Portable Test and

Stimulus Standard (PSS) [28] etc. The grammar of NLCTL is
defined using EBNF concepts through the following fourteen
rules:

1. < Requirement>:: =<Property><Type>
The first rule states that the verification requirement/CTL

assertion, represented as a <Requirement>, can be defined
through ‘‘Property’’ and ‘‘Type’’ non-terminal symbols. The
definition of Property and Type is given in Rule 2 and 14
respectively.

2. <Property> :: = <Exp>
| if <Exp> then <Exp>
| <Deadlock_Exp>
| <Exp> and <Exp>
| <Exp> or <Exp>

The second rule defines that the property can be stated
through expression <Exp> or ‘‘if then expression’’ or
‘‘deadlock expression’’ <Deadlock_Exp>. Furthermore,
the property can be defined through and/or expressions
<Exp>. The definitions of expression <Exp> and dead-
lock expression <Deadlock_Exp> are given in Rule 4 & 3
respectively.

3. <Deadlock_Exp> ::= never deadlock
| system is deadlock free
| deadlock
| system has deadlock

The third rule defines the syntax of a deadlock expression
with four terminal symbols i.e. never deadlock, system is
deadlock free, deadlock and system has deadlock.

4. <Exp> :: = (<property>)∗
| never <Exp>
| <State_Exp>
| <Time_Exp>
| <Logical_Exp>
| <Deadlock_Exp>

The fourth rule implies that it is possible to use the property
non terminal symbol (Rule 2) in the expression repeatedly i.e.
zero to n times. Furthermore, the expression can be defined
along with ‘‘never’’ terminal symbol. In addition, the expres-
sion can be defined through <State_Exp>, <Time_Exp>,
<Logical_Exp> and <Deadlock_Exp >, as given in the
Rule 5, 6, 8 & 3 respectively.

5. <State_Exp>:: = <Process_Name> state is
<State_Name>
| <Process_Name> state is

equal to <State_Name>
It defines the syntax of state expression<State_Exp>. The

terminal symbol ‘‘state is’’ should be used between the pro-
cess name and the state name. Similarly, the terminal symbol
‘‘state is equal to’’ can also be used between the process name
and the state name non terminal symbols. The definitions of
<Process_Name> and <State_Name> are given in Rule 13
& 12 respectively.

6. <Time_Exp>:: = <Variable_Name><OPT>

<Value>
| <Variable_Name><OPT>

<Variable_Name>
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It defines the syntax of time expression <Time_Exp>.
The time expression can be specified by using variable name
<Variable_Name>, operator <OPT> and value <Value>
non terminal symbols where the operator non terminal sym-
bol should be used between the variable name and the
value non terminal symbols. Similarly, time expression can
also be defined by using the operator non terminal symbol
between the two variable name non terminal symbols. The
definitions of <Variable_Name>, <OPT> and <Value>
non terminal symbols are given in Rule 11, 7 and 10
respectively.

7. <OPT> :: = less than
| greater than equal to

The syntax of operator <OPT> can be defined either
through ‘‘less than’’ or ‘‘greater than equal to’’ terminal
symbols.

8. <Logical_Exp> :: = <Variable_Name>
<Logical_OPT><Value>

The logical expression <Logical_Exp> can be speci-
fied by using the variable name <Variable_Name>, logical
operator <Logical_OPT > and value <Value> non termi-
nal symbols where logical operator non terminal symbol
should be used between the variable name and the value
non terminal symbols. The definitions of<Variable_Name>,
<Logical_OPT>, <Value> non terminal symbols are given
in Rule 11, 9 and 10 respectively.

9. <Logical_OPT> :: = equal to
| less than
| greater than equal to
| less than equal to

The logical operator <Logical_OPT> can be defined in
four different ways, as shown above.

10. <Value> :: = ([a-z][A-Z][0-9])∗
11. <Variable_Name> :: = ([a-z][A-Z][0-9])∗
12. <State_Name> :: = ([a-z][A-Z][0-9])∗
13. <Process_Name> :: = ([a-z][A-Z][0-9])∗
The rules 10, 11, 12 and 13 provide the definitions for

declaring a value, variable name, state name and the process
name non terminal symbols respectively. The value can be
defined through the combination of 0-9 integers e.g. 12, 987
etc. Moreover, both small as well as capital alphabetical let-
ters (i.e. a to z or A to Z) can be used in different combinations
to define a particular value. Furthermore, an alpha numeric
combination can also be used to define a value. Similarly, the
variable, state and process names can be defined as per given
aforementioned value rules.

14. <Type> :: = Possibly
| Invariantly
| Potentially always
| Eventually
| Leads to

There are three major types of CTL queries (i.e. Reachabil-
ity, Safety, Liveness) for the verification of Timed Automata
model in UPPAAL tool. To include all the four types of
verification queries in NLCTL, type <Type> non termi-
nal symbol is introduced. The type can be defined through

FIGURE 3. NLCTL Syntax Tree for Example 1.

five terminal symbols (Possibly, Invariantly, Potentially
always, Eventually and Leads to).
Application of NLCTL: This section demonstrates the

application of NLCTL, based on the proposed EBNF gram-
mar, with examples. Particularly, the objective is to demon-
strate the systematic working of NLCTL grammar through
syntax tree.
Example 1: This example is taken from the TLC system

where the requirement is to check a deadlock in the system.
This property can be represented in NLCTL as:

Property = System is deadlock free, Type = Invariantly

The syntax tree of NLCTL grammar for a given property
is shown in Figure 3. Please note that the terminal symbols
are highlighted in blue color and the sequence of terminal
symbols during parsing is shown in red color with a respective
number.

Figure 3 shows that the given verification requirement
is expressed through Property and Type non terminal sym-
bols (rule 1 of the NLCTL grammar). The Property non
terminal symbol can be directly represented through dead-
lock expression (rule 2). Finally, the deadlock expression can
be represented through ‘‘system is deadlock free’’ terminal
symbol (rule 3). On the other hand, Type non terminal symbol
can be represented through ‘‘invariantly’’ symbol (rule 14).
Consequently, the given requirement is correctly expressed
through NLCTL grammar rules.
Example 2: This example is taken from an elevator sys-

tem. Particularly, the requirement is to check the reachability
of warning, overload and weight reduced states while the
weight_sensor is under the allowed limit (i.e. 800 KG) and
motion_sensor is activated. It can be expressed as:
Property = If (weight_sensor less than equal to 800 and

motion_sensor equal to true) then never (P1 state is Warn-
ingState or P1 state is OverLoad or P1 state is WeightRe-
duced), Type = Possibly
The syntax tree for Example 2, as shown in Figure 4,

utilizes most of the NLCTL grammar rules. The given exam-
ple is started through rule 1 by utilizing the property and
type non terminal symbols. Subsequently, the property can be
defined through ‘‘if <exp> then <exp>’’ as per rule 2 of the
NLCTL grammar. Therefore, the rule 2 is applied to achieve
the desired representation, as shown in Figure 4. According
to rule 4, expression <exp> can be defined as a property
recursively. Similarly, various NLCTL rules are utilized to
correctly express the given requirements.
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FIGURE 4. NLCTL Syntax Tree for Example 2.

To summarize, the NLCTL is a significant step to express
the verification properties at a higher abstraction level.
To complete the MBSE flow, its grammar is implemented
in the transformation engine, so that, the high-level NLCTL
constraints can be automatically transformed to the corre-
sponding CTL assertions (See Section III-D for the details of
transformation process). The user manual and further details
of NLCTL can be found at [31].

2) SVOCL FOR SystemVerilog ASSERTIONS
We have already developed an OCL extension, named as
SVOCL [15], to include the dynamic verification require-
ments in high-level models. In this regard, seven functions
are included in SVOCL, as shown in Table 3 (sr. # 1 to
sr. # 7). Furthermore, Disif expression (sr. # 8 of Table 3)
is incorporated for conditional statements. In the proposed
framework, we have integrated the SVOCL for dynamic
ABV. In this regard, the practical usage of SVOCL functions
(Table 3), along with the complete technical details, can be
found at [15].

III. MODEVES TRANSFORMATION ENGINE (MTE)
This section describes the MODEVES Transformation
Engine (MTE). Firstly, the general architecture is described
in Section III-A. In order to develop some appropri-
ate transformation rules for system structure, the con-
ceptual mapping between SysML BDD notations and

SystemVerilog constructs is defined in Section III-B. For
system behavior, the conceptual mapping of SystemVerilog
and Timed Automata constructs with respect to SMD nota-
tions is described (Section III-C). Finally, the transformation
rules to generate CTL assertions fromNLCTL constraints are
provided in Section III-D.

A. GENERAL ARCHITECTURE
Wepractice aModel-to-Text (M2T) transformation approach,
using the open source Acceleo tool [16], for the implementa-
tion of MODEVES Transformation Engine (MTE). Acceleo
is a well-known tool for a seamless execution of transforma-
tions in MBSE [29]. Figure 5 shows that the implementa-
tion of MTE is accomplished through three main modules:
(1)User Interface, (2)Generator and (3) Java Services. In the
following, the brief description of eachmodule and respective
sub-modules is presented.
User Interface: It launches the application and displays

the user interface of MTE on the screen. It takes the MMM
compliant models in .UML extension and sends their address
to Generator module for further processing (e.g. extraction
of model elements etc.). Furthermore, it also sends the des-
tination folder address (where the target models are required
to be generated) to the Generator module.
Generator: It receives the input UML models and gener-

ates the target SystemVerilog RTL, Timed Automata model,
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TABLE 3. Fundamental constructs of SVOCL.

FIGURE 5. Implementation architecture of MODEVES transformation engine.

SVAs and CTL assertions. Particularly, the source model
extractor extract the required UML elements (e.g. BDD
attributes, state and transition elements etc.) from the input
models which are then passed to Java Services module for
further processing. Finally, the target model generator gen-
erates the target models after receiving the processed infor-
mation from the Java Services. Lastly, the model refiner is
responsible to manage the formatting issues in the generated
target models.
Java Services: It implements the logic of transformation

rules (Section III-B, Section III-C and Section III-D). Par-
ticularly, the SystemVerilog sub-module contains the corre-
sponding transformation rules for the RTL code and SVOCL.
It is important to note that the SVOCL sub-module is already
implemented [15] and only the integration is performed here.
On the other hand, the Timed Automata sub-module imple-
ments the transformation rules for the TimedAutomatamodel

and NLCTL assertions. The processed transformation rules
from Java services component are sent back to theGenerator
module to ultimately generate the target codes, as shown
in Figure 5.

It can be seen from Figure 5 that the architecture of MTE
is based on a modular approach as the coupling between
different modules is as minimum as possible. Consequently,
the MTE is highly supportive in terms of scalability and
usability. For example, some additional CTL constructs can
be added in the current version by only updating the NLCTL
sub-component. Similarly, the other components can also
be upgraded with simplicity according to some particular
requirements.

In addition to the scalability, the architecture of MTE
also provides the usability features as different components
can be used in other implementations with slight modifi-
cations. For example, it is fairly possible to include the
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TABLE 4. Conceptual mapping of smd notations w.r.t to systemverilog and timed automata concepts.

functionality of NLCTL in other frameworks with simplicity.
The only requirement is to use the ‘‘GenerateCTL.java’’ file
of NLCTL sub-component and a small portion of existing
code is required from the Generator and Java Services com-
ponents. To conclude, the further addition of functions in
MTE is easy to implement and the integration of a particular
MTE function in other frameworks is quite simple.

We do not include the complete MTE details here due
to space limitations and further details like user/installation
manual, the low-level architecture containing implementation
details, the download link (source code) and the sample case
studies can be found at [19]. However, the summary of MTE
transformation rules is provided in subsequent sections.

B. TRANSFORMATION FOR SYSTEM STRUCTURE
The SysML BDD notations are proposed in Section II
(Table 1) for the modeling of system structure. Here,
the generic transformation rules are defined to generate
SystemVerilog structural code from the BDD notations as
follows:

1) Flow ports are transformed to SystemVerilog registers
where in and out flow port types are mapped to SystemVer-
ilog input and output registers/logic respectively. Further-
more, the flow port with inout direction type is mapped to
SysemVerilog wire.
2) The UML/SysML primitive data types are transformed

to equivalent SystemVerilog variable types like integer.
3) The UML/SysML enumeration type is transformed to

equivalent SystemVerilog enumeration (typedef enum).
4) Although the activity diagram is used to implement the

clock and timer, the signal type is actually used to represent
it in the model. On the other hand, the SystemVerilog has
inherited process for clocking. Therefore, only the definition

of clock, on the basis of signal type and associated properties,
is generated in the target structural code.

It is important to note that although we consider major
SystemVerilog data types in the transformation process in
order to define the structural aspects of system in RTL
code, SystemVerilog supports different variations in standard
datatypes e.g. integer datatype can be signed or unsigned etc.
In transformation, we do not consider such variations in stan-
dard SystemVerilog datatypes and one can manually include
such information in generated RTL code after transformation.
Similarly, SystemVerilog also supports advanced datatypes
like chandle to store pointers during Direct Programming
Interface (DPI) [6]. We also do not consider such advanced
datatypes in transformation.

C. TRANSFORMATION FOR SYSTEM BEHAVIOR
The behavioral models are simultaneously transformed into
SystemVerilog RTL and Timed Automata model to perform
both dynamic as well as static ABV. In this regard, it is
essential to develop various rules to transform SMD notations
into the corresponding SystemVerilog and Timed Automata
concepts, as given in Table 4.

Table 4 shows that the mappings between SMD notations
and TimedAutomata are straightforward, as both are based on
the principal of finite-state-transition. For example, the SMD
transition is logically equivalent to Timed Automata edge.
Therefore, the attributes of a transition like guard, trigger and
effect can be directly mapped to the edge attributes like gurad,
Sync and update respectively. Similarly, the SMD state is
logically equivalent to Timed Automata location. Therefore,
the state attributes like entry can be directly mapped to the
location invariant.Moreover, the SMDPseudostates like fork,
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join and choice are logically equivalent to location in Timed
Automata.

It is important to note that we target all the major elements
of Timed Automata (i.e. initial location, location, commit-
ted location, edge with guard, update and sync attributes
and invariant), which are defined in UPPAAL tool. How-
ever, few customized features of UPPAAL tool like urgent
channel/location are not considered in the proposed transfor-
mation. Similarly, few variables are needed to be declared
in UPPAAL tool in order to perform simulation. How-
ever, the information of global declaration variables cannot
be incorporated systematically without compromising the
simplicity and generic applicability of the framework. One
possibility is to include the information of global declara-
tion variables through UML comments; however, this is a
non-standard way and of least use for researchers and prac-
titioners. Therefore, we do not provide the modeling and
transformation provision for global declaration variables as
this information can easily be included in the automatically
generated Timed Automata model manually.

On the other hand, it can be seen fromTable 4 that themap-
pings between SMDnotations and SystemVerilog are indirect
as the former is based on finite-state-transition concepts while
the latter is a low-level hardware language. For example,
the entry attribute of a state refers to the specific condition
while the system is entering into a particular state. In Sys-
temVerilog, this refers to a low-level code for a specific condi-
tion in the context of a particular state. Therefore, the flow of
states and the transitions along with the respective attributes
in themodel is considered for the transformation of respective
SystemVerilog RTL code. For example, the sequence of states
belongs to the major (outer) structure of SystemVerilog RTL
code while the sequence of transitions belongs to the inner
code within the main structure. In this regard, the SMD
region attribute is used to provide further division in the main
structure i.e. a separate code block in RTL code for each
region.

Similarly, the initial node provides a starting point for a
particular block of code. Consequently, in order to gener-
ate the RTL code for the main structure (based on states)
and the inner logic (based on transitions), we consider cer-
tain low-level SystemVerilog constructs in the transformation
process.

For example, we consider certain procedural statements
(i.e. initial, final, always and function) during the transfor-
mation process to generate the main structure of behavioral
code. Moreover, the conditional branching (based on SMD
Choice Pseudostate) is achieved in transformation process
through SystemVerilog if / else and case statements. Sim-
ilarly, we consider SystemVerilog for and foreach loops in
the transformation process. To summarize, all the signifi-
cant SystemVerilog constructs have been considered in the
transformation process which are essential to specify both
simple as well as complex design and verification require-
ments in RTL code and SVAs respectively. Furthermore,
in case of any particular requirement, the generated RTL

and assertions code can be optimized manually. In addition,
it is also important to note that SystemVerilog is a complete
design and verification language with several advanced fea-
tures [33]. Therefore, it is not possible to consider all the
aspects of SystemVerilog in the proposed framework. For
example, SystemVerilog fully supports the object oriented
concepts [33] like inheritance, polymorphism etc. to develop
some complex test benches. Similarly, it can interact with
other hardware languages throughDPI features [6].We do not
consider the modeling and transformation of such advanced
SystemVerilog features as these concepts are irrelevant in the
given research context.

In Table 4, the major details regarding the conceptual
mapping of SystemVerilog and Timed Automata with respect
to SMD constructs are provided, without going into the
low-level implementation details. It is important to men-
tion here that the OCL basic operators like arithmetic, com-
parison etc. are logically equivalent to the SystemVerilog
operators [34]. Consequently, it is straightforward to con-
vert the OCL expressions, given in the SMD attributes like
guard, effect etc., into the corresponding SystemVerilog code.
On the other hand, the OCL basic operators are also available
in TimedAutomata.We are not including the low-level imple-
mentation details of Timed Automata operators and concepts
like locations, edges etc. because such details can be found
at [9]. Furthermore, the source code of MTE is publically
available [19], where all the low-level details are available
with proper comments.

D. TRANSFORMATION FOR NLCTL
The proposed NLCTL grammar is implemented, to
accurately generate the corresponding CTL assertions. For
example, the NLCTL rule 1 states that the requirement can
be expressed through Property and Type terminal symbols.
In MTE, the Requirement is transformed to property attribute
in CTL. Moreover, the NLCTL Property terminal symbol is
transformed toQuery attribute in CTL. Furthermore, the Type
terminal symbol of NLCTL is transformed toQueryOperator
in CTL.

Particularly, the Type terminal symbol is ultimately rep-
resented through five nonterminal symbols in NLCTL as
per rule 14. To implement rule 14 in MTE, the NLCTL
Type nonterminal symbols ‘‘Possibly, Invariantly, Potentially
always, Eventually and Leads to’’ are transformed into the
CTL operators ‘‘E<>, A[], E[], A<> and→’’ respectively.
Similarly, all the proposed NLCTL grammar rules are imple-
mented. Consequently, theMTE is able to accurately generate
CLT properties from NLCTL assertions.

For a better understanding of MTE capabilities, consider
the transformation of TLC guiding example (introduced
in Section II) as given in Figure 6. Particularly, the
MMM-compliant model of TLC is given to MTE which
automatically generates four files i.e. SystemVerilog RTL,
SVAs, timed automata and CTL properties. As ‘SV’ is a
standard extension for SystemVerilog, the dynamic ABV
can be performed instantly in existing Universal Verification
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FIGURE 6. Transformation of traffic lights controller guiding example.

Methodology (UVM) [38] based simulators like QuestaSIM.
On the other hand, the static ABV can also be performed
instantly in UPPAAL tool as it fully recognizes the timed
automata model and CTL properties through ‘XTA’ and
‘Q’ formats respectively.

IV. VALIDATION
The applicability of MODEVES framework is demonstrated
through eight benchmark case studies i.e. Traffic Lights
Controller (TLC), Car Collison Avoidance System (CCAS),
Arbiter, Elevator, Unmanned Aerial Vehicle (UAV), Auto-
mated Teller Machine (ATM), Train Gate and Bridge Cross-
ing system. However, this article includes the details of
only three case studies (i.e. Arbiter, Elevator and Unmanned
Aerial Vehicle) due to space limitations. In this regard,
the models of all the eight case studies, along with the
source code of MTE, are available at [19] for further eval-
uation. The MMM is applied to capture the structural,
behavioral and verification requirements (Section IV-A,
Section IV-B and Section IV-C), using the Papyrus modeling
editor [35]. Subsequently, the MTE is utilized to generate the
target code.

A. ARBITER CASE STUDY
This case study represents the design of an arbiter that
is implemented as one-hot coding style state machine.
It has seven possible states i.e. MASTER1, MASTER2,
MASTER3, IDLE, IDLE1, IDLE2 and IDLE3. Any or all
of the three master devices can make a request for the grant
of the bus and the arbiter will select who gets the bus by
using the round robin policy. The master device will be
able to perform certain transactions after acquiring the bus.
The bus is available for other requests after the completion of
transaction.

1) REQUIREMENTS SPECIFICATION
Figure 7 shows the structural requirements of arbiter, cap-
tured through the MMM guidelines. The arbiter states have
been represented through enumeration. We identify and cap-
ture the following behavioral requirements:
• State machine goes to the IDLE state on system reset.
• In the IDLE state, any or all the masters can send a
request to acquire the bus. The decision of bus grant
is taken in a priority-encoding fashion. For example,
the bus will be granted to the MASTER1 device if all
the master devices request for the bus in the IDLE state.
In the MASTER state, the grant signal will be asserted
to the respective master device. The master device will
free the bus by sending the done signal and consequently
the systemmoves to the IDLE state of the corresponding
master device (e.g. IDLE1).

• When the system is in IDLE1 state, it prioritizes the
assignment of a bus to the master devices in the
order of MASTER2, MASTER3 and then MASTER1.
Similarly, the priority of bus assignment is MAS-
TER3, MASTER1 and then MASTER2 if the system
is in IDLE2 state. Finally for IDLE3 state, the prior-
ity of bus assignment is MASTER1, MASTER2 and
then MASTER3.

The behavior of arbiter is modeled and verification aspects
are included in the models through both SVOCL as well
as NLCTL, as shown in Figure 8. The following verifica-
tion aspects have been identified and included in the arbiter
model:

1. A grant should be asserted for every request received
by the arbiter. The ‘‘gnt’’ signal should be asserted
within 1 clock cycle for any one of the requesting
masters.
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FIGURE 7. Structural requirements of arbiter through MMM.

2. The arbiter IDLE state should be working correctly i.e.
it cannot go to IDLE 1, IDLE 2 and IDLE 3 from the
IDLE state.

3. The arbiter master states should work as: 1) arbiter can-
not go to IDLE2, IDLE3, MASTER2 and MASTER3
states from MASTER1 state 2) arbiter cannot go to
IDLE1, IDLE3, MASTER1 and MASTER3 states
from MASTER2 state 3) arbiter cannot go to IDLE1,
IDLE2, MASTER1 and MASTER2 states from
MASTER3 state.

4. Arbiter idle states should work as: (1) arbiter cannot
go to IDLE2 and IDLE3 states from IDLE1 state.
(2) arbiter cannot go to IDLE1 and IDLE3 states
from IDLE2 state. (3) arbiter cannot go to IDLE1 and
IDLE2 states from IDLE3 state.

5. Ensure the fairness of arbiter i.e. the grants should be
assigned to masters on equal basis.

As design and verification requirements are modeled alto-
gether (Figure 8), this provides the basis to generate both
SVAs and CTL assertions along with SystemVerilog RTL
code and Timed Automata model through MTE. It is impor-
tant to note that we differentiate SVOCL and NLCTL asser-
tions through Requirement key word of NLCTL, as shown in
Figure 8. The next step is to utilize the MTE to transform the
source models into the target models, as shown in Figure 9.

The MTE generates model_asserts.sv, model_behavior.sv,
model_timed_automata.xta and model_properties.q files for
SVAs, SystemVerilog RTL code, Timed Automata model and
CTL assertions respectively. It is not possible to describe the
complete MTE details due to space limitations. However,
we upload MTE and arbiter case study here [19], so that,
the interested readers can perform further evaluation.

2) DESIGN VERIFICATION
After the automatic generation of target models through
MTE, both static as well as dynamic ABV can be performed

in the respective tools. Here, we use QuestaSIM to per-
form dynamic ABV by utilizing the SystemVerilog RTL and
assertions files which are generated through MTE. During
the design varication (simulation), we encounter failure of
an assertion. We analyze the cause of failure by utilizing
the advance features of QuestaSIM, as shown in Figure 10.
We investigated the cause of this failure and correct the
design accordingly. Finally, after rigorous simulation, it has
been analyzed that the arbiter design is free of errors. Here,
we include the summary of design verification, however, the
complete details can be found at [36].

In addition to dynamic ABV, we also perform static ABV
by using open source UPPAAL tool. Particularly, we use
Timed Automata model and CTL assertions files that are
generated through MTE. We verify different properties like
deadlock etc. as included in the model through NLCTL. The
verification of one property in UPPAAL tool is shown in
Figure 11. Further details regarding the static ABV of arbiter
can be found at [36].

After successful verification, we employ Xilinx
Vivado [37] to perform the code synthesis of SystemVer-
ilog RTL code. However, we are not including the details
of dynamic ABV (QuestaSim) and code synthesis (Xilinx
Vivado) here due to space limitations. The interested readers
can find the complete design verification and code synthesis
details at [36].

B. ELEVATOR CASE STUDY
The case study represents the design of an elevator which is
used to move the people and goods between different floors
of a building. A weight sensor is installed to calculate the
overall load. The maximum allowed wait is 800 kg. The panel
is attached in the elevator to select the desired floors in a
sequence as per requirements. The emergency sensor is also
installed to instantly stop and open exit passage of the moving
elevator in the case of emergency situations.
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FIGURE 8. Modeling behavioral and verification requirements of arbiter through MMM.

1) REQUIREMENTS SPECIFICATION
The structure of elevator is modeled through the MMM
guidelines, as shown in Figure 12. The following behavioral
requirements of elevator are required:

• Initially, elevator should be in the IDLE state. Once
persons are entered into an elevator, the overall weight
is calculated. Subsequently, if the weight of elevator is
greater than 800 than it is moved to the IDLE state by
producing weight overload alarm. Otherwise, elevator
should move further to check the desired floor number.

• The elevator should move upward or downward depend-
ing upon desired floor number and current floor of ele-
vator.

• Finally, the elevator should reach to desired floor and
subsequently move to initial state (IDLE).

The following verifications aspects of elevator are
identified:

1. Confirm that whenever an elevator is moving, it should
not be in the IDLE state.

2. Confirm the correct operating mechanism of elevator
i.e. It shouldn’t move in the upward and downward
direction at the same time.

3. Confirm that when the elevator ismoving either upward
or downward, the door of elevator should not be
opened.

4. Confirm that the overall weight of the elevator should
be within the given limits (less than 800 KG).

5. Confirm that whenever the emergency sensor gets acti-
vated, the emergency exit should also be activated at
the same time.
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FIGURE 9. Generating target files for the arbiter model through MTE.

The aforementioned verification requirements are included
in the behavioral model of elevator by utilizing both SVOCL
and NLCTL approaches as shown in Figure 13. Once the
design and verification requirements have been successfully
modeled (Figure 12 and Figure 13), we generate SystemVer-
ilog RTL, Timed Automata model, SystemVerilog Assertions
and CTL assertions through MTE. However, we are not
including the details of code generation here because such
details are already given in Section IV-A-2.

2) DESIGN VERIFICATION
We have performed both static as well as dynamic ABV
for elevator system by utilizing the generated target files i.e.
SystemVerilog RTL, Timed Automata model, SystemVerilog
Assertions and CTL assertions. Firstly, we perform static
ABV by utilizing UPPAAL tool. Particularly, the Timed
Automata model and CTL assertions file, generated through
MTE, are given to UPPAAL tool. Subsequently, design ver-
ification is performed through UPPAAL tool as shown in
Figure 14. Once, all the given properties are successfully
verified throughUPPAAL, we perform dynamic ABV. Partic-
ularly, SystemVerilog RTL and assertions files are given as an
input to QuestaSIM simulator. Subsequently, the simulation
is performed to verify the given properties.

C. UNMANNED AERIAL VEHICLE (UAV) SYSTEM
The UAV is typically an aircraft that can be con-
trolled remotely or fly autonomously on the basis of

pre-programmed flight plans. It has quite complex dynamic
automation systems. This case study demonstrates the design
of UAVs with various safety constraints.

1) REQUIREMENTS SPECIFICATION AND DESIGN
VERIFICATION
The structure of UAV system comprises one major block
that contains required ports/registers. Furthermore, various
UAV states are represented through enumeration, as shown
in Figure 15. The following behavioral requirements are
identified:

• Initially, the system is in FLYING state and continuously
monitoring the engine failure and GPS failure states.
The system moves to either ENGINE FAILURE state
or GPS FAILURE state depending on the sensor values
(engine_failure_sensor and gps_failure_sensor). Simi-
larly, the system is also monitoring TERMINATION
COMMAND RECEIVED, 2.4GHz LINK FAILURE,
SOFT GEOFENCE BREACH and DATALINK FAIL-
URE states through the termination_command_recieved,
2.5GHz_link_failue_senor, geo_fencing_sensor and
datalink_failure_sensor respectively.

• Once the system is in ENGINE FAILURE state, it has
to be landed on emergency basis within 3 clock cycles.
In the TERMINATION COMMANDRECEIVED state,
the system should move to the FLIGHT TERMINA-
TION INITIATED state after one clock cycle and
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FIGURE 10. Performing design verification of arbiter in QuestaSIM.

subsequently move to the MANUALLY LAND
AIRCRAFT state within three clock cycles.

• Once the system is in SOFT GEOFENCE BREACH
state, it should move to RESTORING FROM NO FLY
ZONE state on the next clock cycle and perform cer-
tain checks to move into respective state. Similarly,
in the DATALINKFAILURE state, the system evaluates
certain conditions (e.g. 900MHz_link_failure_sensor,
5.8GHz_link_failure_sensor etc.) to move into a partic-
ular state accordingly.

• In case of GPS failure, the system continues nor-
mal flight on a successful GPS auto restore. Oth-
erwise, the system should move to the FLIGHT
BACK TO STATION state and subsequently moves
to either REACHED BACK TO STATION state or
AIRCRAFT LOST state, depending on the underlying
conditions.

Following safety constraints are identified (Figure 16):

1. Property1: In case of termination command during
the flight, the system should move to FlightTermina-
tionInitiated within two clock cycles and subsequently
enters into ManuallyLandAirCraft state within two to
four clock cycles.

2. Property2: From AutoRestoring state, the system
should move to Flying state in 4 clock cycles on the
activation of auto_restore and ground_station_restore.

3. Property3: From RestoringFromNoFlyZone, the sys-
tem should move to CheckFlyZone within 1 to 3 clock
cycles. However, on the deactivation of safe_zone,
the system should move to FlightTerminationInitiated
state within 3 clock cycles and subsequently to Manu-
allyLandAirCraft state within 2 to 4 clock cycles.

4. Property4: The system should move from Restor-
ingFromNoFlyZone to CheckFlyZone within 1 to
3 clock cycles and upon the activation of safe_zone,
the system should move to the Flying state after 3 clock
cycles.

5. Property5: In case of a GPS failure with an unsuccess-
ful automatic restore, the system should go back to
station within 4 clock cycles.

In arbiter and elevator case studies, we represent the veri-
fication aspects through both SVOCL as well as NLCTL to
demonstrate the simultaneous application of both approaches.
Now, we prove the application of SVOCL and NLCTL indi-
vidually. Particularly, the idea is to show that SVOCL and
NLCTL can be used separately through the MODEVES
framework as per requirements. Here, we include the
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FIGURE 11. Performing design verification of Arbiter in UPPAAL.

FIGURE 12. Structure of the elevator in BDD.

verification aspects of UAV system in the model through
SVOCL only, as shown in Figure 16. Subsequently, only
the SystemVerilog RTL and assertions files are generated.
Once the design and verification requirements have been
successfully modeled (Figure 15 &Figure 16), we utilize
MTE to generate the target code for design verification. Due
to space limitations, we are not including theMTE and design
verification details and the interested readers can found a

complete model of UAV case study along with the MTE
at [19].

In this section, we applied MMM on three industrial case
studies to successfully model the structural, behavioral and
verification requirements. Furthermore, we demonstrate the
applicability of MTE by correctly transforming the models of
two case studies into SystemVerilog RTL, Timed Automata
model, SystemVerilog Assertions and CTL assertions.
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FIGURE 13. Modeling behavioral and verification requirements of elevator through MMM.

Consequently, it can be concluded that the MODEVES
framework is widely applicable on a variety of embedded
systems. It is important to note that MODEVES framework is
validated through eight benchmark case studies. The models
of all eight case studies, MTE source code and user manual
can be found at [19] for further evaluation. Furthermore,
the complete modeling guidelines of MODEVES framework
can be found at [21], so that, the interested readers can model
and transform any case study of their choice.

D. QUANTITATIVE ANALYSIS OF THE MODEVES
FRAMEWORK
To this point, we have demonstrated the modeling and
transformation capabilities of the MODEVES framework in
Section IV-A, Section IV-B and Section IV-C. However, the

following important questions are difficult to answer without
performing a systematic quantitative analysis:

Q1: Why there is a need to propose UML/SysML based
modeling approach for the system design that can support
formal and dynamic ABV at the same time?

Q2: What is the improvement in design productivity
through the proposed framework?

Q3: Does the proposed methods lead to fewer design mis-
takes and/or easier to correct the corresponding design errors?

Q4: Do the benefits of the proposed methodology out-
weigh by any transformation losses?

Q5:How easy is to learn the proposed framework, as com-
pared to the low-level technologies?

Without answering the aforementioned questions, the nov-
elty, contributions and benefits of the MODEVES framework
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FIGURE 14. Design verification of elevator in UPPAAL.

FIGURE 15. Structure of the UAV System.

cannot be established. Therefore, we perform a quantita-
tive analysis of the proposed framework to get the genuine
answers of aforementioned questions.

In order to perform a quantitative analysis of the proposed
framework, we chose three professionals (i.e. P1, P2 and
P3) from industry. Particularly, professional 1 (P1) has more
than five years of experience in digital design using Ver-
ilog/SystemVerilog while professional 2 (P2) has three years
of formal verification experience in Timed Automata/Petri
nets using UPPAAL/TAPAAL tools. Similarly, professional 3
(P3) has more than five years of experience in UML/SysML
based system development and is well familiar with the
model transformation process. To perform a competitive
quantitative analysis of MODEVES framework, the three

benchmark case studies (UAV, Arbiter and Elevator) given
in the article have been selected. The professional P1 is
required to implement the system design and verification
constraints for each case study through SystemVerilog while
P2 is required to develop each case study in Timed Automata
and CTL using UPPAAL tool. On the other hand, P3 is
required to develop the system design and verification con-
straints for each case study through the proposed frame-
work (MODEVES). Subsequently, P3 is supposed to gener-
ate SystemVerilog RTL, SVAs, Timed Automata and CTL
properties frommodels by using the proposed transformation
engine (MTE).

The evaluation results of all the three case studies are
summarized in Table 5. It can be observed from Table 5
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FIGURE 16. Modeling behavioral and verification requirements of UAV through MMM.

that SVOCL has saved only two hours for each case study as
compared to native SVAs. In this regard, Professional 3 also
reported that the modeling of assertions through SVOCL
is a bit complex. In other words, it is required to care-
fully call different SVOCL functions recursively in order to
specify complex assertions. Furthermore, it is also essential
to exactly follow the syntax of SVOCL. Actually, SVOCL
has been developed to represent low-level SVAs concepts
in high-level models. Therefore, the modeling of assertions
in SVOCL is relatively complex [15]. However, SVOCL is
still marginally better than native SVAs as far as productivity
gain is concerned. Moreover, the major benefit of SVOCL
is the simultaneous modeling of assertions along with the
system design. Furthermore, the complexity of SVOCL is
comparable with existing state-of-the-art property specifica-
tion approaches [15], [22]–[25].

It can be analyzed from Table 5 that NLCTL fairly
improves the productivity as compared to native CTL
while dealing with the modeling of verification properties.

Particularly, the productivity gains regarding NLCTL are
150%, 100%, and 100% for UAV, Arbiter and Elevator case
studies respectively, as shown in Table 5. In this regard,
Professional 3 also highlighted that it is very simple to spec-
ify verification properties through NLCTL. Furthermore, the
correctness of NLCTL assertions with respect to the given
grammar can be verified before transformation which is very
useful in an industry environment.

So far, we have evaluated the productivity of MODEVES
framework with respect to the native SystemVerilog and
Timed Automata technologies, as given in Table 5. However,
the analysis of transformation losses is equally important.
In this regard, a test engineer with three years industry expe-
rience was selected. Particularly, the SystemVerilog RTL and
assertions codes for all the case studies, implemented by P1 in
the native SystemVerilog, were given to the test engineer
in order to develop the corresponding test benches. Subse-
quently, the test engineer reported that there are no syntax
errors in the SystemVerilog RTL and assertions codes which
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TABLE 5. Quantitative analysis of the MODEVES framework.

were implemented by P1. Furthermore, the test engineer
also confirmed that the design verification was successfully
performed for all the case studies.

Once the native implementations were verified, the Sys-
temVerilog RTL and assertions codes for all the case studies,
design and transformed through the proposed framework by
P3, were given to the test engineer. Subsequently, he reported
that the structural aspects in RTL and SVAs for all the case
studies were successfully transformed through the proposed
frameworkwith 100% accuracy. Even the binding statements,
required to bind the assertions file with RTL, have been
successfully generated. He also confirmed that the proposed
framework also successfully generated all the behavioral
logic in RTL code. However, few syntax errors like missing
semicolon, incorrect sequence of start and ending brackets
and repetition of few statements are found in the behavioral
code. In this regard, the test engineer took 2, 3 and 2 working
hours for the correction of syntax errors in UAV, Arbiter and
Elevator case studies respectively. We believe that such slight
additional time periods for the corrections of syntax errors
in behavioral code are acceptable considering the broader
applicability of the proposed framework. Finally, the test
engineer successfully performed design verification of all the
case studies in QuestaSIM.

The test engineer was also asked to analyze the qual-
ity of automatically generated code. Subsequently, the test
engineer confirmed that the proposed framework structural
as well as SVAs code were almost similar, as implemented
through SystemVerilog natively by P1. However, more lines
of behavioral code were generated through the proposed
framework, as compared to the native SystemVerilog code.
This is because we have developed some generic transforma-
tion rules in the proposed framework by utilizing the con-
cepts of system states. Particularly, all the control statements
and required variables in the behavioral code are generated
based on modeled states. This is necessary for the broader
applicability of the proposed framework. Despite the more

lines of codes as compared to native SystemVerilog, the auto-
matically generated RTL code is synthesizable, as confirmed
by the test engineer, for all the three case studies.

To analyze the quality and transformation losses regarding
the static ABV, the automatically generated codes were given
to P2. Subsequently, he confirmed that the CTL properties
are transformed without any syntax or logical errors through
the proposed framework for all the case studies. He also
confirmed that the essential Timed Automata concepts (like
locations, guards etc.) are successfully transformed through
the proposed framework. In fact, P2 was able to load the
generated Timed Automata model (.xta) and properties (.q)
in UPPAAL tool without any changes. However, few state-
ments/variables in the global declaration section are missing
in the automatically generated code. This is becausewe do not
include such information in MMM and subsequently no sup-
port is available in the transformation engine. In this regard,
P2 took approximately one hour for each case study to include
the global declaration information in the automatically gener-
ated Timed Automata models. Subsequently, P2 successfully
verified the automatically generated CTL properties of all the
case studies in UPPAAL.

In addition to the productivity gain in terms of working
hours, the proposed framework also provides several benefits
for the achievement of certain business objectives like time-
to-market and cost effectiveness. For example, it can be seen
from Table 5 that it is required to employ two resources (i.e.
P1 and P2) for implementation at lower level. On the other
hand, the same goals can be achieved with a single resource
(i.e. P3) through the proposed framework. Another benefit is
the simplified identification and correction of design errors.
Particularly, it is hard to track the errors during verification,
where a single design requirement is represented in two
different technologies. In the MODEVES framework, any
error reported during the verification process is required to
be corrected in a single design model only. Subsequently,
the corrections are automatically transferred to both low-
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level SystemVerilog and Timed Automata models during the
transformation process. This leads to significantly improve
the time-to-market objective.

To summarize, the aforementioned quantitative analysis
reveals that the MODEVES framework certainly improves
the design productivity and supports the automatic transfor-
mation of high-level models into SystemVerilog RTL, SVAs,
Timed Automata model and CTL properties with minimal
transformation losses.

V. COMPARATIVE ANALYSIS OF MODEVES FRAMEWORK
This section compares the MODEVES framework with those
state-of-the-art approaches where the UML/SysML based
solutions are provided in the context of ABV. For example,
Di Guglielmo et al. [8] propose a complete model-driven
framework for embedded systems to support the dynamic
ABV. The standard UML diagrams are used to represent the
system design while the verification properties are expressed
in Properties Specification Language (PSL) through a sepa-
rate editor. The limitation of [8] lies in the fact that it deals
only with the dynamic ABV, taking C language as the target
model. The proposed work in this article supports both static
as well as dynamic ABV through Timed Automata and Sys-
temVerilog. Even the target model for dynamic verification in
our case (SystemVerilog) provides more advanced capabili-
ties as compared to the native C language which is targeted
in [8]. In addition, the proposed framework advocates the
representation of verification properties in actual models,
and not through a separate editor, to significantly reduce the
design and verification gap.

While the work in [8] employs standard UML diagrams,
Luciano Baresi el al. [14] propose the extension of standard
UML diagrams through some temporal logic for the repre-
sentation of system design. Furthermore, Corretto Property
Language (CPL) is introduced to include the verification
properties. In contrast to the MODEVES framework,
the work in [14] only deals with the static ABV. Furthermore,
the modeling approach of [14] is relatively complex as stan-
dard UML diagrams are annotated with some temporal logic
concepts.

In addition to [8] and [14], where either dynamic or static
verification has been targeted, there exist few state-of-the-
art MBSE frameworks like MADES [13] and Gaspard [32]
which support both static as well as dynamic ABV. However,
both Gaspard and MADES frameworks do not support Sys-
temVerilog along with the Timed Automata platforms, and
therefore, the advanced ABV features cannot be exploited.
In this regard, the MODEVES is the first framework that
simultaneously support static as well as dynamic verifica-
tion with advanced ABV features through Timed Automata
and SystemVerilog respectively. This combination signifi-
cantly improves the design productivity (Section IV-D) while
achieving the maximum test coverage during the verification
process.

While the work in [13] and [32] lack the exploita-
tion of advanced ABV features due to the absence of

SystemVerilog support, there exist an MBSE approach [30]
where the support for only dynamic ABV is provided through
SystemVerilog. Particularly, a UML profile for SystemVer-
ilog (UMLSV) is proposed to model the design and verifi-
cation requirements. However, the UMLSV is not complete
in a sense that the support for static verification has not
been provided at all. On the other hand, the MODEVES is
a complete end-to-end framework providing a simultaneous
support for both static as well as dynamic ABV with a
significantly improved productivity as compared to UMLSV
(Section IV-D).
In addition to the aforementioned ABV-based

frameworks [8], [13], [14], [30], [32], there exist several
state-of-the-art studies [41]–[43] where the UML/SysML
profiles have been exploited to provide a particular solution
other than ABV. For example, Nicola Bombieri et al. [41]
introduce an integrated approach to represent the existing
heterogeneous components through some equivalent SysML
behavioral models. In another study [42], a transformation
approach is proposed to generate the synthesizable hardware
descriptions from UML state machine diagrams. Addition-
ally, Wolfgang Mueller et al. [43] introduce the SysML
based SATURN methodology for co-design. Although these
approaches [41]–[43] provide significant UML/SysML based
solutions, we are unable to perform a meaningful comparison
with the MODEVES framework as their scope is different in
the given research context.

In addition to the existing approaches in academia, it is
interesting to consider few industrial projects for comparative
analysis. For example, PolarSys1 is a free platform, where
various model-based techniques can be employed. However,
in the context of the proposed framework, the CHESS and
Papyrus-RT projects are largely related. A CHESS-ML pro-
file is presented by employing the notations of UML, SysML
and MARTE profiles. In Papyrus-RT project, an end-to-end
environment is provided for UML-RT [40] profile which
is based on the concepts of capsules, ports, protocol and
connectors to represent the system structure and behavior.
The major limitation of these projects is the lack of a genuine
property specification approach to include the verification
constraints directly in the design models as proposed in this
article through SVOCL and NLCTL. In addition to this, none
of the PolarSys project simultaneously support both static and
dynamic ABV through Timed Automata and SystemVerilog
respectively.

It can be argued that the expressiveness of SVOCL and
NLCTL can be unified in a single language for a more real-
istic representation of verification aspects. However, the sys-
tematic merging of SVOCL and NLCTL in a single language
is not possible without compromising the substantial trans-
formation losses as there are significant syntax and seman-
tic differences between SVAs and CTL. Therefore, unifying
SVOCL and NLCTL in a single language is not feasible.
For example, the extension of SVOCL for CTL properties

1 https://www.polarsys.org/list-of-projects
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eventually make SVOCL impracticable due to severe com-
plexity while the transformation losses is another issue.
On the other hand, few separate rules may be added in
NLCTL for SVAs. However, this will actually lead to two
separate languages (i.e. few rules for CTL and other rules for
SVAs) under the umbrella of NLCTL which is unsystematic.
To summarize, both SVOCL and NLCTL have their own
importance in certain situations, therefore, it is more suitable
to manage them separately in the MODEVES framework.

Despite the introduction of two separate modeling lan-
guages, the combination of SVOCL and NLCTL provides
several benefits to designers over the traditional ABV meth-
ods: 1) SVOCL enables the exact inclusion of SVAs in design
models while NLCTL allows the modeling of CTL proper-
ties in natural language alike syntax with simplicity. This
leads to an effective and accurate transformation of SVOCL
and NLCTL properties into corresponding SVAs and CTL
assertions. (2) SVOCL and NLCTL enable the concurrent
modeling of assertions along with the system design, while
in traditional methods, it is essential to first develop system
design (RTL or formal model) before the specifications of
assertions. (3) Their combination has improved the design
productivity, as compared to the traditional low level SVAs
and CTL properties, as established in Section IV-D.
It can be argued that the objectives of MODEVES

framework can be achieved through existing state-of-the-art
approaches. For example, the approach in [30] can be used to
perform dynamic ABV and the work in [14] can be employed
to perform static ABV. As a result, both static as well as
dynamic ABV can be achieved. However, the utilization of
existing methods (such as [30] and [14]) in an ad hoc manner
is not practically feasible without compromising the design
productivity. Particularly, it is required to model the system
design twice i.e. modeling in [30] for dynamic ABV and
modeling in [14] for static ABV. This is time consuming and
may lead to several verification errors as it is always difficult
to trace and correct the errors in the presence of two separate
design models. Such issues significantly reduce the design
productivity and time-to-market.

To summarize, the key benefits of the proposed work are:
1. Simplicity: It allows to model the system design in a

unified way through standard UML/SysML notations.
The verification is supported through two different
formalisms to make the verification process easy and
accurate.

2. Early Design Verification: The seamless and auto-
matic translation of ‘‘complete models’’, in terms of
design as well as verification, leads to early verification
by simply employing state-of-the-art tools.

3. Productivity Gain: It is almost 100% more efficient
(Section IV-D) as compared to the corresponding
native technologies (SystemVerilog, Timed Automata
and CTL).

4. Open Source: It is publically available [19] for prac-
tical usage and, therefore, enables the researchers
and practitioners to customize its various components,

individually as well as collectively, for a particular
research objective.

VI. CONCLUSIONS AND FUTURE WORK
A model driven framework (MODEVES), with a
simultaneous support for static and dynamic assertions based
verification, has been proposed which is capable to cap-
ture the structural, behavioral and verification requirements
collectively. The modeling methodology for system design
has exploited the well-known notations in UML/SysML
diagrams while a simple formalism (NLCTL) has been pro-
posed to model the static verification properties. Moreover,
the SVOCL has been used to support the dynamic verification
process. Subsequently, an open source transformation engine
has been developed to automatically transform the high-level
source models into SystemVerilog RTL, Timed Automata
model, SVAs and CTL assertions. This enables the execution
of both static and dynamic ABV in early development phases.
The applicability of the proposed framework is demonstrated
through various case studies and the experimental results
have shown that the MODEVES framework is almost 100%
more efficient as compared to the conventional low-level
implementations.

Being a fully open source solution, which is based on
some renowned MBSE standards, several extensions of the
MODEVES framework are possible. For example, it can
be extended for System of Systems (SoS) by incorporating
various integration aspects. In addition to this, the modeling
and transformation support for test benches can be included
to completely automate the dynamic ABV process. Similarly,
the support for modern verification standards like Portable
Test and Stimulus Standard (PSS) can be encompassed to
meet the growing verification demands of embedded systems.

REFERENCES
[1] R. Xu, L. Zhang, and N. Ge, ‘‘Modeling and timing analysis for

microkernel-based real-time embedded system,’’ IEEE Access, vol. 7,
pp. 39547–39563, 2019.

[2] M. Rashid, M. W. Anwar, and A. khan, ‘‘Towards the tools selection in
model based system engineering for embedded systems—A systematic
literature review,’’ J. Syst. Softw., vol. 106, pp. 150–163, Oct. 2015.

[3] J. Hooman, H. Kugler, I. Ober, A. Votintseva, andY. Yushtein, ‘‘Supporting
UML-based development of embedded systems by formal techniques,’’
Softw. Syst. Model., vol. 7, no. 2, pp. 131–155, May 2008.

[4] M. Edmund Clarke, W. Klieber, M. Nováek, and P. Zuliani, ‘‘Model
checking and the state explosion problem,’’ in Tools for Practical Soft-
ware Verification (Lecture Notes in Computer Science), vol. 7682. Berlin,
Germany: Springer, 2011, pp. 1–30.

[5] H. Foster, ‘‘Applied assertion-based verification: An industry perspective,’’
J. Found. Trends Electron. Design Autom., vol. 2009, Volume 3, no. 1,
pp. 1–95.

[6] H. Sohofi and Z. Navabi, ‘‘System-level assertions approach for elec-
tronic system-level verification,’’ IET Comput. Digit. Techn., vol. 9, no. 3,
pp. 142–152, 2015.

[7] M. Loghi, T.Margaria, G. Pravadelli, and B. Steffen, ‘‘Dynamic and formal
verification of embedded systems: A comparative survey,’’ Int. J. Parallel
Program., vol. 33, no. 6, pp. 585–611, Dec. 2005, doi: 10.1007/s10766-
005-8911-2.

[8] G. Di Guglielmo, L. Di Guglielmo, A. Foltinek, M. Fujita, F. Fummi,
C. Marconcini, and G. Pravadelli, ‘‘On the integration of model-driven
design and dynamic assertion-based verification for embedded software,’’
J. Syst. Softw., vol. 86, no. 8, pp. 2013–2033, Aug. 2013.

VOLUME 8, 2020 104429

http://dx.doi.org/10.1007/s10766-005-8911-2
http://dx.doi.org/10.1007/s10766-005-8911-2


M. W. Anwar et al.: Unified Model-Based Framework for the Simplified Execution of Static and Dynamic ABV

[9] R. David and L. Dill, ‘‘A theory of timed automata,’’ Theor. Comput. Sci.,
vol. 126, no. 2, pp. 183–235, 1994.

[10] E. Cindy and D. Fismana, A Practical Introduction to PSL. New York, NY,
USA: Springer-Verlag 2006.

[11] (Aug. 2019). IEEE Standard for Property Specification Language.
[Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=5446004

[12] (Aug. 2019). IEEE SystemVerilog Standard IEEE STD 1800-2009.
[Online]. Available: http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=5354133

[13] R. I. Quadri, E. Brosse, I. Gray, N. Matragkas, L. S. Indrusiak, M. Rossi,
A. Bagnato, and A. Sadovykh, ‘‘MADES FP7 EU project: Effective high
level SysML/MARTE methodology for real-time and embedded avionics
systems,’’ in Proc. 7th Int. Workshop Reconfigurable Commun.-Centric
Syst. Chip (ReCoSoC), 2012, pp. 1–8.

[14] L. Baresi, A. Morzenti, A. Motta, M. M. P. K., and M. Rossi, ‘‘A logic-
based approach for the verification of UML timed models,’’ ACM Trans.
Softw. Eng. Methodol., vol. 26, no. 2, pp. 1–47, Oct. 2017.

[15] M. W. Anwar, M. Rashid, F. Azam, and M. Kashif, ‘‘Model-based design
verification for embedded systems through SVOCL: AnOCL extension for
systemVerilog,’’ An Int. J. Design Autom. Embedded Syst., vol. 21, no. 1,
pp. 1–36, 2017.

[16] (Dec. 2019). Eclipse Acceleo. [Online]. Available: https://eclipse.
org/acceleo/

[17] Mentor Graphics. (Dec. 2019). QuestaSim. [Online]. Available:
https://www.mentor.com/products/fv/questa/

[18] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and
A. Skou, ‘‘Testing real-time systems using UPPAAL,’’ in Formal Meth-
ods and Testing (Lecture Notes in Computer Science), vol. 4949,
R. M. Hierons, J. P. Bowen, and M. Harman, Eds. Berlin, Germany:
Springer, 2018.

[19] MODEVES Project. (Mar. 2020). Transformation Engine. [Online].
Available: http://modeves.com/mte.html

[20] (Mar. 2019). Object Management Group (OMG) Systems
Modeling Language Specification. [Online]. Available: http://www.
omg.org/spec/SysML/1.3/

[21] MODEVES Framework. (Feb. 2020).MODEVESModeling Methodology.
[Online]. Available: http://modeves.com/docs/MMM.pdf

[22] M. Rashid, M. W. Anwar, F. Azam, and M. Kashif, ‘‘Model-based require-
ments and properties specifications trends for early design verification of
embedded systems,’’ in Proc. 11th Syst. Syst. Eng. Conf. (SoSE), Jun. 2016,
pp. 1–15.

[23] R. Bill, S. Gabmeyer, P. Kaufmann, andM. Seid, ‘‘Model checking of CTL-
extended OCL specifications,’’ Softw. Lang. Eng., vol. 8706, pp. 221–240,
Dec. 2014, doi: 10.1007/978-3-319-11245-9_13.

[24] S. Flake and W. Mueller, ‘‘Real-time systems, specification properties
UML,’’ in Proc. HICSS, 2002, pp. 3977–3986.

[25] A. Louati, K. Barkaoui, and C. Jerad, ‘‘Properties verification of real-
time systems using UML/MARTE/OCL-RT,’’ Formalisms Reuse Syst.
Integr. Adv. Intell. Syst. Comput., vol. 346, pp. 133–147, Oct. 2015,
doi: 10.1007/978-3-319-16577-6_6.

[26] A. C. Patthak, I. Bhattacharya, A. Dasgupta, P. Dasgupta, and
P. P. Chakrabarti, ‘‘Quantified computation tree logic,’’ Inf. Process. Lett.,
vol. 82, no. 3, pp. 123–129, May 2002.

[27] F. Essalmi and L. J. B. Ayed, ‘‘Graphical UMLview from extended backus-
naur form grammars,’’ in Proc. 6th IEEE Int. Conf. Adv. Learn. Technol.,
2006, pp. 455–456.

[28] (Sep. 2019). Accellera Portable Test and Stimulus Standard (PSS).
[Online]. Available: https://www.accellera.org/downloads/standards/
portable-stimulus

[29] I. Qasim, M. W. Anwar, F. Azam, H. Tufail, W. H. Butt, and M. N. Zafar,
‘‘A model-driven mobile HMI framework (MMHF) for industrial control
systems,’’ IEEE Access, vol. 8, pp. 10827–10846, 2020.

[30] M. W. Anwar, M. Rashid, F. Azam, M. Kashif, and W. H. Butt,
‘‘A model-driven framework for design and verification of embedded
systems through SystemVerilog,’’ Design Autom. Embedded Syst., vol. 23,
nos. 3–4, pp. 179–223, Dec. 2019.

[31] MODEVES Project. (Dec. 2019). NLCTL Grammar and Validation.
[Online]. Available: http://modeves.com/nlctl.html

[32] A. Gamatié, S. Le Beux, É. Piel, R. Ben Atitallah, A. Etien, P. Marquet, and
J.-L. Dekeyser, ‘‘A model-driven design framework for massively parallel
embedded systems,’’ ACM Trans. Embedded Comput. Syst., vol. 10, no. 4,
pp. 1–36, Nov. 2011.

[33] T. Fitzpatrick, ‘‘SystemVerilog for VHDL users,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhibit., 2004, pp. 1334–1349.

[34] M. Rashid,M.W.Anwar, F. Azam, andM.Kashif, ‘‘Exploring the platform
for expressing systemVerilog assertions in model based system engineer-
ing,’’ in Information Science and Applications (Lecture Notes in Electrical
Engineering), vol. 376. Singapore: Springer, 2016, pp. 533–544.

[35] (Dec. 2019). Papyrus MDT. [Online]. Available: http://www.eclipse.org/
modeling/mdt/papyrus/

[36] MODEVES Project. (Mar. 2020). Design Verification Details. [Online].
Available: http://www.modeves.com/dvquesta.html

[37] (Feb. 2019). Xilinx Vivado Design Suite. [Online]. Available:
http://www.xilinx.com/products/design-tools/vivado.html

[38] (Nov. 2018). Accellera Universal Verification Methodology Standard.
[Online]. Available: http://www.accellera.org/downloads/standards/uvm

[39] M. Lora, S. Vinco, and F. Fummi, ‘‘Translation, abstraction and integration
for effective smart system design,’’ IEEE Trans. Comput., vol. 68, no. 10,
pp. 1525–1538, Oct. 2019.

[40] B. Selic, ‘‘Using UML for modeling complex real-time systems,’’ in Proc.
Lang., Compliers Tools Embedded Syst. (LCTES), 1998, pp. 250–260.

[41] N. Bombieri, ‘‘On the reuse of heterogeneous IPs into SysML models
for integration validation,’’ J. Electron. Test, vol. 29, p. 647, May 2013,
doi: 10.1007/s10836-013-5409-5.

[42] M. Lora, F. Martinelli, and F. Fummi, ‘‘Hardware synthesis from software-
oriented UML descriptions,’’ in Proc. 15th Int. Microprocessor Test Veri-
fication Workshop, New York, NY, USA, Dec. 2014, pp. 33–38.

[43] W. Mueller, ‘‘The SATURN approach to SysML-based HW/SW,’’ in Proc.
IEEE Comput. Soc. Annu. Symp., 2010, pp. 151–164.

MUHAMMAD WASEEM ANWAR is currently
pursuing the Ph.D. degree with the Department
of Computer and Software Engineering, CEME,
National University of Sciences and Technology,
Pakistan. He is also a Senior Researcher and an
Industry Practitioner in the field of model-based
system engineering (MBSE) for embedded and
control systems. His major research interest
includes MBSE for complex and large systems.

MUHAMMAD RASHID (Member, IEEE)
received the bachelor’s degree in electrical engi-
neering from the University of Engineering and
Technology, Peshawar, Pakistan, in 2000, the mas-
ter’s degree in embedded systems design from
the University of Nice, Sophia-Antipolis, France,
in 2006, and the Ph.D. degree in embedded sys-
tems design from the University of Bretagne Occi-
dentale, Brest, France, in 2009. He is currently an
Assistant Professor with the Computer Engineer-

ing Department, Umm Al-Qura University, Mecca, Saudi Arabia.

FAROOQUE AZAM is currently a Key Faculty
Member with the Department of Computer and
Software Engineering, EME College, National
University of Sciences and Technology (NUST),
Pakistan. He has been involving in post graduate
teaching and research, since 2007. His research
interests include model driven software engineer-
ing, model driven testing, model driven embedded
applications, model driven web engineering, soft-
ware design and architectures, and so on. He is a

Regular Member of Evaluation Committees of Pakistan Engineering Coun-
cil (PEC) and Higher Education Commission’s Technological Development
Funding (HEC-TDF). Since April 2020, he has 138 international journal and
conference publications on his credit.

104430 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-319-11245-9_13
http://dx.doi.org/10.1007/978-3-319-16577-6_6
http://dx.doi.org/10.1007/s10836-013-5409-5


M. W. Anwar et al.: Unified Model-Based Framework for the Simplified Execution of Static and Dynamic ABV

AAMIR NAEEM received the master’s degree
from the Department of Computer and Software
Engineering, CEME, National University of Sci-
ences and Technology (NUST), Pakistan. He is
currently working as a Research Associate with
the Model Driven Software Engineering Group,
CEME-NUST. His research interests include for-
mal verification and model-based development for
embedded systems.

MUHAMMAD KASHIF received the master’s
degree from Istanbul şehir University, Turkey,
in 2019. He is currently pursuing the Ph.D. degree
in computer science and engineering with Hamad
Bin Khalifa University, Qatar. His research inter-
ests include system level modeling, early design
verification of embedded systems, hardware secu-
rity, quantum computing, and machine learning.

WASI HAIDER BUTT is currently an Assis-
tant Professor with the Department of Computer
and Software Engineering, College of Electrical
and Mechanical Engineering, National Univer-
sity of Sciences and Technology, Pakistan. His
research interests include model driven software
engineering, and web development and require-
ment engineering.

VOLUME 8, 2020 104431


