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ABSTRACT Mobile devices equipped with diverse sensors have emerged as ubiquitous data collection
systems within the rising paradigm of Mobile CrowdSensing (MCS). In MCS, auctions are adopted
as effective incentive mechanisms in order to secure an acceptable level of contribution from users in
participatory MCS. Recent techniques in the literature have addressed several challenges in auctions-based
task assignments in centralized MCS. In this research, towards effective task-participant matching, we focus
on maximizing the number of completed tasks, the Clearance Rate (CR), which has not been addressed in
the literature to date despite the impact it exercises on the satisfaction of service demanders. We propose new
bidding procedures for the task allocation strategy. The proposed procedures generalize well to reputation-
aware auctioning while handling practical scenarios experienced during campaigns with budget constraints.
Particularly, we show that for campaigns that are held consecutively in time, the adoption of an intuitive look-
back strategy, for budget transfer from previous campaigns, would remarkably influence the CR. Moreover,
observing that tasks with a few bidders should be assigned a higher priority in order to get accomplished,
we introduce a new factor for task redundancy. In addition to promoting the accomplishment of unpopular
tasks, this factor spares the budget to accomplish more tasks by penalizing redundant task assignment.
Extensive performance evaluation of the proposed methods is carried out under various system parameters,
namely the number of tasks, auctions, and participants. We demonstrate the effectiveness of the suggested
procedures through a significant-and-consistent increase, that ranges from 50%− 500%, in the attained CR
compared to the most recent techniques in the literature.

INDEX TERMS Auctions, budget, constraints, incentive mechanisms, mobile crowdsensing, participatory
crowdsensing, penalization, redundancy.

I. INTRODUCTION
Mobile CrowdSensing (MCS) is a large-scale sensing
paradigm based on everyday user-companioned sensor-rich
devices. It involves the collaboration of a heterogeneous
smart crowd to collect data and was originally inspired
by crowdsourcing where a large number of volunteers get
involved in order to solve a complex problem [1]–[3], i.e., a
distributed problem-solving model.

With the potential of human mobility to offer unprece-
dented opportunities for both sensing coverage and data trans-
mission [4]–[6], MCS systems have been able to replace
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single-purpose networks in many applications. This, how-
ever, implies that an acceptable volume of human involve-
ment has to be maintained for these systems to succeed.
Concerning human engagement, a trade-off is highlighted
by [7] who recognized the following two classes of sensing
paradigms in centralized MCS applications, which consist of
a central platform and a number of smartphones:
• Participatory sensing: This is where the user is required
to actively contribute data and make decisions, e.g. tak-
ing a photo. To a large part, due to the level of cognition
employed in this paradigm, it can support diverse appli-
cations; hence, it is widely applied in MCS systems [7].

• Opportunistic sensing: This is where the collection of
data is done more autonomously without an action
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required from the user. Particularly, it automatically
detects a state of interest and changes the device state
accordingly to satisfy an application request, i.e., user
involvement is minimal [8].

While opportunistic sensing lowers the user burden, it raises
security and privacy problems. On the other hand, even
though participatory sensing increases user involvement, and
does not suffer from such privacy and phone context chal-
lenges, the quality of the gathered data depends heavily on
the participants.

The aforementioned trade-off also highlights different con-
cerns that arise from both types of MCS users, namely
the service demanders and the participants. The service
demander–also be called the leader or the organizer–is
the party that sends tasks to the MCS platform to
be done. Organizers-related concerns include the budget,
the CR, and the quality of gathered information. The
participants–alternatively called the followers–is the party
that bids for/accomplish the sensing tasks. Their concerns
involve privacy, resource-use optimization, and incentive
mechanisms [9].

In MCS, participants need a compensation in order
to maintain their willingness to provide computational
and power resources required by the sensing devices.
Consequently, a growing body of research has focused
on developing effective monetary and non-monetary incen-
tive mechanisms [10]. We focus our discussion, though,
on monetary mechanisms due to the scope of the proposed
research. Monetary approaches involve the following two
models for payments, as defined by [11], which involve a
budget controlled by the coordinating platform:
1) A platform-centric model, where static payments for

winners are determined by the platform.
2) A user-centric model, which takes the form of a reverse

auction. In that sense, the platform has no control over
payments to winners.

The latter model has been shown to be vulnerable to untruth-
ful bidding, which inspired the proposal of theMSensing auc-
tion [11], [12]. The vulnerability of MSensing to malicious
data contributions, then, inspired reputation-aware incentive
mechanisms [13]. Moreover, other features were proposed
to increase the robustness of monetary approaches such
dynamic pricing [14] which addresses cost explosion, and
dynamic incentives [15] in which the platform empowers the
service demanders by not just coordinating the auctions, but
also estimating the best budget for a particular campaign of
tasks and the best set of winners, given the number of winners
the demander can afford using that budget.

In addition to effective incentive mechanisms, efficient
and effective task-participant matching (or similarly, the task
allocation) is another challenge towards building robust
MCS systems. One possible approach to classify task allo-
cation techniques depends on the number tasks that are
required to get accomplished by the crowd, i.e. single-task
[16], [17] and multi-task [18] approaches. The former fam-
ily of methods usually necessitates the preservation of one

or more constraint, e.g., budget constraints [19] and spatial
coverage requirement [20]. The authors of [21] recognized
another approach for classifying task allocation methods
which depends on participant traits. This participant model
characterizes the attributes and the requirements of the crowd.
In this context, a reputation-aware (RA) algorithm for task
allocation was proposed by [13]. Also, user-dictated con-
straints such as privacy and energy efficiency were the scope
of [22] and [23] respectively.

This research aims at enhancing the Quality of Ser-
vice (QoS) in MCS systems. Particularly, we focus on a char-
acteristic of sensing campaigns that has recently started to be
addressed in the literature, namely the clearance rate (CR) of
auctions–the number of accomplished tasks in auction-based
campaigns. Given a fixed budget and auction constraints, it is
obvious that a service demander would require to accomplish
as many tasks as possible. Hence, maximizing the CR has a
significant impact on the QoS, and is directly proportional
with a high platform’s utility and efficiency. However, it has
been given much less attention compared to other compo-
nents of MCS applications, e.g., incentive mechanisms and
task allocation. To the best of our knowledge, our proposed
research in [24] and [25] were two of the earliest methods
to address CR-maximized auctions. In the rest of this paper,
we use the terms clearance rate, task completion ratio, and
task coverage ratio interchangeably.

This research presents key improvements over previ-
ous CR-maximized bidding methods. The proposed bidding
formulations handle real-life scenarios, experienced during
budget-constrained sensing such that the inherent character-
istics of campaigns are employed to maximize their clearance
rate. Particularly, we show that we can make use of our prior
knowledge about specific contexts for sensing campaigns to
increase the CR significantly. In this research, we adopt a
look-back strategy to realize a budget transfer among cam-
paigns, given that they are held consecutively in time. Fur-
thermore, we introduce a new factor for task redundancy in
the objective function of participant-task matching. We show
that this factor promotes the accomplishment of tasks with a
few bidders, and also penalizes redundant task assignment,
which spares the budget to accomplish more tasks. It is worth
mentioning that the proposed procedures lend themselves
well to the existing reputation-aware auctioning. Actually,
a reputation score can seamlessly be embedded in the govern-
ing objective functions for the proposed procedures, resulting
in a reputation-aware (RA) version of that procedure, as will
be shown in the following sections of this document.

The key contributions of this article can be summarized as
follows:

1) We introduce a new bidding procedure that is inspired
by the maximum contribution algorithms in [13], [26],
and that combines the merits of descriptive and hybrid
bidding of [24]. Since the decision on adopting descrip-
tive or hybrid bidding is not done proactively, and
that user utility computations have to be done first,
we name this procedure Reactive Bidding in the rest
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of this document. We show that it increases the CR
by an average of 1.5% compared to the most recent
techniques in the literature.

2) We propose a new strategy for auctioning that incorpo-
rates prior knowledge about sensing campaigns. Rather
than dealing with auctions as individual and separate
events, we deal with temporally successive auctions.
In this context, remaining budgets from previous auc-
tions can be looked back at, resulting in the augmenta-
tion of the current budget as well as the maximization
of the overall CR. We show that this strategy further
enhances the CR performance attained by Reactive
Bidding. We name this procedureLook-back Auction-
ing. We believe that temporally consecutive sensing,
as a concept, has been considered before with different
manifestations in the literature [27], [28]. Nevertheless,
to the best of our knowledge, we are the first to employ
it for increasing the CR by transferring remaining bud-
gets to future auctions.

3) Other than the earlier version of this work that appeared
in [25], to the best of our knowledge, this research is the
first to use redundant task assignment in formulating
a new bidding procedure for CR maximization in par-
ticipatory reputation-aware MCS systems. Basically,
we propose a new objective function for user utility
that involves a redundancy score. This score results
in prioritizing unpopular tasks and sparing the budget
by penalizing redundant task assignment. We report
remarkable improvements in CR using this new
procedure.

4) We simulate, examine, analyze, and discuss the impact
of each proposed method individually, as well as their
combined impact, in the presence of varying sys-
tem parameters, e.g., the geographic area, the number
of tasks, auctions, and participants. We demonstrate
the effectiveness of the suggested procedures through
a significant-and-consistent increase in the attained
CR compared to the most recent techniques in the
literature.

5) Use-cases and strength points of each proposed algo-
rithm are presented, aiming to help the cloud platform
in choosing the right algorithm depending on the given
scenario.

The rest of this document is organized as follows: In
Section II, we describe the problem and highlight the system
model in the light of the most pertinent research literature of
MCS. Section III discusses the previous CR-maximized auc-
tioning methods in the literature. Afterwards, the proposed
methods will be presented in Section IV. Section V features
the performance analysis for the suggested algorithms, before
we draw conclusions in Section VI.

II. PROBLEM DESCRIPTION AND SYSTEM MODEL
Auction theory has been used as a theoretical tool for mod-
eling incentive mechanisms design and tasks allocation for
MCS. In a typical auction, buyers compete to obtain goods

FIGURE 1. A depiction inspired by [11] in which tasks are shown as
yellow squares, participants are shown as red dots, whose areas of
interest are depicted as dashed circles.

by offering increasingly higher prices. In MCS auctions,
however, sellers compete to underbid each other. Because the
roles of buyers and sellers are reversed in the latter type of
auctions, it is typically called a "reverse auction". In the rest
of this work, we are going to use the term "reverse auction"
and the word "auction" interchangeably.

In an auction-based crowdsensing campaign, participants
submit their bids which represent a compensation that covers
the costs incurred due to sensing, i.e., their sensing costs.
Afterwards, the platform that coordinates the auctionmatches
the tasks to the suitable participants–the winners. Follow-
ing winners selection, the stage of payment determination
is carried out. Several payment determination approaches
with varying objectives have been proposed to date. With-
out the loss of generality, the objective in an auction is
to maximize the demand (in this case, the sensing tasks)
given the following: 1) the supply/the resources (in this case,
the platform budget) and 2) the users’ bids. For every sensing
campaign [29]:
• Each smartphone i ∈ 1, · · · ,N represents a participant
in the auction.

• The platform sends the details of theM campaign tasks,
where tasks are indexed by j ∈ 1, · · · ,M .

• All of the participants should take part in the bidding
process for the tasks they are interested in, and each
bidder should at least bid on one task.

• Participants are assumed to be interested only in tasks
that exist geographically nearby to them, e.g., an area of
interest of 30m radius. Figure 1 depicts a geographical
area in which participants and tasks are uniformly dis-
tributed, and each participant is surrounded by an area
of interest out of which that participant does not bid on
any tasks.

• The set of winners S and their payments {P} are
then identified. Greedy algorithms are proposed as an
approximation of the NP-hard problems of task alloca-
tion and winner selection.
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For a campaign with a set of tasks T , with cardinality
|T | = M , every potential participant, who is interested in a
subset of tasks Ti ⊂ T , is supposed to send a bid to compete
in the auction. In the literature of MCS, a participant typically
sends a collective bid for the whole set of tasks he/she is
interested in. To the best of our knowledge, this research is
one of the earliest [24], [25] to adopt and benefit from another
approach of bidding, namely the descriptive bidding.

Collective bidding, the commonly used approach in the
literature, resembles a wholesale or bidding in bulk. For
descriptive bidding, however, a participant sends a list of
tasks and a separate bid for each of them. We refer to this
list as the list of per-task user bids throughout this doc-
ument. Descriptive bidding is more flexible in assigning
tasks to participants. Different from collective bidding, it can
assign the user to only a subset of tasks contained in the
set of tasks he/she is interested in. This helps the platform
in addressing the specific tasks that are in high demand
while preserving the user’s individual rationality.1 It is worth
mentioning that, unless the bidder is interested in only one
task, the sum of the descriptive bids is usually more than
the collective bid [30]. Hence, descriptive bidding is budget
demanding.

In the remainder of this manuscript, we either adopt
descriptive bidding, or a hybrid of collective and descriptive
bidding, with the goal of maximizing the CR while allocating
tasks to participants. Unlike previous techniques that do not
take budget constraints and/or the CR into consideration [13],
and/or assume a constant-yet-arbitrary budget [31], we pro-
pose bidding procedures that link the number of campaign
tasks to the platform budget, and simultaneously maximize
the task completion ratio. Moreover, unlike previous tech-
niques, for the sake of budget management, these algorithms
do not assign the same task to more than one user in case of
descriptive bidding. Furthermore, similar to the work of [13],
the presented research addresses the problem of malicious
information in auctions. Particularly, for every proposed bid-
ding procedure, we present a Reputation-Aware (RA) version
of it. This version takes the users’ reputation into considera-
tion while selecting winners in auctions.

While their scope is considerably different, we are aware of
other research in the literature that considered redundant task
assignment, such as [32] and [33]. The authors of [32] were
concerned with energy consumption and proposed to send the
sensing data during phone calls. This is done while guaran-
teeing the following: 1) a minimum number of contributors
within a time frame, and 2) a minimum number of redundant
task assignments to maintain an energy efficient scheme.
The authors of [33] addressed vehicle-based public sens-
ing. While they avoided redundant coverage (for reputation
assessment) to maintain a cost-effective recruitment, their
proposed system allowed the service demander to determine
an acceptable redundancy level, if redundancy is required for
data reliability.

1Thismeans that the user takes a payment equal to ormore than his bidding

TABLE 1. Frequently used notations and symbols.

III. PREVIOUS WORK ON MAXIMIZING CLEARANCE RATE
This section overviews the recent literature of CR-maximized
auctions. For the convenience of the reader, and for the sake
of a self-contained presentation, all the algorithm listings for
previous work is given in Appendix A and Appendix B. Also,
a summary of the symbols and the notations that are used
throughout this work is given in Table 1. Given the plat-
form’s budget, the methods highlighted in this section select
winners using either descriptive bidding or a combination of
descriptive and collective bidding (hybrid bidding) [24], [25].
Similar to a typical auction, in order to save the budget to
accomplish as many tasks as possible, the goal is to choose
the least expensive bids that cover the tasks at hand. For
descriptive bidding and hybrid bidding, we start by linking
the number of sensing tasks to the platform’s budget as
given by

B = V, (1)
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where the budget, B, is equal to the sum of all the values of
the tasks in the campaign, V . This means that the available
platform’s budget will certainly have to increase as M–the
number of sensing tasks in a campaign–increases. Whilst the
sensing tasks are assigned to winners, the budget is updated
as:

Bnew← (BoldR)− P, (2)

which means that the budget decreases as payments, P , are
made to winners. The update in Eqn. 2 is motivated by the
notion that not all users should have equal access to the
budget, i.e., low reputable users should see a low platform’s
budget and vice versa. This is why the budget is weighted
by the reputation. It also helps the platform avoid using its
valuable budget to pay for malicious users.

A. REPUTATION-AWARE DESCRIPTIVE BIDDING (DB-RA)2

This algorithm maximizes the CR by minimizing the pay-
ments given to the winners according to the optimization
function given by

min
∑

j∈M ,i∈N

bij(1− ri), (3)

where ri is the reputation of user i, and bij is the descriptive bid
of user i for task j. This function chooses the least bids for the
most reputable users, i.e., the higher the reputation the lower
the second term. The steps are shown in algorithm listing A.1
in Appendix A. The algorithm commences by calculating
the budget, then comparing the bids sent by users for each
task. Accordingly, as long as the budget permits, it chooses
the least bid for every task. After task-participant matching,
the winners’ payments are computed before the users’ repu-
tation are updated (using an outlier detection algorithm) for
the following auctions.

On the contrary to collective (wholesale) bidding, onemain
advantage of descriptive bidding is that it enables the deman-
ders to assign priorities to each task individually. Weights for
prioritizing tasks can be embedded in Eqn. 3 as follows:

min
∑

j∈M ,i∈N

bij
Wj

(1− ri), (4)

where Wj is the weight representing the priority of task t .
The summation of the per-task user bids for the user i is the
payment that will be made to that user, and it is given by

Bi =
Mi∑
j=1

Yijbij, (5)

where the Yij ∈ [0, 1] factor is the platform decision whether
user i will be assigned task j or not, depending on his bid.
For the Reputation-Unaware (RU) version of the algorithm,
ri = 1 for user i.

2The code is publicly avialable through: bitbucket.org/isl_aast/
descriptive-bidding-ccnc-2019/src/master/

B. MAX CONTRIBUTION DESCRIPTIVE BIDDING (MCDB)
Following [13], [26], and as indicated in algorithm listing A.2
in Appendix A, the MCDB algorithm chooses its winners
according to the maximum user contribution rather than the
least bid. The user contribution of a user is the net (overall)
work added by the user to the platform, i.e. the additional
value added to the platform by the sensing tasks of this user
minus the bid which the platform will–in return–pay to this
user. For reputation-unaware bidding, the value of the user i
is calculated as [26]:

vi(S) = v(S ∪ {i})− v(S), (6)

such that:

v(S) =
∑
t∈TS

vt (7)

In the reputation-aware versions, though, the user’s value–
user’s reputational value–is calculated as [13]:

vri (S) = vr (S ∪ {i})− vr (S), (8)

such that:

vr (S) =
∑
t∈TS

∑
k∈0t

vtrk
|0t |

, (9)

where vt is the value of task t , S is the set of winners, and |0t |
is the cardinality of the set of participants handling the task t .
Unless the bidder is interested in only one task, the sum

of the descriptive bids is usually more than the collective
bid. Hence, descriptive bidding are very budget demanding,
and although motivating to participants, paying all tasks in
descriptive bidding would consume the platform’s budget
without reaching the desired clearance rate. To ameliorate the
budget demanding characteristic of DB and MCDB, during
assigning the tasks to winners, the platform ensures that a task
would not be covered more than once.

Another approach to avoid the high budget demand of
descriptive bidding is to adopt a hybrid bidding procedure.
That is: For a campaign with a set of tasks T , with cardinality
|T | = M , every potential participant, who is interested in a
subset of tasks Ti ⊂ T , sends two types of bids to the platform
namely, a collective bid and a descriptive (per-task) bid.
In hybrid bidding algorithms, the platform starts by running
the auction and making payments according to the collec-
tive bids sent by the participants. Then, the remaining tasks
that were not covered by collective bids are assigned/paid
according to descriptive bids. Hybrid bidding results in an
average CR increase of 4% compared to descriptive bidding.
Nevertheless, the former requires more interaction, as the
participants need to submit another bid beside the descriptive
list. Arguably, this is less user-friendly than the traditional
collective bidding [13] and the descriptive bidding.

Following previous work in the literature [13], hybrid
bidding algorithms start by calculating the marginal contri-
bution (or marginal value) for each participant, then subtract-
ing their collective bids from the resultant value (line 3 in
algorithm listing B.1 in Appendix B). Afterwards, tasks are
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allocated to a set of winners, S, called primary winners
(lines 5,6 in algorithm listing B.1 in Appendix B), based
on the maximum users’ contribution. In this formulation,
namely, the reputation-aware (RA) formulation, the collective
bid of user i, bci , is weighted by the user’s reputation score
ri, such that a high reputation score would result in lowering
the bid, and consequently increases the odds of selecting
that user. Following the payment calculation for the pri-
mary winners, given by algorithm listing B.2 in Appendix B,
the remaining budget for the platform is calculated by:

B = V − P (10)

where V and P are the sum of values of the campaign tasks
and the sum of payments to primary winners respectively.
Given the remaining budget of the platform, the margin that
is available (before getting a negative utility) to accomplish
the tasks that had not been covered by primary winners can
be determined.

Unless the set ofM tasks have been covered by the primary
winners, the platform proceeds to determine another set of
winners–the secondary winners, SS . Using the descriptive
bids, the platform chooses the secondary winners to whom
the uncovered tasks are allocated. At the expense of the
budget, the platform pays the secondary winners according
to their descriptive bids to motivate them in order to achieve
a higher CR. This happens either because of them being
the only bidders for some tasks, or because of their unique
location near to particular tasks afar from the crowd. The
steps for choosing the secondary winners and computing their
payments are given by algorithm listing B.3 in Appendix B.

C. HYBRID BIDDING
While Hybrid Descriptive Bidding (HDB) is a combination
of TSCM [13] and Descriptive Bidding (DB) [24], Hybrid
Max Contribution Descriptive Bidding (HMCDB) is a com-
bination between TSCM and Max Contribution Descriptive
Bidding (MCDB). Hence, for HDB andHMCDB, the primary
winners will be chosen according to the highest user contri-
bution using their collective bids. Afterwards, the secondary
winners will be chosen according to the least descriptive
bid for HDB, and according to the users contribution for
HMCDB. The steps for choosing primary winners and com-
puting their payments are given by algorithm listings B.1
and B.2), respectively, and the steps for choosing and paying
the secondary winners in HMCDB is shown by algorithm list-
ing B.4. It is worth mentioning that Hybrid Bidding was
referred to as 2SB (two-stage bidding) in [24] and [25].
The rest of this section presents a comparison between

the reputation-aware versions of the aforementioned algo-
rithms. The comparison covers various auction characteristics
including the number of tasks, the number of participants,
and the number of auctions. Figure 2 shows the impact of
varying the number of tasks on the CR. The performance
of pure (non-hybrid) descriptive bidding algorithms (i.e.,
MCDB andDB) deteriorates as the number of tasks increases.
This is because the sum of the descriptive bids list (for one

FIGURE 2. The impact of varying the number of tasks on the performance
of the reputation-aware (RA) versions of HMCDB, HDB, DB and MCDB.

participant) is directly proportional with the number of tasks.
Increasing the sum leads to a negative marginal contribution
and forces the platform to exclude the user. Hybrid bidding
algorithms (HMCDB and HDB) and collective bidding algo-
rithms (TSCM), though, demonstrates an increase in the CR
as M increases.

The impact of varying the number of participants on the CR
is shown in Fig. 3. As the number of participants increases,
the performance of all the algorithms increases. This is
because increasing the number of participants enlarges the
pool of candidates from which the platform chooses winners.
Meanwhile, since the per-task algorithms use descriptive bids
only, which is budget-demanding, and since MCDB and DB
have fixed budget because the number of tasks is constant
(M = 100 in this case), the CR increases slowly as the
number of participants increases, and they perform poorly
compared to other algorithms.

Figure 4 shows the impact of varying the number of auc-
tions and, along the same lines with the previous comparison,
using the maximum user contribution rather than the least
bidding demonstrates higher CR, i.e., HMCDB and MCDB
performed better than theHDB andDB respectively. The least
bidding algorithms proceed greedily, task by task in order;
hence, they are well-posed to handle tasks with priorities.
However, least bidding algorithms consume the budget on a
fewer tasks when compared to algorithms that incorporate the
user contribution. This is because the latter family of methods
benefit from a more comprehensive look at all the tasks, and
they choose the users that can cover many tasks.

IV. PROPOSED WORK
We start the discussion of the proposed work by introducing
a new auctioning procedure, Reactive Auctioning, that is a
simple extension of the MCDB and HMCDB algorithms,
which were discussed in the previous section. Afterwards,
we present the main contributions of this research, namely the
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FIGURE 3. The impact of varying the number of participants on the
performance of HMCDB, HDB, DB and MCDB with their reputation-aware
(RA) versions.

FIGURE 4. The impact of varying the number of auctions on the
performance of HMCDB, HDB, DB and MCDB with their reputation-aware
(RA) versions.

Look-back Auctioning and the Redundancy Penalization Auc-
tioning. In section V, we show how Look-back Auctioning
and Redundancy Penalization Auctioning can significantly
enhance the performance of ReactiveAuctioningwith regards
to the attained clearance rate.

A. REACTIVE AUCTIONING
In reactive auctions, the platform goes extensively through the
stages of both, HMCDB and MCDB. Then, based on which
algorithm achieves higher CR, it assigns tasks to participants.
Because the decision on whether to adopt HMCDB orMCDB
is not done proactively, e.g., by means of models learned
from previous auctioning data,3 this new auctioning proce-
dure seems to combine HMCDB and MCDB by reacting to

3This is a future research direction.

their attained CR, hence the name. Throughout the upcoming
part of this work, we refer to Reactive Auctioning using
the abbreviation EA. It is worth mentioning that Reactive
Auctioning combines HMCDB and the MCDB due to their
effectiveness compared to HDB and DB, respectively, which
is the insight that concluded the previous section. The stages
of Reactive Auctioning are as follows:

1) HMCDB Algorithm
a) Primary Winners Selection
b) Primary Winners Payment Determination
c) SecondaryWinners Selection and PaymentDeter-

mination
d) CRHMCDB Calculation

2) MCDB Algorithm
a) MCDB Winners Selection
b) MCDB Payment Determination
c) CRMCDB Calculation

3) Comparison of the CRs and determining the winners
who will be assigned the tasks accordingly

Reactive auctioning is inspired by the recent literature [24]
where the performance evaluation for different algorithms
highlighted that MCDB and HMCDB exchange the superi-
ority according to the auction parameters. In [24], per-task
bidding (PTB) and two-stage bidding (2SB) represented
MCDB and HMCDB respectively. In the rest of this docu-
ment, we use the terms Reactive Bidding and Reactive Auc-
tioning interchangeably. In fact, Reactive Auctioning is the
auction management procedure that adopts Reactive Bidding.

Further analysis on the cases where Reactive Auction-
ing’s CR failed to reach M–the total number of tasks in the
campaign–highlighted that the platform, in many scenarios,
runs out of budget, and is not capable of choosing more
participants to be winners. This is due to the platform’s
negative utility constraint, i.e., the platform is not allowed to
lose during any sensing campaign. Those users who were not
chosen (as winners) by the platform would, otherwise, have
significantly increased the clearance rate. However, the chal-
lenge is that they bid more than what the platform can afford.
Accordingly, we have been motivated to figure out other
resources for increasing the platform budget without com-
promising neither the platform’s negative utility constraint
nor the requirement of reputation awareness. In the rest of
this section, we present new bidding procedures that adopt
Reactive Auctioning for managing the sensing campaign,
while simultaneously exploit practical and real-life scenarios
to augment the platform budget.

B. LOOK-BACK AUCTIONING
Classically, auctions have been viewed as separate events.
In practice, however, auctions are often a part of larger
transactions. Without the loss of generality, we argue that
an auction does affect its subsequent events, including other
auctions. Based on this observation, and assuming that the
platform performs many auctions successively, which is a
realistic assumption, we propose to increase the platform

VOLUME 8, 2020 113591



M. E. Gendy et al.: Maximizing CR of Budget-Constrained Auctions in Participatory MCS

FIGURE 5. The CR performance of EA-RA and LB-RA in a sample
of 100 successive auctions.

budget in one auction by employing the profit made by the
platform in preceding auctions, i.e., by looking back in time
at previous auctions, hence the name. To the best of our
knowledge, this research is the first to: 1) benefit from consid-
ering successive auctions, and 2) use budget transfer towards
the goal of budget augmentation. Compared to the case of
holding Reactive Auctions as individual events, Reactive
Look-back auctions (LB) results in an average CR increase
of 4%. Figure 5 shows a comparison between the reputation-
aware versions of Reactive Look-back auctions (LB-RA) and
ReactiveAuctioning (EA-RA). Over 100 successive auctions,
by taking M = 100 and N = 100, an average of 99 auc-
tions recorded higher Clearance Rate using LB-RA than
EA-RA. We elaborate on their performance analysis in the
next section.

The idea of increasing the budget in the current auction
from previous ones is realized after choosing every secondary
winner and determining its payment. Particularly, the budget
in the current auction is comprised of the following: the
sum of the tasks’ values in the current auction plus the
remaining budget from prior auctions plus the platform utility
that was attained in previous auctions, such that the platform
utility [26] is given by

ũ0 = v(S)−
∑
i∈S

Pi, (11)

where v(S) is the total value of tasks done by S, and Pi is the
payment to user i.While the look-back algorithm outperforms
all the methods in Section III and the Reactive Auction-
ing in terms of CR, its superiority stems from the accumu-
lated budget from previous sections. Meanwhile, a steady
increase/gain in budget is not guaranteed. We argue that the
increase is predictable, though, given previous cases/data to
learn from.4

4This is a future research direction

FIGURE 6. An illustration of three participants i1, i2, and i3, bidding
redundantly on a task (yellow circle). Blue circles represent tasks that are
not bidden-on, yet lie within the range of interest of the three
participants. Green circles represent bidden-on tasks within the range of
interest of the three participants.

C. REDUNDANCY-PENALIZING BIDDING (RPB)
Since this research addresses CR maximization, one absolute
concern is to figure out and mitigate possible reasons for
budget drainage, which impacts CR negatively. A principal
reason for such a drainage is redundant task assignment. The
redundancy here refers to the bidders, i.e., a task bidden-on by
many participants is said to be demonstrating a case of redun-
dant bidding. Redundancy might happen due to a variety of
scenarios, one of which is the easiness of accomplishing the
task, for example, due to its favorable location.

Figure 6 shows a case of redundant task assignment,
i.e., multiple participants simultaneously bid on a particular
task. The figure also features cases for tasks that are not
bidden-on even though they lie within the range of interest of
the participants, and other cases for bidden-on tasks that are
within the range of interest of the corresponding participants.
The range of interest for each participant is shown as a dashed
circle with a red circle (the participant) at its center.

Being concerned with CRmaximization, we propose a new
objective function that penalizes redundant task assignment.
On one hand, this ameliorates budget drainage, which saves
resources for accomplishing more tasks. On the other hand,
it promotes the completion of unpopular tasks with a few
number of bidders, that would otherwise be dropped, assum-
ing that themore the bidders on a task, the higher the probabil-
ity it is going to be accomplished. This algorithm is comprised
of the following four stages: 1) Primary Winners Selection,
2) Redundancy Winners Selection, 3) Winners Filtration and
Payment Determination, and 4) SecondaryWinners Selection
and Payment Determination. Stages 1 and 2 are given by algo-
rithm listing 1. Since the first function in algorithm listing 1
(for Primary Winners Selection) is identical to the algorithm
listing B.1, we omitted its details for brevity. Stage 3 and stage
4 are realized by the algorithm listings 2 and 3 respectively.
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Algorithm 1 Identifying Redundancy Winners
1: function Get Primary Winners(V , Bc, R, P)

2:
...

3: return S
4: end function
5: Compute U for participants
6: function Get Redundancy Winners(V , Bc, S, U , P)
7: SR← 8

8: h← argmax
i∈I

vui (S
R)−

bci
ui

9: while bch
uh
< vuh

∧
SR 6= P do

10: SR← SR ∪ h , Stasks← Th
11: h← arg max

i∈I\SR
vui (S

R)−
bci
ui

12: end while
13: SR = SR \ (SR ∩ S)
14: return SR

15: end function

Algorithm 2 Compute Payments for Winners

1: function Get Winners Payments(V , Bc, S, SR, R, U )
2: for i ∈ I do
3: pi← 0

4: end for
5: for i ∈ S do
6: S ′← S \ {i}, 2 = 8

7: repeat
8: q← arg max

V∈S ′\2
(vrV (2)−

bcV
rV

)

9: pi← max(pi,min{vri (2)− (vrq(2)−
bcq
rq
)})

10: 2← 2 ∪ {q}

11: until
bcq
rq
≥ vrq

∨
2 = S ′

12: end for
13: for i ∈ SR do
14: S ′← SR \ {i}, 2 = 8

15: repeat
16: q← arg max

V∈S ′\2
(vuV (2)−

bcV
uV

)

17: pi← max(pi,min{vui (2)− (vuq(2)−
bcq
uq
)})

18: 2← 2 ∪ {q}

19: until
bcq
uq
≥ vuq

∨
2 = S ′

20: end for
21: return P
22: end function

In stage 2, where we identify redundancy winners, high-
lights the main contribution in Redundancy-Penalizing Bid-
ding (RPB). We introduce a new redundancy factor that is

Algorithm 3 Secondary Winners Selection and Payment
Computation - Maximum Contribution
1: B = V − P
2: if Stasks 6= T then
3: Ss = 8, T s = 8
4: for i ∈ I \ {S ∪ SR} do
5: for t ∈ Ti do
6: if t ∈ Stasks then
7: Ti = Ti \ t
8: else if t ∈ T \ Stasks then
9: Ps← Ps ∪ {i}
10: end if
11: end for
12: end for
13: h← argmax

i∈Is
(vri (S

s)− bi(Ss)
ri

)

14: while bh
rh
+ (rh × B) ≥ 0

∧
Ss 6= Ps

∧
Stasks 6= T

do

15: Stasks← Stasks ∪ T sh (S
s)

16: Ss← Ss ∪ {h}

17: for i ∈ Is \ Ss do
18: for t ∈ Ti do
19: if t ∈ T sh then
20: Ti = Ti \ t
21: end if
22: end for
23: end for
24: B = (B × rh)− bh

rh
25: h← arg max

i∈Is\Ss
(vri (S

s)− bi(Ss)
ri

)

26: end while
27: end if
28: Outlier_Detection(S, SR, Ss)
29: for s ∈ {S ∪ SR ∪ Ss} do
30: update rs
31: end for
32: return Ss

given by

di = 1− maxt∈Ti{
1
|0t |
}, (12)

where di is the redundancy factor of user i, and |0t | is the
cardinality of the set of participants who are bidding on the
task t . The essence is that we need to increase the opportunity
of user i (of being selected) if i is interested in a task t ∈ Ti
for which there are a few bidders, i.e., if di is small. Hence,
the more participants bidding on a task, the less priority
it gets. Towards this goal, the platform adopts a procedure
that is similar to the primary winners selection procedure.
Particularly, in order to choose the set of redundancy winners
SR, the platform uses a weighted version of the reputation
score, as shown in the second function of algorithm listing 1.
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This weighted reputation score is named the redundancy-
reputation factor and is given as:

ui =
ri
di
, (13)

where ri is the reputation of user i and ui is the redundancy-
reputation factor of user i. The higher the ui, the higher the
opportunity of user i to be selected as a winner in the auction.
Penalizing redundant task assignment can be seen in the
objective functions in lines 8 & 11 of algorithm listing 1. The
significant impact of the redundancy-reputation factor on
the attained clearance rates will be shown and discussed in
the Results and Discussion section. It is worth mentioning
that for reputation-unaware (RU) bidding, ri = 1 for user i.
Finally, the set of reputation values, redundancy factor values,
and redundancy-reputation factor values for all participants
are referred to as R,D, and U respectively.
In stage 3 of Redundancy-Penalizing Bidding, the plat-

form proceeds with the payment calculation for both sets of
winners, namely the primary winners and the redundancy
winners. While the start of algorithm listing B.2 and algo-
rithm listing 2 look similar, the latter features additional loop
over SR for computing the payments of redundancy winners.
Another noteworthy point is that the comparison between
line 9 with line 17 in algorithm listing 2 shows that the
payments computed using the redundancy-reputation factors
are higher than the payments calculated by the reputation
factor. This is one principal reason for adding the update step
of the redundancy winners in line 13 in algorithm listing 1,
since we are concerned with minimizing the payments in
general.

Because the reputation-aware version of the proposed algo-
rithm, RPB-RA, results in higher payments (lines 16 − 18
in algorithm listing 2), we argue that it also motivates par-
ticipants to bid for the unpopular tasks. The reputational
user value can be calculated as given in Eqn. 14. The main
difference between Eqn. 9 and Eqn. 14 is that the latter adopts
the user’s redundancy-reputation, ui, while the former adopts
the user’s reputation, ri. This results in better payments for
participants. Given the budget of the platform as in Eqn. 10,
we can determine the remaining budget that is available–
before getting a negative utility–to accomplish the tasks that
have not been covered by the chosen winners. Unless the set
ofM tasks have been covered by the primary and redundancy
winners, the platform proceeds to the final stage of the algo-
rithm. Using the descriptive bids, the platform determines the
secondary winners.

vu(S) =
∑
t∈TS

∑
i∈0t

vtui
|0t |

, (14)

where vt is the value of task t , S is the set of winners, and |0t |
is the cardinality of the set of participants handling the task t .
For stage 4: Although algorithm listing B.4 and algorithm

listing 3 look similar, line 4 of the latter algorithm (unlike
algorithm listing B.4) indicates a loop over all participants
excluding the primary winners and the redundancy winners.

FIGURE 7. The impact of varying the number of participants on the CR for
the proposed algorithms compared to TSCM.

It is worth mentioning that previous research in the litera-
ture [33] proposed to set a level of acceptable redundancy
for data reliability purposes. While our procedure lends itself
well to include such an adjustable redundancy, our objective
function already incorporates reputation awareness, which
ensures data reliability without resorting to redundant task
assignment.

V. RESULTS AND DISCUSSION
The simulations presented in this section were done using
Matlab R© 2015, on a PC with Intel Core-i7 2GHz processor
and 4GB of RAM. Also, whenever a design choice had to
be made, the values of the parameters were set to be either
identical or close to their values in other research in the lit-
erature [11], [13], [24], in order to facilitate the comparison.

To show the influence of the campaign area on the CR
performance, three area settings were used–1000 m × 1000
m, 600 m × 600 m, and 200 m × 200 m. The participants
and the tasks are uniformly distributed in the campaign area,
and each participant is surrounded by an area of interest of
30 m radius as depicted in Fig. 1. The value of each task and
the participants’ collective bids vary uniformly in the range
[1,5] and [1,10] respectively, akin to [13]. Similarly, the per-
task bids vary uniformly in the range [vj − α, vj + α]. We set
α = 2 in our simulations, and the participants’ reputations
are varied uniformly from 0.6 to 0.9. We also mapped the
redundancy factor to the range [0.5, 1] in order to be close
to the range of the reputation to have nearly equal influence.
In the simulations, three aspects are considered (allowed
to vary) which are: the number of auctions, the number of
tasks, and the number of participants. Table 2 summarizes
the simulated scenarios and their corresponding parameter
values.

For evaluating the effectiveness of the proposed algo-
rithms, namely Reactive Auctioning (EA), Look-Back Auc-
tioning (LB), and Redundancy-Penalizing Bidding (RPB),
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TABLE 2. A summary of the different simulated scenarios and their corresponding parameter values.

we compare their performance to TSCM [13] as a repre-
sentative of reputation-aware techniques, all of which are
online techniques, i.e., they require an established con-
nectivity between the platform and the participants. It is
worth recalling that Reactive Auctioning selects the best
from HMCDB-RA and MCDB-RA [24]. Since the former
performs better than the latter (in terms of CR) in most of
the cases, which was shown by the authors of [24], the CR
performance of Reactive Auctioning is always better than,
or identical to that of HMCDB-RA. Hence, while presenting
and analyzing the performance of the proposed algorithms,
we chose not to include HMCDB-RA, and to limit the dis-
cussion to TSCM, Reactive Auctioning, Look-Back Auction-
ing, and Redundancy-Penalizing Bidding. Finally, it is worth
mentioning that TSCM adopts collective bidding only for
managing the auction, and that our previous work [24] was,
to the best of our knowledge, the first in the literature to adopt
the concept of descriptive (per-task) bidding.

Increasing the number of participants with a constant bud-
get (M = 100) means a larger pool of candidates becomes
available for the platform to choose from. Hence, generally
speaking, the probability of finding a better set of win-
ners increases as the number of participants increases. This
increases the CR as shown in Fig. 7 which compares the
reputation-aware versions of the proposed algorithms with
TSCM. The Redundancy-Penalizing Bidding attains consis-
tently higher CR compared to the other techniques. This
increase is approximately four times the CR of TSCM and
almost linear in the range of 100− 500 participants. Budget-
related insights can be drawn from Fig. 8 which presents
the CR attained by the proposed algorithms with varying
number of tasks. Recalling Eqn. 10, a small number of tasks
means a small budget. In such a budget-constrained scenario,
it is expected that budget transfer from an auction to the one
following it (in time) becomes critical for attaining high CR.
This can be seen in the gap between Look-Back Auctioning
and Reactive Auctioning in Fig. 8. Similar to the case of vary-
ing the number of participants, RPB-RA outperforms TSCM,
Reactive Auctioning and Look-Back Auctioning across a
wide range for the number of tasks. The CR slightly exceeds
90% in case the number of tasks slightly exceeds 200 tasks.
In Fig. 9, we highlight the impact of considering the

reputation in the bidding process. The shown curves depict
the CR performance of the Reputation-Aware versus the

FIGURE 8. The impact of changing the number of tasks on the CR for the
proposed algorithms compared to TSCM.

Reputation-Unaware versions of the proposed algorithms.
We conclude from the figure that there is a reputa-
tion/clearance rate trade-off, i.e., the proposed algorithms
can attain higher CR by dropping the reputation from the
objective function; however, this may impact negatively the
quality of the sensed data. In addition to LB auctioning and
RPB auctioning, the figure also highlights the impact of
combining both, i.e., penalizing redundant task assignment
in temporally consecutive auctions. It can be seen that their
combined impact further enhances the clearance rate com-
pared to the performance of any of them individually.We also
investigated varying the number of tasks, rather than varying
the number of participants, and a conclusion similar to that
is shown in Fig. 9 was obtained.

We have also varied the number of auctions and the geo-
graphical area in which the auctions take place, and we
conclude the following. As shown in Fig. 10, compared to
TSCM, a consistent improvement in CR has been obtained
by the proposed algorithms across different areas of the
simulation setup. We have used two settings for the area of
simulation, namely, 200 m × 200 m and 1000 m × 1000 m.
Obviously, higher CRs were reached in the former case
because the tasks and participants are confined in a smaller
area, so the probability of the users having more tasks in
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FIGURE 9. The impact of changing the number of participants on the CR
for the reputation-aware and reputation-unaware versions of the
proposed algorithms.

FIGURE 10. Comparing the CR attained the reputation-aware versions of
the proposed algorithms–Reactive Auctioning, Look-Back Auctioning, and
Redundancy-Penalizing Bidding–with a reputation-aware algorithm from
the recent literature. The figure shows a consistent superiority for RPB
over other algorithms across different campaign areas.

their area of interest (30 m radius) increases. The impact of
varying the number of auctions on the CR is shown in Table 3
which presents the average percentages of task completion
attained by the reputation-aware versions of different algo-
rithms. Particularly, we computed the average CR attained
by each algorithm over H auctions, and we allowed H to
vary according to Table 2. The average CR is found to be
nearly constant, regardless the number of held auctions. The
LB could benefit from successive auctions; hence, it attained
an increase of 4% in the average CR compared to Reactive
Auctioning. RPB results in a significant increase in clearance
rate, that is close to five times (500%) that of the TSCM and
two times that of Reactive Auctioning.

This significant increase in CR is justified by the fact that
other techniques aim at maximizing the user utility and the

TABLE 3. Average task completion percentages of different
Reputation-Aware algorithms, over H auctions, in a geographical area of
(1000 m × 1000 m), M = 100 and N = 100. Please see text for more
details.

TABLE 4. A comparison between LB-RA and RPB-RA, with varying
number of participants and HMCDB as a reference. The figures in the first
row indicate how much improvement in CR was attained by each
algorithm, and the second row shows the time required for that
improvement to take place. Please see text for more details.

TABLE 5. A comparison between LB-RA and RPB-RA, with varying
number of tasks and HMCDB as a reference. The figures in the first row
indicate how much improvement in CR was attained by each algorithm,
and the second row shows the time required for that improvement to
take place. Please see text for more details.

platform utility using only one stage of bidding (collective
bidding). However, the proposed algorithms comprises two
rounds of bidding. Also, RPB starts by giving higher priority
to the unpopular tasks, then proceeds to another round of
bidding (corresponding to secondary winners) to make the
best out of the platform budget, and better satisfy service
demanders. We will also discuss the impact of the procedure
adopted by RPB on the computational time later in this
section. It is important to mention that RPB does not increase
the budget of the platform, but it uses it efficiently.

TABLE 6. A comparison between the proposed techniques showing the
number of accomplished tasks from a total of 24 coverable tasks. The
coverable tasks are the tasks within the area of interest of the
participants. Please see text for more details.

In Table 4, we present a comparison between the
Reputation-Aware versions of LB and RPB, with the refer-
ence being HMCDB [24]–one of the most recent methods in
the literature that aimed at maximizing the CR. Particularly,
we show how much enhancement in CR (1CR) has been
attained by each of the proposed algorithms, compared to
that of HMCDB, and the computational time cost to achieve
that increase (1Time). For a varying number of participants
(according to the values given in Table 2), the CR attained
by LB-RA is approximately 4% higher than that of HMCDB
(1CR = 4%), and the time required was 3–30 seconds
longer than that required by HMCDB, depending on the num-
ber of participants. For RPB-RA, though, the CR increase
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TABLE 7. The strength points for each of the proposed algorithms.

ranged from 8.5% − 32% at a time cost that ranged from
6−65 seconds, depending on the number of participants. Sim-
ilarly, Table 5 shows that comparison for a varying number of
tasks (according to the values given in Table 2). As indicated
in the table, RPB-RA could attain negative values for1Time,
i.e., it takes less time than HMCDB, and achieves higher CR.
Our insight is that RPB, instead of leaving unpopular tasks
uncovered until the stage of selecting secondary winners,
it covers these tasks first. Hence, on one hand, it pays for
the redundancy winners using the collective bids which are
cheaper than the descriptive bids. And on the other hand,
it reaches the secondary winners stage with less uncovered
tasks, which translates to less descriptive bidding loops,
i.e., less time to complete an auction.

So far, the CR has been shown as a percentage of the total
number of tasks in the campaign. However, as mentioned
earlier, some tasks are already uncoverable because they are
out of the area of interest of all the participants. This means
that a technique may not be able to accomplish all the tasks in
the campaign, yet it is able to accomplish most the coverable
tasks. Such a comparison further highlights the effectiveness
of the proposed algorithms. We present in Table 6 the number
of accomplished tasks by different techniques, from a total
of 24 coverable tasks, where the coverable tasks are the
tasks within the area of interest of the participants. Among
the shown techniques is the composite Reputation-Aware
LB+RPB algorithm, i.e., the bidding procedure that penal-
izes redudant task assignment, considers the participants’
reputation, and transfers the budget from previously held
auctions.
A Final Remark:We are aware that there are a multitude of

parameters that could be considered in our simulations. For
clarity and conciseness of presentation, we could not include
all the parameters that can vary in a real-life scenario. Two
examples of such parameters are the arrival time of users’
bids and the quorum (if required by the service demander).
We argue, though, that our simulations behave as if the bid
arrival time is not a constraint, which is an acceptable and
realistic scenario given the typical time to hold an auction.
Furthermore, our proposed approaches are not at odds with

any of these parameters that were not allowed to vary in our
simulations. Lastly, running our simulations on a realistic
map is among the points of future investigation. To facilitate
the application of the proposed algorithms in real-life scenar-
ios, Table 7 summarizes the characteristics/points of strength
of each algorithm.

VI. CONCLUSION
This research aimed at increasing the quality ofMCS auction-
based campaigns. Particularly, we addressed the satisfaction
of service demanders through maximizing the number of
accomplished tasks during auctions–the clearance rate (CR).
A consistent-and-significant increase in CR was obtained
using extensive simulation and performance evaluation of
new bidding procedures that handle various real-life scenar-
ios. A look-back budget management strategy was presented
to handle temporally successive auctions, and its positive
impact on the CR was shown under varying system param-
eters. Along the same lines, we proposed a new objective
function that features a new redundancy penalization factor.
On one hand, this increases the CR by increasing the odds of
accomplishing tasks with a few bidders, that would otherwise
be dropped. On the other hand, this increases the CR by
saving the budget to accomplish more tasks. The govern-
ing objective functions for all the proposed techniques were
shown to lend themselves well to reputation-aware auction-
ing. Hence, they are not at odds with the existing techniques,

Algorithm A.1 Reputation-Aware Descriptive Bidding
1: B = V
2: S = 8
3: Stasks← 8

4: for t ∈ T \ Stasks do
5: for p ∈ Pt do
6: h← argmin

p∈P
(Bpt (1− Rp))

7: end for
8: if Bht < BRh then
9: Stasks← Stasks ∪ t

10: S ← S ∪ {h}

11: Yht = 1

12: B← BRh − Bht
13: end if
14: end for
15: for i ∈ S do
16: Pi =

∑Mi
j=1 YijBij

17: end for
18: Outlier_Detection(S)
19: for s ∈ {S} do
20: update Rs
21: end for
22: return (S,P,R)
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but enhance their performance. According to the presented
comparisons with the former state-of-art techniques, a CR
increase that ranges from 50%− 500% was achieved. Future
research directions would target the formulation of a com-
bined objective function for energy efficiency and CR maxi-
mization. We also look forward to adopting knowledge priors
about geographic correlation patterns among sensed data.
This would enable us to estimate the outcome of a sensing
campaign without holding it; hence, saving the budget for
more auctions..

APPENDIX A ALGORITHM LISTINGS-DESCRIPTIVE
BIDDING
See Algorithms A.1 and A.2.

Algorithm A.2 Reputation-Aware Max Contribution
Descriptive Bidding
1: B = V
2: SMCDB

= 8, TMCDB
= 8, Stasks← 8

3: h← argmax
p∈P

(V R
p (S

MCDB)− Bp(SMCDB)
Rp

)

4: while RhB ≥ Bh
∧

SMCDB
6= P

∧
Stasks 6= T do

5: TMCDB
← T s ∪ TMCDB

h (SMCDB)

6: Stasks← Stasks ∪ TMCDB
h (SMCDB)

7: SMCDB
← SMCDB

∪ {h}

8: Ph = Bh
9: for p ∈ P \ SMCDB do
10: for t ∈ Tp do
11: if t ∈ TMCDB

h then
12: Tp = Tp \ t
13: end if
14: end for
15: end for
16: B← BRh−Bh
17: h← arg max

p∈P\SMCDB
(V R

p (S
MCDB)− Bp(SMCDB)

Rp
)

18: end while
19: Outlier_Detection(SMCDB)
20: return (SMCDB,P,R)

Algorithm B.1 Determining Primary Winners
1: function Get Primary Winners(V , Bc, R, P)
2: S ← 8, Stasks← 8

3: h← argmax
i∈I

vri (S)−
bci
ri

4: while bch
rh
< vrh

∧
S 6= P do

5: S ← S ∪ h , Stasks← Th
6: h← argmax

i∈I\S
vri (S)−

bci
ri

7: end while
8: return S
9: end function

Algorithm B.2 Compute Payments for Winners
1: function Get Winners Payments(V , Bc, S, R, U )
2: for i ∈ I do
3: pi← 0

4: end for
5: for i ∈ S do
6: S ′← S \ {i}, 2 = 8

7: repeat
8: q← arg max

V∈S ′\2
(vrV (2)−

bcV
rV

)

9: pi← max(pi,min{vri (2)− (vrq(2)−
bcq
rq
)})

10: 2← 2 ∪ {q}

11: until
bcq
rq
≥ vrq

∨
2 = S ′

12: end for
13: return P
14: end function

Algorithm B.3 Secondary Winners Selection and Payments
Computation - Least Bid
1: B = V − P
2: if Stasks 6= T then
3: Ss = 8, T s = 8
4: for i ∈ I \ S do
5: for t ∈ Ti do
6: if t ∈ Stasks then
7: Ti = Ti \ t
8: else if t ∈ T \ Stasks then
9: Ps← Ps ∪ {i}
10: end if
11: end for
12: end for
13: for t ∈ T \ Stasks do
14: for p ∈ Pt do
15: h← argmin

p∈P
(Bpt (1− Rp))

16: end for
17: if Bht ≤ BRh then
18: Stasks← Stasks ∪ t

19: Ss← Ss ∪ {h}

20: Yht = 1

21: B← BRh − Bht
22: end if
23: end for
24: end if
25: for i ∈ Ss do
26: Pi =

∑Mi
j=1 YijBij

27: end for
28: Outlier_Detection(S, Ss)
29: return (Ss,P,R)
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APPENDIX B ALGORITHM LISTINGS-HYBRID BIDDING
See Algorithms B.1–B.4.

Algorithm B.4 Secondary Winners Selection and Payment
Computation - Maximum Contribution
1: B = V − P
2: if Stasks 6= T then
3: Ss = 8, T s = 8
4: for i ∈ I \ S do
5: for t ∈ Ti do
6: if t ∈ Stasks then
7: Ti = Ti \ t
8: else if t ∈ T \ Stasks then
9: Ps← Ps ∪ {i}
10: end if
11: end for
12: end for
13: h← argmax

i∈Is
(vri (S

s)− bi(Ss)
ri

)

14: while bh
rh
+ (rh × B) ≥ 0

∧
Ss 6= Ps

∧
Stasks 6= T

do

15: Stasks← Stasks ∪ T sh (S
s)

16: Ss← Ss ∪ {h}

17: for i ∈ Is \ Ss do
18: for t ∈ Ti do
19: if t ∈ T sh then
20: Ti = Ti \ t
21: end if
22: end for
23: end for
24: B = (B × rh)− bh

rh
25: h← arg max

i∈Is\Ss
(vri (S

s)− bi(Ss)
ri

)

26: end while
27: end if
28: Outlier_Detection(S, Ss)
29: return (Ss,P,R)
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