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ABSTRACT The features in facial images, which are utilized for a variety of technological applications,
pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial
images based on the principal components of adversarial segmented image blocks. Generative adversarial
network parameters are compressed by segmenting the facial images into blocks and extracting the principal
components of the segmented image. The generator and discriminator in the generative adversarial network
then generate images similar to the original facial images; the facial images generated by the generator,
as-driven by the target recognition network, markedly different from the original facial images. As the
generator, discriminator, and target recognition network compete with each other, minor perturbation is
added to the principal components of the facial images to protect the users’ privacy and prevent distinct
face-related features of the images from being easily extracted. Experimental results show that the proposed
method outperforms other similar methods in terms of generated image quality, operation speed, and target
recognition network accuracy.

INDEX TERMS Facial image privacy protection, generative adversarial network, principal components,
adversarial samples.

I. INTRODUCTION
Modern facial image recognition technology is relatively
unaffected by problems with lighting [1], [2], or occlu-
sion [3], [4]. It has been widely applied in the Internet of
Things, security, mobile payment, and many other applica-
tions. Passenger vehicles, for example, use face recognition
for keyless starting [5] – merchants use face recognition
for online payment [6], and buildings use face recognition
for access control [7]. Facial features come with signifi-
cant privacy concerns [8]. According to incomplete statistics,
the number of ‘‘selfie’’ photos shared daily by users on social
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media now exceeds one billion [9], [10]. Most social net-
works impose no limits on the downloading of facial images.
To this effect, the leakage of facial images poses a significant
threat. If features in the facial images are extracted by law-
breakers and data mining is performed to obtain user-related
privacy information, the users’ propertymay become severely
insecure [11]–[13]. Protecting the facial image features can
effectively preserve user privacy. It is necessary to secure
these features from extraction before allowing it to be pub-
lished while retaining as much of the original information
as possible to ensure the readability and practicality of the
image.

There are advantages and drawbacks to the existing meth-
ods for facial image privacy protection. Methods based on
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encryption [14], [15], for instance, require burdensome cal-
culations, have poor real-time performance, do not allow for
the direct use of data, and are restricted within an application
scope. Methods based on image filtering [16] significantly
damage the original face information and do not guarantee
image availability. Anonymity-based methods [17], [18] are
susceptible to privacy leakage due to similar or background
knowledge attacks.

In 2013, Szegedy et al. [19] proposed the ‘‘adversarial
samples’’ concept wherein a small amount of perturba-
tion is added to sample data to cause the target model
to generate incorrect classification with high confidence.
Wide range protection of similar image privacy protection
methods then emerged, including the Fast Gradient Sign
Method (FGSM) [20], Adversarial Patch [21], and One Pixel
Attack [22]. Xiao et al. [23] proposed the generation of
adversarial examples with adversarial networks (AdvGAN)
based on generative adversarial networks in 2018. Adding
a small amount of perturbation to the image with a genera-
tive adversarial network (GAN) causes the target network to
consistently produce the wrong classification and is robust
against both white- and black-box attacks. He et al. [24] and
Wu et al. [25] proposed networks similar to AdvGAN for the
generation of facial privacy images, where the target network
is misled to perform a misclassification while ensuring the
availability of facial images.

The paper proposes a method for facial image privacy
protection based on principal components of adversarial seg-
mented image blocks. We add tiny perturbations to the facial
images. When the facial images are published on the cloud
service platform such as social media, the recognition net-
work of potential lawbreakers will recognize errors. As a
result, the data mining of users by potential criminals will not
be successful while protecting the users’ privacy and main-
taining the practicability of pictures. The main contributions
are as follows.

1. A tiny amount of perturbation is added to the princi-
pal components of facial images to ensure that the image
as-generated is fully available.

2. The principal components of the segmented facial
images are extracted to minimize the generator input param-
eters and accelerate the running speed of the process.

3. A target face recognition network is added in the com-
petition between the generator and the discriminator for mis-
leading, which gives the generated facial image a different
label than the original image.

4. Peak Signal to Noise Ratio (PSNR) constraint conditions
is added to ensure the generated facial image is similar to the
original facial image pixel-wise.

II. RELATED WORK
Goodfellow et al. [20] proposed a fast gradient sign method
(FGSM) in 2014. The gradient of the input image is
obtained by calculating the target category, and then the sign
function of the gradient is obtained. Finally, the obtained
results are added to the original image as the antagonistic

perturbations to obtain the antagonistic samples that can
confuse the recognition network. Liu et al. [35] in 2018 and
Linardos et al. [36] in 2019 applied FGSM in face privacy
protection. Both can protect the privacy of images while
maintaining high quality. However, FGSM has the disadvan-
tage that the added perturbations can be easily removed, such
as using the median filtering method. So FGSM is not in our
consideration.

Influenced by AdvGAN proposed by Xiao et al. [23],
He et al. [24] proposed a picture privacy protection algo-
rithm based on the generated adversary network (PriGAN)
in 2019. The U-NET network structure is combined with
the generated adversarial network (GAN) to realize image
privacy protection. However, the resulting privacy images
have a checkerboard effect. In 2019, Wu et al. [25] pro-
posed a new architecture for image Privacy protection named
Privacy-Protective-GAN (PP-GAN), adding validators and
adjustment modules explicitly designed for face recognition
to achieve de-identified output with a similar structure based
on a single input. However, the features of the generated
privacy image are different from the original image, so it is
not suitable for some application scenarios that require high
practicability of the image. We will propose a method that is
superior to other similar methods in terms of image quality,
operation speed, and target recognition network accuracy.

III. PRINCIPAL COMPONENT ANALYSIS
Principal Component Analysis [26] (PCA) is often used
to reduce the dimensionality of data and extract the main
features of images. PCA works based on relatively little
operating data and with a relatively small memory footprint,
which makes it accessible in many fields, including image
classification.

A. BACKGROUND
N facial images are given X = {X1,X2, · · · · · ·XN } for
any facial image Xi ∈ Rm×n. Singular Value Decomposi-
tion (SVD) for PCA dimensionality reduction is applied to
Xi as follows:

Xi,m,n = Um,m3m,nV T
n,n ≈ Um,k3k,kV T

k,n (1)

where Um,m is the left singular matrix of Xi, which can
compress the Xi number of rows, Vn,n is the right singular
matrix of Xi, which can compress the Xi number of columns,
and 3m,n is the singular value of Xi that has been sorted by
size. As the sum of the first k singular values accounts for
more than 95% of the sum of all singular values, the left
singular matrix of the first k dimensions can be multiplied
by the singular value and right singular matrix, which is
approximately equal to the original image Xi. This results in
image dimensionality reduction.

B. PERTURBATION OF PRINCIPAL COMPONENTS
For convenience, let the compression matrix be Z = 3V T .
Then, (2) holds for any facial image Xi.

Xi = Um,mZm,n ≈ Um,kZk,n (2)
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FIGURE 1. Perturbation of asymmetric matrix transformation.

Xi can be regarded as a linear transformation of matrices U
and Z . The multiplication of matrices U and Z is actually
an asymmetric transformation of the elements in Z and the
transformation of a single element Z into a single element
in Xi, as marked with a solid red line in Figure 1. As shown
in (3), the elements in the matrix U may be subjected to
slight perturbation; the results of the asymmetric transforma-
tion then also generate corresponding fluctuations in various
directions, as shown in Figure 1. Possible fluctuations in the
transformation of a single element in Z (as marked with a
dotted line in the figure) also cause the corresponding pixel
point in the facial image Xi to change slightly.

U ′ = U + N (3)

where the matrix N is a perturbation matrix with the same
dimensions as U .

C. PERTURBATION ANALYSIS
The calculated adversarial sample of U was actually slight
perturbation with the base coordinates of the principal com-
ponents. The elements in U have been standardized, and
the value range is within [−1, 1], which contributes to the
iterative operation of the algorithm for perturbation calcu-
lation. The principal component contains the main features
of the facial image Xi. Accumulating perturbation to the
principal component via linear transformation can speed up
the generation of facial images with privacy protected. As the
principal components contain the main features of the facial
image Xi, when the perturbation is added to the main features,
the perturbation in the generated facial image with privacy
protected cannot be easily filtered out. That is, the image can
not be quickly restored.

For the generated set of facial images with protected pri-
vacy X ′ =

{
X ′1,X

′

2, · · · · · ·X
′
N

}
, in the case of X ′i ∈ X

′, (4) is
true.

X ′i = U ′Z + E = Xi + NZ + E (4)

where E is the error between Xi that was subjected to PCA
transformation and X ′i . To ensure the availability of the facial
privacy image, the difference between the facial image Xi and
the privacy image X ′i should be invisible to the naked eye;
that is, the error and perturbation matrix should be minimal.

Let f be the fitting function of the target face recognition
network. To protect the privacy of the facial image for f ,
the difference between the facial image Xi and the privacy
image X ′i should be maximized, as shown in (5).

min ||Xi − X ′i ||2
s.t. f (Xi) 6= f (X ′i ) (5)

D. IMAGE SEGMENTATION
The facial image Xi usually has high dimensionality. Here,
Xi was segmented into sub-blocks of p× q as follows:

Xi =

X11 . . . X1q
...

. . .
...

Xp1 · · · Xpq

 (6)

Establishing the facial privacy image X ′i is equivalent to
adding perturbation to the left singular matrix U of the
sub-block Xi, as shown in (7). As the left singular matrix U
of the sub-block is much smaller in dimensions than the left
singular matrix U of the entire facial image Xi, the number
of parameters in the network can be reduced. The sub-blocks
obtained by segmentation also increase the number of trained
samples and decrease the complexity of the problem, thus
accelerating the perturbation-solving process.

X ′i =

 (U11 + N11)Z11 . . . (U1q + N1q)Z1q
...

. . .
...

(Up1 + Np1)Zp1 · · · (Upq + Npq)Zpq

 (7)

IV. MATH FACIAL IMAGE GENERATION NETWORK
OF ADVERSARIAL SEGMENTED IMAGE BLOCK
PRINCIPAL COMPONENTS
As the data distribution of the facial privacy image X ′i
is infinitely approximated to the original facial image Xi,
a GAN can be applied to solve the facial privacy image that
satisfies (5).

A. BACKGROUND
The GAN is a deep learning model proposed by
Goodfellow et al. [27] in 2014. The loss function of G and
D is minimized by finding the Nash equilibrium point
between the generator G and the discriminator D, so that the
data generated from G approximates the real data.

Goodfellow et al. [27] first proposed the Conditional Gen-
erative Adversarial Net (CGAN), where parameters guide
the generation of data under supervised learning. GAN tech-
niques proposed by Wang et al. [29], Xiao et al. [23],
He et al. [24], and Wu et al. [25] are improved variations of
CGAN. The facial image generation network of the adver-
sarial segmentation principle components can also be con-
sidered a supervised learning process. This differs from the
CGAN process as a supervised network is added to the gen-
erative adversarial network to drive classification errors in the
generated facial images.
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FIGURE 2. PcadvGAN network architecture.

TABLE 1. PcadvGAN flow.

B. NETWORK ARCHITECTURE
The structure of the privacy-protected facial image generation
network based on the principal components of the adversar-
ial segmented image blocks is shown in Figure 2. This is
the so-called ‘‘PcadvGAN,’’ which includes a generator G,
a discriminator D, and a target face adversarial recognition
network f . The left singular matrix set U of the facial image
sub-block Xi was used as the input of the generator G, as the
GAN convergence rate is faster when the distribution of the
initial data is similar to the distribution of the real data. The
flow of the proposed method is shown in Table 1.

As shown in Table 1, the role of the image segmentation
function β(x, num) is to segment the image matrix. The x in

the parameters represents the original image and num = p×q
represents the number of image blocks. The label in the orig-
inal matrix is retained after segmentation and represents the
set of block images in the image merging function 0(x, num).
The matrix is restored according to the label of the block
matrix in the original image.

C. LOSS FUNCTION
The role of the discriminatorD is to distinguish the difference
between X ′ and the original facial image X , thus ensuring
close consistency in data distributions between X ′ and the
original facial image X . The first loss function of PcadvGAN
is expressed as follows:

LGAN = EX logD(X )+ EX ,X ′ log(1− D(0(X ′)|G(β(X ))))
(8)

In (8), the original facial image X participates in the gen-
eration of the facial privacy image X ′, which is essentially
a set N to which adversarial sample perturbation generated
by the generator is added. The X ′ with the added adversarial
sample perturbation then trains the discriminator D together
with the original facial image X . The generatorG is reversely
updated, according to the probability that the outputs of the
samples by the discriminator D are true, until the loss func-
tion LGAN reveals the optimal value. The error E between
X subjected to PCA transformation and X ′ as the sample
perturbation set N is thus minimized.

The target face recognition network f is denoted as a net-
work model that has been properly trained using the dataset at
high accuracy. The parameters would not be updated during
the training process. The proposed method (Table 1) can thus
be applied to combat black-box and white-box attacks on the
samples [30]. As shown in (9), f receives a privacy image X ′

as an input. If it belongs to the classification t of the original
facial image X , it returns a higher loss value; if it belongs
to a misleading classification, it returns a lower loss value,
thereby ensuring the privacy of the facial image X ′.

Ladv = EX ′`f (X ′, t, t ′) (9)

In the white-box environment and with purposeless label
training, the target face recognition network f can return
a set of classification labels closest to the classification t
of the original facial image X in Euclidean distance. One
of the labels is selected for training to accelerate the
GAN convergence rate.

Theoretically, the output range of the elements in the setU
of left singular matrices is [−1, 1]. In actuality, the pixel value
of each image varies considerably, and so the output range
may be much smaller. As a result, as shown in (10), the per-
turbation range of the generatorG output can be appropriately
reduced:

LN = EU (ρ‖G(U )‖2) (10)

where ρ is the coefficient. Adjusting the size of ρ according
to the value range of U can further reduce the GAN training
time.
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To ensure that the generated face privacy image X ′ approx-
imates the original facial image X at the pixel level, as shown
in (11), a pixel-level constraint is added, and the PSNR is
utilized to evaluate the similarity of the two images.

Lsim = max
(
EX ,X ′

(
(40− PSNR(X ,X ′))

40

)
, 0
)

(11)

When the PSNR output value is higher than 40 dB, the two
facial images are highly approximate [38], [39]. When the
output value ranges from 30-40 dB, the generated image
X ′ is acceptable despite slight distortion [40]. To facilitate
feedback from the loss function, the PSNR output can be
restricted to [−1, 1], that is, Lsim ≤ 0.25 means that the
generated facial image X ′ is within an acceptable range.
The loss function of the entire PcadvGAN is:

L = LGAN + χ1Ladv + χ2LN + χ3Lsim (12)

where χ1, χ2, χ3 are the respective hyperparameters of the
loss function.

V. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT
The hardware environment for the experimental test was com-
prised of an Intel i7-8700K CPU with 32GB DDR4 memory
and an NVIDIA GeForce GTX 1080 graphics card.

The software environment was a Windows10 64 bit
operating system running the Google Tensorflow frame-
work. Codes were written in Python. The VGGFACE and
VGGFACE2 public datasets were used as the basis for the
experiment. A black-box environment can be converted to
a white-box environment by training distillation models and
other methods [23], [24], so a white-box environment was
used in this test with unlabeled attacks; in this case, the ser-
vice provider actively protected the privacy of the users’ facial
images. The target face recognition network f could return a
set of the closest classification labels of the original facial
image, thus accelerating convergence. After several tests,
the optimal results were identifiedwhen the hyper-parameters
χ1 = 1.0, χ2 = 30, χ3 = 0.1, num = 4, and k were set to
retain 98% of the singular values. These settings were used
for all subsequent experiments. When num > 4, the best
results need more epochs and more time. num = 4 is the best
setting in this experiment.

AdvGAN has been proven superior to FGSM, Opt, and
othermethods [23]. PriGAN is also suitable for the generation
of face privacy images. Accordingly, we focused various
performance indicators of the proposed PcadvGAN, PriGAN
and AdvGAN in conducting our analysis.

B. NETWORK STRUCTURES OF GENERATOR AND
DISCRIMINATOR
The discriminator uses three convolutional layers to extract
the features of the input data. All layers use LeakyRelu as
the activation function. Two of the convolutional layers use
Instance Norm, thus improving the stability of the model and
accelerating the convergence speed. The last fully-connected

FIGURE 3. Discriminator network structure.

layer uses Sigmod as the activation function. Figure 3 shows
a diagram of this structure.

The generator network structure is shown in Figure 4. The
input data passes through three convolutional layers and three
deconvolutional layers and is output via the Tanh activation
function. Instance Norm and LeakyRelu were imposed in
each of the convolutional and deconvolutional layers here
to enhance the robustness of the generator. LeakyRelu is
an unsaturated activation function, which gives all negative
values a non-zero slope to solve the problem of gradient
disappearance. Four layers of residual blocks were also added
between the convolutional layer and the deconvolutional layer
to increase the generator’s network depth. The network struc-
ture of the residual block is shown in Figure 5. It consists of
two convolutional layers and Instance Norm, and its activa-
tion function is Relu.

C. EXPERIMENT AND ANALYSIS OF FACIAL IMAGES
The VGGFACE and VGGFACE2 datasets are already prop-
erly trained in high-accuracy models [31]–[34]. The properly
trained face recognition model was defined here as the target
face recognition network f . The basic accuracy of each target
face recognition network f as-observed in this experiment
listed in Table 2.

We divide the training set, development set, and test set
according to the 98:1:1 ratio. There are 2622 people with
different identities in the VGGFACE datasets, and there are
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FIGURE 4. Generator network structure.

2.6 million face images. We take 2.55 million face images as
the training set, 0.026 million face images as the development
set, and 0.026 million face images as the test set. There
are 9131 people with different identities in the VGGFACE2
datasets, and there are 3.31 million face images. We take
3.24 million to face images as the training set, 0.033 million

FIGURE 5. Resblock structure.

TABLE 2. Basic accuracy of target face recognition network f (%).

TABLE 3. The accuracy rate of the target face recognition network f for
generating facial privacy images (%).

face images as the development set, and 0.033 million face
images as the test set. The training process of PcadvGAN
iterating 2,000 epochs is shown in Figure 6. L-noise repre-
sents the size of the perturbations LN , and L-sim is Lsim. The
Acc (the accuracy of the target faces recognition network for
generating face privacy images) is inversely proportional to
the perturbations output LN of the generator. The recognition
accuracy Acc is also inversely proportional to the quality loss
of facial image LN . At the beginning of the training process,
we set a large initial value for the perturbations. The values
of LN , Lsim and Acc vary widely. In order to reduce LN
and Lsim, the accuracy rate of Acc fluctuation frequency is
very high. With the increase of training times, PcadvGAN
gradually learned to balance the relationship between the
three. After 600 training sessions, it is obvious that the fluctu-
ation frequency of Acc, LN and Lsim gradually decreases and
finally reaches a stable state. Eventually, PcadvGAN learned
to reduce the values of LN and Lsim while maintaining an
Acc equal to 0. In figure 6, we highlighted two advantages
in 2000 training sessions in green boxes.

After AdvGAN, PriGAN, and PcadvGAN iterated 2,000
epochs, the accuracy rate of the target face recognition net-
work f for generating face privacy images was as shown
in Table 3. AdvGAN, PriGAN, and PcadvGAN both reduced
the accuracy rate of the target face recognition network f
to 0%, which in practice would protect the privacy of the
facial image.
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FIGURE 6. Training process.

FIGURE 7. Comparison of original facial image and generated facial
privacy images Lsim.

In the case where the accuracy rate of the generated face
privacy image Acc was reduced to 0% for the target face
recognition network f , the original facial image and the gen-
erated facial privacy images were taken to calculate the image
similarity using (11) as shown in Figure 7.

Using Acc drop as 0% as the benchmark, PriGAN Lsim >
0.25, the generated facial privacy images were visually unac-
ceptable. When AdvGAN and PcadvGAN Lsim < 0.25,
the generated facial privacy images were visually acceptable.
Due to the loss function Lsim of PcadvGAN, the quality
of these privacy images was better than those generated by
AdvGAN and PriGAN.

The visual contrast between the generated facial privacy
images and the original images are shown in Figure 8. Most
features of the original facial images are retained and well
visible to the human eye, thereby ensuring the ‘‘availability’’
of the generated image.

The visual contrast between facial images generated by
AdvGAN, PriGAN, PcadvGAN, and original images are
shown in Figure 9. The color and contrast ratio of facial
images generated by PriGAN has changed a lot, and the

FIGURE 8. Visual comparison between facial images generated by
PcadvGAN and original facial images.

FIGURE 9. Visual comparison between facial images generated by
AdvGAN, PriGAN, PcadvGAN and original images.

chessboard effect of the images is obvious. The facial images
generated by AdvGAN and PcadvGAN both can ensure
the ‘‘availability.’’ Moreover, compared with AdvGAN and
PriGAN, the quality of the facial images generated by
PcadvGAN is better.

The pixel contrast between the generated and original
facial images are shown in Figure 10. The perturbation inter-
fered with the primary features of all faces and was not easily

VOLUME 8, 2020 103391



J. Yang et al.: Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks

FIGURE 10. Pixel comparison between PcadvGAN-generated and original
facial images.

FIGURE 11. Training run times for 100 times batchsize=4, in seconds.

filtered by the reverse denoising algorithm, which effectively
protected the privacy of the generated facial images.

The training run times of AdvGAN, PriGAN, and Pcad-
vGAN on 100 times batchsize=4 are shown in Figure 11.
As the input matrix was segmented by the proposed method
and compressed twice with PCA, the input parameters were
actually 0.125 times those of the original image. PcadvGAN
thus runs considerably faster than AdvGAN and PriGAN.
However, as image segmentation and merging operations are
lengthy and additional operations (e.g., batch size and pixel
comparison) are required, the actual running speed was not
as high as its theoretical speed.

D. ABLATION STUDY
To confirm the contribution of the loss functions, we define
two more loss functions for ablation study:

L′ = LGAN + χ1Ladv (13)

L′′ = LGAN + χ1Ladv + χ2LN (14)

The training process of PcadvGAN using (13) and (14) iter-
ating 2,000 epochs is shown in Figure 12. L-noise repre-
sents the size of the perturbations LN , and L-sim is Lsim.

FIGURE 12. Training process for ablation study.

When use loss functions (13), the values of LN and Lsim stay
in a high position without going down. This kind of training
is totally ineffective. Due to the image proportion, the L-sim
fluctuation is not obvious and actually fluctuates between
1.48 and 1.53. When use loss functions (14), Lsim reached
the training bottleneck and remained stable around 0.3 in the
middle and later period of training. The generated the facial
privacy images can not guarantee practicability. Compared
with Figure 12 and Figure 6, loss function (12) is the best
way to generate the facial privacy images.

E. ROBUST
In order to test the robustness of the proposed method in this
paper, PcadvGAN, AdvGAN and PriGAN are used respec-
tively, and the target face recognition network f without
defense strategy is used to generate facial privacy images,
and the generated results are respectively attacked against
the target face recognition network f with different defense
strategies, and the results of attack success rate are shown
in Table 4.

It can be seen from Table 4 that when the defense strategy
of the target face recognition network adopts the median
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TABLE 4. The success rate of attacking the target face recognition
network f with defense strategy (%).

FIGURE 13. Transfer rate of adversarial samples.

filtering method, although it has a high impact on AdvGAN
and PriGAN, it does not affect PcadvGAN proposed in this
paper. When the defense strategy of the target face recog-
nition network adopts the Adv. Method [37], PcadvGAN
proposed in this paper is superior to the other two methods
when it is VGG16 and Resnet50 network, slightly inferior to
AdvGAN and superior to PriGAN when it is Senet50. It can
be concluded that the PcadvGAN proposed in this paper has
strong robustness than other methods.

F. EXPERIMENT AND ANALYSIS OF FACIAL IMAGES
ADVERSARIAL TRANSFER EXPERIMENTS ON FACIAL
PRIVACY IMAGES
Next, we used facial privacy images generated by adversar-
ial models of VGG16, Resnet50, and Senet50 to attack the
remaining two models to test for adversarial transferability in
the black-box environment.

As shown in Figure 13, the SE module in Senet50 was
embedded into the branch of the residual structure (which is
very similar to the Resnet50 structure). The privacy of facial
images trained in Resnet50 had a lower accuracy rate for
recognition in Senet50 and vice versa. VGG16 differs greatly
from the network structures of Resnet50 and Senet50. Hence,
the transfer rate of facial privacy images trained among the
three sets was low. However, as the similarity threshold of
most face recognition systems is above 90%, the facial pri-
vacy images trained by PcadvGAN still have practical value.

VI. CONCLUSIONS
The paper proposes a method for protecting facial image
privacy based on the principal components of the adversarial

segmented image blocks. The proposed method was designed
to safeguard users’ privacy while ensuring the availability of
their facial images. The method is superior to other similar
methods in terms of image quality, running speed, and target
recognition network accuracy.
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