
Received May 2, 2020, accepted May 19, 2020, date of publication June 2, 2020, date of current version June 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2996951

Enabling the Reuse of Software Development
Assets Through a Taxonomy for User Stories
EDNALDO DILORENZO, EMANUEL DANTAS, MIRKO PERKUSICH, FELIPE RAMOS,
ALEXANDRE COSTA, DANYLLO ALBUQUERQUE , HYGGO ALMEIDA,
AND ANGELO PERKUSICH, (Member, IEEE)
Electrical Engineering and Informatics Centre (CEEI), Intelligent Software Engineering (ISE) Group, Federal University of Campina Grande (UFCG), Campina
Grande 58428-830, Brazil

Corresponding author: Ednaldo Dilorenzo (ednaldo.dilorenzo@virtus.ufcg.edu.br)

This work was partiatilly supported by CNPq and CAPES grants.

ABSTRACT Context - Agile Software Development (ASD) and Reuse-Driven Software Engineering
(RDSE) are well-accepted strategies to improve the efficiency of software processes. A challenge to integrate
both approaches is that ASD relies mostly on tacit knowledge, hampering the reuse of software development
assets. An opportunity to enable RDSE for ASD is by improving the traceability between user stories (USs),
the most used notation to register product requirements in ASD. Having enough link semantics between
USs could enable defining similarity between them and, consequently, promote RDSE for ASD. However,
this is an open challenge. Objective - To propose a taxonomy for adding link semantics between USs,
focusing on easing the task of identifying similar ones. Such links, with support of traceability tools, enable
the reuse of USs and their related assets. Method: We constructed a taxonomy for types of US focusing
on Web Information Systems. The taxonomy is used to classify the US, given two facets: module and
operation. Such information is used to infer the similarity between USs using link rules. We developed the
taxonomy based on an empirical analysis of five product backlogs, containing a total of 118 USs. Afterward,
we validated the taxonomy in terms of its potential to enable the reuse of US-related assets. First, we executed
an offline validation by applying it to classify 530 USs from 26 already ended projects. Finally, we applied
the taxonomy in a case study with two ongoing projects (59 USs). Results: The proposed taxonomy for
USs is composed of two sub-facets, namely, module and operation, which have, respectively, three and 18
terms. In terms of coverage, for the offline study and case study, we classified 90.17% of the USs with the
proposed taxonomy. For the case study, we classified all the USs analyzed. Conclusion: We concluded that
it is possible to use our approach to compare USs and, consequently, retrieve their related assets. Our results
regarding its practical utility have shown that users considered the taxonomy a useful approach to ease the
process of assessing the similarity between user stories.

INDEX TERMS Agile software development, software reuse, user stories, information retrieval, technology
acceptance model.

I. INTRODUCTION
Two well-accepted strategies that software companies can
implement to preserve their competitive advantage, reducing
their time to market, are Agile Software Development (ASD)
and Reuse-Driven Software Engineering (RDSE) [1]. While
ASD achieves this by having short validation cycles, incre-
mental delivery and minimizing activities not directly related
to executable code, RDSE reduces the effort necessary to pro-

The associate editor coordinating the review of this manuscript and
approving it for publication was Adnan Abid.

duce artifacts by reusing existent knowledge (i.e., artifacts)
such as source code, requirements, and test cases.

ASD is a change-driven approach to develop software. Its
values and principles are stated in the AgileManifesto [2] and
applied through agile methods, such as Extreme Program-
ming [3] and Scrum [4]. According to Hoda et al. [5], ASD
has become ‘‘the mainstream development method of choice
worldwide’’.

A characteristic of ASD is that it is mostly based on
tacit knowledge [6] and frequent face-to-face communica-
tion, instead of explicit documentation. In ASD projects,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 107285

https://orcid.org/0000-0001-5515-7812

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

the main asset that stores product knowledge is the User
Story (US) [7]–[9]. The US consists of a semi-structured
notation to specify requirements, focusing on three aspects:
the persona user, the functionality that the given user wants
the system to provide, and the reasoning behind the user’s
desire. There are many templates available, but, according to
Lucassen et al. [10], 70% of practitioners use the template
proposed by Cohn [11]: ‘‘As a <user>, I want <goal>,
so that <reason>’’.
The main goal of the US is to facilitate product-related

discussions between the stakeholders. As a consequence,
USs might not contain enough information to enable peo-
ple not involved in the project to understand the project’s
scope in a low level of granularity (e.g., technologies, algo-
rithms or design used, types of user interface developed).
Thus, the US and its related assets such as the task cards and
Product Backlog are information intended to be used locally
by the project team(s), and not globally by the organization.
As a result, from an RDSE perspective, a down point of
ASD is the lack of enough explicit product knowledge, which
hinders the traceability of software development assets, thus
making information reuse a challenge.

Having explicit product knowledge with enough infor-
mation enables the indexing of reusable assets such as
source code, components, test cases, and specifications. For
instance, tools such as Gitlab,1 which integrates features of
project management, version control, continuous integration,
and continuous delivery, enables to easily establish traceabil-
ity links between US and tasks, commits, builds and time
estimations (and tracking). Systematic reuse can bring sig-
nificant benefits, such as the increase in software productivity
and software product quality [12]. By reusing requirements,
there is the potential to have a baseline to address some
interesting questions such as: ‘‘Who is the most efficient
developer or team to implement this feature using Django?’’,
‘‘How has this requirement been tested in the past? Was it
efficient? How can we do better?’’, ‘‘Which non-functional
requirements are usually considered in the context of these
requirements?’’, ‘‘Who should review the source code related
to this requirement?’’, ‘‘Who should fix this defect?’’ and
‘‘Which components or APIs could we use to reduce time-
to-market delivering this feature?’’.

Despite the potential of reusing requirements, especially,
functional requirements (i.e., description of what the software
should do [13]), their use is deficient in the industry. The
exception is for companies that work on products on the
same domain area, which is the case for software product
lines [14] and Software Requirements Patterns [15]. Given
their loose coupling to the domain, non-functional require-
ments and non-technical requirements have higher reuse
frequency than functional requirements [16]. Despite this,
if we analyze companies that work on products of the same
type [17], for instance, Web Information Systems (WIS), and
not necessarily from the same family, we can observe that

1https://about.gitlab.com/

they repeatedly work on very similar tasks such as ‘‘creating
a login page’’ or ‘‘implementing CRUD operations’’. This
observation raises the following research question: is it pos-
sible to enable the reuse of functional requirements-related
assets for systems of the same type in the context of ASD?

A potential solution is to use requirements catalog [18].
A requirements catalog contains a set of related requirements,
which might belong to the same domain or profile. Each
requirement is uniquely identified and classified according
to a set of attributes such as priority, criticality, risk, source,
and type. From the attributes presented in Pacheco et al. [18],
which are based on the IEEE Std. 1233, the most related to
our interest is type. Given this attribute, each requirement
might be categorized into one or more of the following types:
(i) data update requirements, (ii) information requirements,
(iii) query and reports requirements, and (iv) requirements
for interaction with existing systems. From the viewpoint
of our research question, the classification of a functional
requirement as presented in Pacheco et al. [18] has as the
main following limitations the high cost associated with con-
structing the catalog, considering the number of attributes
necessary to be defined for each requirement and the tool
support.

Another alternative is to create link semantics and make
explicit links between artifacts. Such an approach improves
traceability and enables assessing the similarity between
requirements [19], [20].

Espinoza and Garbajosa [19] present a tool that supports
manually adding link semantics for agile artifacts and trace
automation. Elamin and Osman [20] present a traceability
methodology, focused in ASD, that, based on link semantics,
generates traceability links identifying reusable requirements
and related artifacts. Such a solution is based on the agile
Traceability Information Model (TIM), commonly supported
by agile management tools (e.g., Rally2).

Both studies, Espinoza and Garbajosa [19] and Elamin and
Osman [20], rely on a semi-automatic approach, in which
link semantics are manually added by the software engineer
and reuse is automated with the support of traceability tools.
Further, they do not provide models, instructions, or guide-
lines on how to add the link semantics. Currently, there
is limited work on automatically creating link semantics
between requirements, and such studies [21], [22] assume
the availability of extensive documentation, which might
not be a fit for ASD, and focus on distinguishing between
requirements and non-requirements [23], functional and non-
functional requirements [24], and identifying defects (e.g.,
consistency or completeness).

To address the need for an innovative solution to enable the
reuse of functional features in the context of ASD,we propose
a taxonomy to add link semantics between USs. Such a link
enables identifying similar USs, and with the support of
traceability tools, automate the reuse of agile artifacts. The
proposed taxonomy is tailored to a system type (e.g., WIS)

2http://www.rallydev.com

107286 VOLUME 8, 2020

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

and such a solution a well-established approach to support
RDSE [25], [26].

To construct the taxonomy, tailored to WIS, we used
a mixed-methods empirical approach based on [27]. First,
we analyzed the product backlogs from five projects com-
posed of 118USs and 336 tasks from a real software company
to identify patterns between the USs and tasks. As a result,
we defined a two levels taxonomy to represent the USs.

We validated the proposed taxonomy in terms of potential
to enable the reuse of US-related artifacts. For this purpose,
we, first, validated the taxonomy using data from 26 already
ended projects (530 USs). Finally, we validated the taxon-
omy through a case study with two ongoing projects (35
USs), including collecting data from nine software engineers
that used the taxonomy through the Technology Acceptance
Model (TAM) [28].

This paper is structured as follows. Section II for-
mally states the problem address by this study. Section III
describes the methodology executed to construct the
taxonomy. Section IV presents the proposed taxonomy.
Section 4 presents the results of the validation study.
Section VI discusses the study’s research questions and
implications for academia and industry. Section VII discusses
the study‘s threats to validity. Finally, Section VIII presents
our final remarks and future work.

II. PROBLEM STATEMENT
Let US be a set of user stories US = {u1, u2, . . . , ui},
where i = |US|, and C a set of classification terms C =
{c1, c2, . . . , cj}, where j = |C|. We define that a mapping of
a user story uk to C is given by M : US → C .

In what follows, we define the properties of a mappingM :.

• Coverage (Mc): is given by the number of different user
stories elements contained in M divided by |US|.

• Granularity (Mg): is given by the number of different
classification elements contained in M .

• Heterogeneity (Mh): is given by the number of elements
for each possible element of C .

• Complexity (Mx): is given by the Granularity divided
by |US|.

To clarify the properties of given mappingM , consider the
following scenario:

1) US = {u1, u2, u3, u4, u5},
2) C = {c1, c2, c3}, and
3) M = {(u1, c1), (u1, c2), (u2, c1), (u3, c2), (u4, c3)}.

For Mc, notice that the tuples contained in M contains
u1, u2, u3 and u4, but not u5. Therefore, Mc is calculated in
Equation 1.

Mc =
4
5
∗ 100 = 80%. (1)

For Mg, notice that the tuples contained in M contains all
the elements of C (i.e., c1, c2, and c3). Therefore, Mg is 3.
For Mx , notice that the tuples contained in M contains

all the elements of C (i.e., c1, c2, and c3). Therefore, Mx is

FIGURE 1. Distribution of the heterogeneity of M (Mh).

calculated in Equation 2.

Mx =
3
5
∗ 100 = 60%. (2)

Finally, forMh, notice that two tuples ofM contain c1 and
c2, and only one contains c3. Figure 1 shows that distribution
of Mh.

Let S(ui, uj) be a function that calculates the similarity
between user stories ui and uj and s be a set of similarities
calculated for all user stories S = {s(a, b) | a ∈ US, b ∈ US,
and a 6= b)}.
Let T (USi, SDLA) be a function that defines the relation-

ship between the user story ui and the set of software devel-
opement lifecycle artifacts SDLA.

Let Q be the software developement lifecycle artifacts,
where Q ⊂ SDLA, that can be reused for a user story ui given
a function R = (T , S). R receives as input a ui, and, given
S, it identifies user stories USsimilari similar to ui. Given T ,
it defines Q as the union of the related software development
artifacts SDLAk for each uk ∈ US.
This work mostly focuses on defining C . In other words,

we focus on giving semantic links between user stories. More
specifically, we focus in the domain of user stories for the
Web Information Systems domain. The process for opera-
tionalizing M presented herein is a manual (see Sections IV
and V). Further, for S we assume a simple rule presented in
Algorithm 1.

Algorithm 1 Similarity Between User Stories ui and uj
1: procedure SIMILARITY(ui,uj,M)
2: if ui and uj are mapped to at least one common ck

then
3: return TRUE F ui and uj are similar.
4: else
5: return FALSE F ui and uj are not similar.

In other words, we focus on giving semantic links between
user stories. We assume that T is previously defined through
software engineering traceability tools. Therefore, by logical
consequence, our contribution identifies Q for US.

III. RESEARCH METHODOLOGY
The goal of this study is to construct and validate a taxonomy
for adding link semantics between USs, focusing on easing
the task of identifying similar ones. We assume that software

VOLUME 8, 2020 107287

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

FIGURE 2. Employed taxonomy construction process.

artifacts derive from the product requirements and that the
requirements are documented as USs. Therefore, by having
traceability between the software requirements and other soft-
ware artifacts (e.g., tasks, test cases, and commits), we can
reuse the assets by calculating the similarity between USs
(seeAlgorithm 1), in other words, theUSs serve as a reference
for a reuse mechanism such as information retrieval or rec-
ommender systems. Given this, we formulated the following
research questions:

• RQ1: How to construct a taxonomy for USs of WIS to
enable the reuse of US-related assets?

• RQ2: Does the proposed taxonomy enable the reuse of
US-related assets?

To answer the research questions, we employed the taxon-
omy development method presented by [27]. The executed
process is summarized in Figure 2 and further described
as follows. The research questions are further defined and
refined in Section V.

A. PLANNING
For the planning phase, first, we defined the software engi-
neering knowledge area related to our taxonomy according
to the Software Engineering Body of Knowledge (SWE-
BOK) [29] as software requirements. Afterward, we defined
the main objective of the proposed taxonomy as to define
a set of categories to classify the USs of WIS in a level of
granularity that enables the reuse of US-related assets. Since
US is the most popular notation for requirement specification
in ASD, the subject matter to be classified are USs.

For the structure of the taxonomy, it is well-known that
facet-based classification is adequate to organize reusable

software development assets [25], [26] given their flexibility
for expansion and maintenance and ease to implement as a
relational database. An example of a facet-based classifica-
tion for US could be to use the dimensions of the IEEE Std.
1233: priority, criticality, risk, source, and type. We hypoth-
esize that only considering the ‘‘type’’ dimension enables
the reuse of requirements-related assets, such as task cards.
Given this, we decided to use a facet-based classification
considering only the ‘‘type’’ facet and refining it by detailing
its arrays (or sub-facets) [30].

The procedure to classify the user stories was qualitative
and based on thematic analysis. Finally, the basis (i.e., sources
of information) to define the taxonomy were product back-
logs from real-world projects.

B. IDENTIFICATION AND EXTRACTION, AND DESIGN AND
CONSTRUCTION
We executed stages two (‘‘Identification and extraction’’) and
three (‘‘Design and construction’’) by applying a thematic
analysis procedure on five product backlogs composed of a
total of 118 USs. For the thematic analysis procedure, we exe-
cuted the five steps recommended by Cruzes and Dybå [31]:
(i) data extraction, (ii) data coding, (iii) translation of code
into themes, (iv) creation of a model of higher-order themes,
and (v) trustworthy assessment of the synthesis.

For the first step (i) of the employed thematic analysis pro-
cedure, one researcher extracted the product backlog items
of the five product backlogs used as the information source
to a spreadsheet, containing a tab to store the items of each
product backlog. Since the extraction was executed manually,
for reliability purposes, another researcher checked if the

107288 VOLUME 8, 2020

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

extractionwas correct. Afterward (step ii), each product back-
log was analyzed by a researcher (i.e., data extractor), who
coded the product backlog items. For this purpose, the data
extractor labeled and coded segments of the product backlog
items given attributes that he judged to be relevant such as fea-
ture, requirement, and system interface. To reduce researcher
bias, a second researcher (i.e., data checker) reviewed the
labels and codes defined for each product backlog, and in case
of conflict, all the involved researchers discussed it during a
specific meeting.

To define the themes (step iii), the researchers, during
workshops, analyzed the codes for all included USs. At the
end of this process, the themes were identified and used as
input for step (iv), in which the taxonomy was defined by
relating the identified themes and sub-themes, as necessary.
The last step (v) was executed as part of the taxonomy valida-
tion process (see Section III-C). The resulting taxonomy and
its usage guideline are presented in Section IV.

C. VALIDATION
Existing validation approaches for a taxonomy include
demonstrating the orthogonality of its dimensions, bench-
marking against existing classifications and by demonstrating
its utility to classify existing knowledge [27], [32], [33]. The
orthogonality, which refers to the mutually exclusive nature
of the classification, is implied by its structure, andwe discuss
it in Section IV-A. We demonstrate its utility in terms of
its representativeness, capability to enable the reuse of US-
related assets (i.e., specifically, task cards), and the practical
utility. For this purpose, we followed a two-steps approach:
an offline study and an online study (i.e., case study). For
the simulation, we collected 530 USs and 1879 tasks from 26
ended projects of four software development companies. For
the case study, we applied the taxonomy into two ongoing
projects for three months, which resulted in analyzing 35
USs and 192 tasks, and involving nine software developers.
We present the details regarding the validation procedure’s
planning and results in Section V.

IV. PROPOSED SOLUTION
This section presents the proposed taxonomy for US, tailored
to WIS, and its usage guideline. The terms of the taxonomy
represent the set of classification terms C , as discussed in
Section II. In what follows, Section IV-A presents the pro-
posed taxonomy, and Section IV-B discusses how to apply
the proposed taxonomy to reuse US-related assets.

A. TAXONOMY OVERVIEW
As presented in Section III-B, to construct the taxonomy,
we executed a procedure based on thematic analysis with
five product backlogs composed of a total of 118 USs as the
source of information. In what follows, we present the main
decisions that we took that led us to the taxonomy shown
in Table 1.

Initially, we filtered the product backlog items to be ana-
lyzed, by removing the ones that were not related to func-

TABLE 1. Taxonomy to classify user stories.

tional requirements, since they were out of the scope of
this study. For instance, we removed product backlog items
related to technical debt (e.g., refactor a component) or non-
functional requirements (e.g., add support to internationaliza-
tion and localization).

After analyzing the labels and codes, which were defined
by analyzing the text of the five product backlogs after the
filtering, we clustered the USs given their related modules.
Specifically, we identified three modules: Registration, con-
sisting of Create, Read, Update and Delete (CRUD) opera-
tions; Authentication, consisting of software authentication
and authorization operations; andManagement, consisting of
dashboard and reports operations. Afterward, for each cluster
of US (i.e., modules), we further refined the classification
by identifying the main operations implemented. As a result,
as shown in Table 1, the taxonomy was composed of two sub-
facets: Module and Operation. It is important to notice that
there is a strong inter-facet relationship betweenModule and
Operation. For instance, the operation ‘‘First login’’ is only
valid in the context of the module ‘‘Authentication’’. We can
think of the modules as being mutually exclusive sets; and the
operations as the elements of each set.

It is worthy to notice that the constraints related to the scope
of a US (i.e., and consequently, its size) is team-dependent,
not product-dependent. For instance, a team might place a
constraint on the sizes of the US for their project as no
more than ten days of development work [11]. Notice that,
a variation between teams might be the number of days itself
used as the constraint. However, more importantly, the scope
is also in function of the teams’ velocity. Therefore, in light
of the proposed taxonomy, it is possible that a US englobes
multiple operations. For instance, to deliver the same feature,
team A might use one US, which is classified with [Mod-
ule: ‘‘Registration’’, Operation: [‘‘Retrieve data’’,‘‘Update
data’’]], and team B might use two USs, one classified as
[Module: ‘‘Registration’’, Operation: ‘‘Retrieve data’’] and

VOLUME 8, 2020 107289

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

another classified as [Module: ‘‘Registration’’, Operation:
‘‘Update data’’]. Even though this characteristic hinders the
orthogonality of the classification, it does not hinder the
reuse of assets (e.g., information retrieval or recommendation
system), which is the proposed taxonomy’s goal.

B. GUIDELINES TO USE THE PROPOSED TAXONOMY
The process to classify a US starts when the user registers a
new US into the database. If the US is related to functional
requirements, in addition to the basic US information (i.e.,
title, description, etc.), the user must also select a module
and the operations that represent the User Story. In terms
of operationalization, the module and operations might be
represented as tags. Figure 3 shows the steps to classify a US
using the defined taxonomy and presents an example in which
the US was classified as [Module: ‘‘Authentication’’, Opera-
tion:‘‘Login’’]. Such a classification refers to the mappingM
of user stories to C , as discussed in Section II.
In the cases in which there is no valid classification for

a US, a new module or operation might be created. In this
case, we recommend that a Maintenance Group should be
responsible for the extension of the taxonomy. The Mainte-
nance Group should also audit the classifications, to ensure
correctness and avoid corrupting the database. Once the USs
are categorized, it is possible to retrieve them as well as their
related assets based on their module and operation. Figure 4
shows the retrieval of all USs in a database classified with
Authentication module and Login operation.

An advantage of using the proposed taxonomy is that it
enables the improvement of the traceability between US-
related assets. To demonstrate this, we consider the case for
task cards. Using a similar approach as the one shown in
Section III to classify the USs and the same database (i.e.,
set of US and the related task cards), we classified 336 task
cards into ‘‘Task type’’. For each ‘‘Operation’’, a set of tasks
were defined. As with the inter-facet relationship of the facets
‘‘Module’’ and ‘‘Operation’’ of the entity US, there is a strong
relationship between the facet ‘‘Task type’’ of the entity task
card and the facet ‘‘Operation’’ of the entity US. Table 2
shows the number of defined tasks for each US module and
operation while Table 3 shows an example of tasks defined
to be reused for the Registration module and Insert data
operation.

Having a taxonomy for the task cards increases the level
of granularity of the traceability of USs and task cards (see
Figure 5) and, consequently, increases the reuse capabilities.
The reasoning for this conclusion follows from the fact that
with a higher level of granularity, it is possible to improve
the characterization of the given entities (i.e., USs and task
cards), therefore, having a more precise means to calculate
similarity. Thus, based on the US’s module and operation,
the user can retrieve (i.e., reuse) the standard tasks associated
with it. As a consequence, this increases the potential of
reuse of software engineering assets. For instance, assuming
that the task cards are classified given our taxonomy and
that they are linked to other assets such as commits, source

TABLE 2. Amount of defined base tasks by module and operation.

TABLE 3. Examples of previously defined tasks for registration module
and insert data operation.

code, or documentation, we enable the user to retrieve this
information efficiently.

V. VALIDATION OF THE TAXONOMY
This section details the validation procedure applied to the
proposed taxonomy. The procedure consists of two steps: an
offline study (Section V-A) and an online study (i.e., a case
study) (Section V-B). Moreover, the procedure addresses
RQ2, defined in Section III.
The objective ofRQ2 is to assess the taxonomy’s potential

to enable reusing USs and related artifacts. For this purpose,
we evaluated RQ2 given three perspectives: (i) reuse of US
and (ii) reuse of related artifacts, and (iii) practical utility.
First, we analyzed the taxonomy’s potential to represent the
USs related to functional requirements (i.e., business USs) in
the context of WIS. Thus, we further refined RQ2 into:

• RQ2.1: What is the proposed taxonomy’s potential for
reusing USs?

• RQ2.2: What is the proposed taxonomy’s potential for
reusing USs related artifacts?

107290 VOLUME 8, 2020

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

FIGURE 3. Process to classify USs based on the proposed taxonomy.

FIGURE 4. The US taxonomy allows the retrieval of USs and their related assets.

• RQ2.3: What is the practical utility of using the pro-
posed taxonomy for reusing USs and related artifacts?

For RQ2.1, since the taxonomy represents the terms to
be used for classifying WIS user stories, in other words,
it defines the elements of C (see Section II), we evaluated it
given the followingmapping properties ofM : coverage, gran-
ularity, and heterogeneity. The problem associated with this
research question is analogous to the classical model fitting
problem of machine learning. Our goal is that the taxonomy
can classify the highest number possible of USs. Conversely,
since we intend to use the taxonomy to classify USs, using the
results as a reference to enable calculating similarity between
them, if we use too few taxonomy terms for classification
(i.e., underfitting) our too many (i.e., overfitting), it will not
be useful.

For instance, let’s consider two extreme cases. Consider
that we have 100 USs, and that, theoretically, we have
20 types of USs uniformly distributed. In other words,
as expected values for the mapping properties, we have:

• Expected coverage: 100%.
• Expected granularity: 20%.

• Expected heterogeneity: uniformly distributed over the
20 terms used to classify the user stories.

• Expected complexity: 20%.

If by applying the taxonomy to classify all the USs (i.e.,
calculated coverage of 100%) we only have 1 term used (i.e.,
calculated granularity of 1), the classification is useless,
because it follows that the USs are all similar (i.e., a lot of
false-positive). Conversely, if we need 100 (i.e., calculated
granularity of 1) taxonomy terms to classify them, it is also
useless, because it follows that all USs are different (i.e.,
a lot of false-negative). Additionally, even if we use 20% (i.e.,
calculated granularity of 1, as expected), but the distribution
of the used terms to classify the user stories do not follow the
expected heterogeneity, we might have false-positives and
false-negatives. Finally, even if all the expected values are
achieved, there is still the risk of having false-positives and
false-negatives. Therefore, we conclude that the metrics serve
as a filter to discard invalid classification schemes, but not to
confirm them as valid. For confirmation purposes, there is the
need for human domain expertise to analyze if each user story
was classified correctly following the available taxonomy

VOLUME 8, 2020 107291

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

FIGURE 5. Increase of the granularity of traceability between US and task cards
after applying the proposed taxonomy.

terms. Finally, the complexity indicates the potential level
of reuse of the user stories. Given that the classification is
correct, the lower the complexity, the higher is the degree of
reuse of user stories.

Unfortunately, for a quantitative taxonomy fit analysis,
we would need to know real granularity and heterogeneity,
which is not available, because this problem is an instance of
the classical Chicken and Egg Problem. Despite this, due to
the nature of WIS, we expected to classify over 85% of the
business User Stories, leaving some margin for unexpected
features for pureWIS such as product recommendation, using
3 modules (i.e., Registration, Authentication, and Manage-
ment), having most of the US’s (over 70%) to be classified as
of Registration, and the remaining ones distributed between
Authentication and Management.
RQ2.2 aims to assess if the proposed taxonomy enables the

reuse of US-related assets. We restricted our evaluation for
this research question to reusing task cards. For this purpose,
we defined a metric called Task Reuse, which is calculated
using Equation 3.

Tasks Reuse =
Number of Reused Task Cards
Total Number of Task Cards

∗ 100 (3)

RQ2.3 concerns the evaluation of the practical utility of
the taxonomy, focusing on the reuse of task cards from the
perspective of software engineers. To this end, we applied the
TAM. It is essential to notice that, as discussed in Section II,
our contribution is limited to defining C , the set of terms
to classify user stories. Despite this, to be able to evaluate
the taxonomy from the viewpoint of software engineers,
we defined a manual procedure, based on the guidelines
presented in Section IV-B, for M . Therefore, even though,
by applying TAM we implicitly assess C andM , our focus is

on C . However, the data collected may serve as indicators for
future work in refining M .

A. OFFLINE STUDY
The goal of the offline study was to investigate the feasibility
and potential limitations of the proposed taxonomy. In this
step, we collected data from 26 product backlogs from deliv-
ered projects of four software development companies. The
projects were composed of 530 USs and 1879 task cards.
Then, we applied the process illustrated in Figure 3 to classify
the product backlogs.

The classification was performed (manually) using a
spreadsheet to register the data. Each product backlog was
distributed to a researcher, and it was filtered by remov-
ing the USs not related to functional requirements. As a
result, 123 USs were discarded, remaining in 407 USs to be
classified. We followed the same peer review process used
to construct the first version of the taxonomy, discussed in
Section IV. Afterward, each researcher classified his assigned
USs by labeling them with the proper modules and opera-
tions, according to the inter-facet relationship discussed in
Section IV-A. These steps were executed by four researchers
following peer audits, seeking agreement among researchers,
to avoid researcher bias [34].

None of the USs were classified using multiple mod-
ules or operations since it was not necessary. Whenever the
researcher could not classify a US given its scope or taxon-
omy limitation, it was labeled as Not covered. It is worth to
mention that a risk identified during the classification process
was the possibility that researchers could not understand the
context of a US based on its description (e.g., a US described
as ‘‘Implement feature’’) since the US is an artifact intended

107292 VOLUME 8, 2020

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

TABLE 4. A sample of user stories classified during the offline study.

to be used locally by the project team. To improve the reli-
ability of the validation, whenever the description of the US
was not enough information, we also checked its related task
cards because they could provide more information regarding
the US scope.

Finally, to assess the indexing potential of reusable assets
(RQ2.1), the researchers evaluated the USs-related task
cards. Each of them evaluated only the tasks related to the
USs previously assigned to him, using the scheme presented
in Section IV-B. We assumed that every task classified can be
reused since they can be retrieved based on their ‘‘Task type’’.

1) OFFLINE STUDY RESULTS
This section outlines the results of the offline study. Table 4
shows examples of USs from three different product backlogs
(i.e., X, Y, and Z) and their assigned modules and operations.
Despite belonging to different projects, US2 and US4 can
be considered similar since they were classified with the
same module and operation. US7 is an example of a user
story removed of the project’s product backlog because it is
not related to a functional requirement. On the other hand,
US3 is an example of a US not covered by the taxonomy.
US8 illustrates an example of a user story that lacks relevant
information in its description, which represents a challenge
in the classification process, as discussed in Section V-A.
In these cases, it is necessary to analyze the task cards of the
corresponding user story to support the process. However, for
US8, even a further investigation into its tasks’ content has
not revealed its scope.

a: POTENTIAL TO REUSE USER STORIES (RQ2.1)
As mentioned before, we evaluated the taxonomy’s potential
to enable the reuse of user stories in terms of its coverage
(Mc), granularity (Mg), and heterogeneity (Mh). Out of the
407 USs, we classified 367 with the proposed taxonomy,
achieving coverage (Mc) of 90.17%, above our expected cov-
erage of 85%.We classified the US using all the 18 operations
of the taxonomy, therefore, having a granularity (Mg) of 18.
Regarding the heterogeneity (Mh), 80.11% were classified
as Registration, 10.35% as Authentication, and 9.54% as
Management, following the expected heterogeneity. Further,
the mapping properties (i.e., Mc, Mg, Mh) and the mapping

TABLE 5. Sample of classified tasks of the taxonomy adequacy step.

itself were analyzed by a researcher who has not participated
in the classification process but had previous knowledge
about the taxonomy. As an outcome, the results were judged
to be satisfactory. Finally, we had a calculated complexity
(Mx) of 4.9%, indicating a high potential of user story reuse,
since we can represent 367 with only 18 types.

b: POTENTIAL TO REUSE USs RELATED ARTIFACTS (RQ2.2)
We evaluated the reuse potential of the proposed taxonomy by
analyzing the reuse of task cards (Equation 3). To accomplish
that, we applied the taxonomy to a set of task cards related to
the previously classified USs. From the initial set of 1879 task
cards, we removed 673, resulting in 1206 to be classified.

Table 5 shows a sample of tasks of two projects (W and
Z). The first two lines show two cases of project W in which
the tasks were classified using a task type related to a tuple
of module and operation. The third line shows an example
of a task covered by the taxonomy. The last line shows a
classified task from project Z. Considering the 1206 task
cards, the taxonomy achieved 80.93% of reuse, resulting in
976 classified task cards. This percentage indicates the reuse
potential of the taxonomy.

B. CASE STUDY
According to Runeson and H’́ost [35], a case study is an
empirical method to investigate a contemporary phenomenon
in a specific context. In this study, the investigated phe-
nomenon consists of using the proposed taxonomy to classify
USs and, hence, to enable the reuse of task cards. The main
goal of the case study is to evaluate the cost-benefit of the tax-
onomy from the perspective of development teams regarding
the reuse of user stories and task cards.

To accomplish that, we conducted an embedded case study
in a small software company, which uses Scrum to manage its
projects. Overall, the company has 26 employees performing
different functions such as project manager, quality analyst,
and developer. The teams are composed of four to five mem-
bers working on the development of Web enterprise appli-
cations using several technologies such as Java, AngularJS,
NodeJS, and MongoDB. The most experienced developer,
in each team, acts as the Scrum master, conducting planning,
review, and retrospective meetings. In contrast, the product
owner works in the same company and serves as a represen-
tative of the customer.

VOLUME 8, 2020 107293

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

The case study addressed the research questions RQ2.1,
RQ2.2, and RQ2.3. To answer them, we considered two
ongoing projects of the previously mentioned company as
research units. One of the projects was composed of five
developers, whereas the other one was composed of four
developers. Thus, we considered nine research subjects dur-
ing the case study. This step of the research lasted three
months. Firstly, the researchers executed two workshops of
one hour to train the software developers on how to use
the taxonomy. Then, the software developers started using
the taxonomy during the Sprint planning meetings through
a spreadsheet prepared by the researchers. During the execu-
tion of the case study, the researchers acted as the Mainte-
nance Group, auditing the

To address RQ2.1 and RQ2.2, we followed an approach
similar to the one applied during the offline study (see
Section V-A), in which the process illustrated in Figure 3
was executed by the software developers. At the end of the
period, the developers have described 35 user stories and 192
task cards. Based on these data, the researchers gathered the
metrics presented in Section V.

On the other hand, to address RQ2.3, we applied the
Technology Acceptance Model [28], which is widely used to
assess the practical utility of a proposed solution [36], [37].
TAM considers that the adoption of any technology is influ-
enced by its perceived usefulness (PU) and its perceived ease
of use (PE). PU refers to the degree to which an individual
believes that using a particular technology would enhance
his or her job performance. On the other hand, PE refers to
the degree towhich an individual believes that using a specific
technology would be free of physical and mental effort [38].

We operationalized TAM through a questionnaire com-
posed of fourteen questions regarding the PU and fourteen
regarding the PE variable [39]. For each question, we used
a five-level Likert scale to collect participants’ responses,
ranging from 0 (Strongly disagree) to 4 (Strongly agree).
Appendix A presents the applied questionnaire. At the end
of the period of the case study, the nine software developers
(subjects of research) answered the questionnaire.

1) CASE STUDY RESULTS
In this section, we present the results of the case study regard-
ing RQ2.1, RQ2.2, and RQ2.3.

a: POTENTIAL TO REUSE USER STORIES (RQ2.1)
As with for the offline study, we evaluated the taxonomy’s
potential to enable the reuse of user stories in terms of its
coverage (Mc), granularity (Mg), heterogeneity (Mh), and
complexity (Mx). From the 63 user stories observed during
the period of the case study, 59 were related to functional
requirements (88%). In this case, we reached coverage (Mc)
of 100%. The software developers used 6 operations; there-
fore, we had a granularity (Mg) of 6. Furthermore, regarding
the heterogeneity (Mh), 89.8% were classified as Registra-
tion, 9.4% as Authentication, and 0.2% as Management.
Finally, the researchers analyzed the classification performed

TABLE 6. US distribution over modules and operations.

TABLE 7. US distribution over modules and operations.

by the software developers and judged them as satisfactory.
With regards to the complexity (Mx), we had a calculatedMx
of 10%.

b: POTENTIAL TO REUSE USs RELATED ARTIFACTS (RQ2.2)
As with for the offline study, we evaluated the taxonomy’s
potential to enable the reuse of USs related tasks in terms
of the reused task cards. In total, the software developers
specified 192 task cards in the two projects’ product backlogs,
of which 142 stemming from business user stories. Of this
amount, they classified 136 using the proposed taxonomy,
i.e., a reuse rate of 95.77% (see Table 7). On the other hand,
they did not use the taxonomy in 4.22% of all cases, i.e., 6
tasks only. These task cards, not reused, were added to the
task database for future reuse.

Table 6 shows the number of tasks by Operation specified
in both projects. As can be seen, most of the reused task cards
(40 tasks or 85.3%) are related to the Registration module.
We expected these results since both projects were developing
Web Information Systems.

Although the proposed taxonomy includes 131 types of
task cards, the software developers used just 48 of them to
classify all their projects’ tasks during the period of the case
study. Table 7 presents the number of task cards reused by
module and operation. As expected, in most cases, the devel-
opers reused tasks of the ‘‘Registration’’ module.

c: PRACTICAL UTILITY ASSESSMENT (RQ2.3)
We assessed the taxonomy’s practical utility by evaluating the
answers to a questionnaire based on TAM to assess the practi-
cal utility of the proposed taxonomy for user stories. In total,

107294 VOLUME 8, 2020

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

TABLE 8. Results for perceived usefulness from TAM.

TABLE 9. Results for perceived ease of use from TAM.

we gathered nine questionnaire responses, i.e., one for each
software developer. We summarize the results regarding the
perceived usefulness and the perceived ease of use of the pro-
posed taxonomy in Tables 8 and 9, respectively. For example,
in question PU1 (Table 8), we asked the software developers
if their job is more difficult without using the taxonomy
for user stories. As a result, five subjects agreed (i.e., they
answered ‘‘agree’’ or ‘‘strongly agree’), one subject neither
agreed nor disagreed, and three subjects disagreed (i.e., they
answered ‘‘disagree’’ or ‘‘strongly disagree’) that their job
can be harder without using it.

In Appendix A, Tables 10 and 11 present the questions
regarding the perceived usefulness and perceived ease of use,
respectively.

VI. DISCUSSION
This section discusses the obtained results in light of the
research questions RQ2.1, RQ2.2, and RQ2.3. Moreover,
we examine the implications of the achieved results for
academia and industry.

A. RQ2.1: WHAT IS THE PROPOSED TAXONOMY’S
POTENTIAL FOR REUSING USs?
The proposed taxonomy includes three modules (Authenti-
cation, Registration, and Management) and 18 operations.
During the offline study, the taxonomy was able to cover
(Mc) 90.17% of the business USs present in the 26 prod-
uct backlogs and for the case study, 100%. Regarding the

TABLE 10. TAM - perceived usefulness questions.

TABLE 11. TAM - perceived ease of use questions.

granularity (Mg), the offline study recorded 18, and the case
study, 6. The case study used fewer taxonomy terms (i.e.,
operations) due to the lower number of user stories and their
similarity. Therefore, for this case, it was expected to have
a lower calculated granularity, when compared to the offline
study. The calculated heterogeneity (Mh) for the offline study
followed the expected distribution, but for the case study not.
By analyzing these results, we concluded that it was due to the
nature of the products being developed. Therefore, we have
concluded that the results do not indicate the need to refine
the taxonomy.

Combining all the user stories used to construct and val-
idate the taxonomy, we have a total of 707 Business USs,
in which 663 were classified using only 18 terms, resulting
in an overall complexity (Mx of 2.7%, demonstrating the high
potential of reusing user stories. Therefore, we observed that
our initial hypothesis that reusing USs is a valid opportunity
to be explored given its potential to increase software devel-
opment efficiency. Further, our results demonstrate that using

VOLUME 8, 2020 107295

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

taxonomy as the means to add link semantics to user stories
is a promising approach to enable reusing them. Although the
taxonomy is tailored to a specific type of system (i.e., WIS)
and, naturally, the results can not be generalized, we believe
that they are promising.

B. RQ2.2: WHAT IS THE PROPOSED TAXONOMY’S
POTENTIAL FOR REUSING USs RELATED ARTIFACTS?
In the offline study, we observed a reuse rate of 80.93% of
task cards, which means that 976 task cards were reused.
On the other hand, in the case study, we achieved an improved
reuse rate of 95.77% of the task cards. In this case, 48 distinct
task types enabled the reuse of 136 of 142 task cards specified
by the software developers during the case study period.
Therefore, there is evidence that the taxonomy can enable
the reuse of user story-related assets, which can improve the
efficiency of software development processes.

C. RQ2.3: WHAT IS THE PRACTICAL UTILITY OF USING
THE PROPOSED TAXONOMY FOR REUSING USs AND
RELATED ARTIFACTS?
To answer RQ2.3, we analyzed the results summarized
in Tables 8 (PU) and 9 (PE), in which positive responses are
highlighted in bold.

Based on the data of Table 8, we verify that the research
participants indicated good acceptance for 11 of 14 items of
PU, since only items PU6, PU8, and PU12 did not receive
mostly positive evaluations. Overall, the subjects of research
agreed to the usefulness of the proposed taxonomy in 76 of
126 possible responses regarding PU variable, i.e., 60% of
all individual responses. In contrast, they assessed it nega-
tively in only 19 of 126 responses, i.e., 15% of all individual
responses. Therefore, it is possible to state there is evidence
that the software developers considered the proposed taxon-
omy for user stories useful.

Regarding the responses to PU6, PU8, and PU12,
we believe that they are evidence of the need to define a
systematic procedure to apply the taxonomy, possibly need-
ing automation and reducing the effort from the developers
to use it. Further, notice that, in the case study, the devel-
opers have not experienced the potential of artifacts reuse,
such as test cases, non-functional requirements, risks, and so
on. Therefore, their perspective regarding the potential gain
on productivity given the reuse of artifacts is limited. The
taxonomy itself is not enough to increase the developers’
productivity, but the reuse enabled by it, yes. Therefore, such
responses were expected and did not hinder our conclusions
regarding the taxonomy’s usefulness.

On the other hand, by observing the data of Table 9, we ver-
ify the research subjects indicated an affirmative acceptance
for all 14 items regarding the perceived ease of use from
TAM. Overall, the participants of the research agreed that
the proposed taxonomy is efficiently handling in 100 of
126 possible responses regarding PE variable, i.e., an accep-
tance of the perceived ease of use of 79,3%. In contrast, they
assessed it negatively in only 4 of 126 responses, i.e., 3,1%

of all individual responses. Therefore, it is possible to state
there is evidence that the software developers considered the
taxonomy for user stories easy to use.

Thus, sincemost of the subjects of the case study expressed
affirmative acceptance for both variables of TAM, we con-
cluded that there is evidence of the practical utility of the
taxonomy as ameans for giving link semantics to USs. There-
fore, it is a promising approach for enabling the reuse of agile
software development assets.

D. IMPLICATIONS FOR ACADEMIA
The taxonomy can be used by researchers to mitigate sev-
eral SE problems. For instance, the team multiple formation
problem consists of the allocation of multiple individuals,
with different sets of skills, into multiple projects, with differ-
ent requirements, to maximize the matching between them.
An essential step of the team formation process is to build reli-
able developer profiles. Task cards may be promising assets
to build these profiles since they may represent the devel-
opers’ technical skills. However, traditionally, task cards are
written using nonstandard text descriptions, which hidden to
determine the similarity between them. For example, the tasks
‘‘Create login page’’, ‘‘Build authentication interface’’, and
‘‘Developer login interface’’ have the same purpose, but they
are represented with different descriptions. Hence, it is diffi-
cult for computational techniques to recognize them as single
task cards. The proposed taxonomy enables the reuse of task
cards, even those from different product backlogs, to build
more reliable developer profiles.

The taxonomy can also be used to support non-functional
requirements (NFRs) recommendation. NFRs define con-
straints or restrictions on the design of the system, related to
performance, maintainability, usability, scalability, and oth-
ers. NFRs are linked to functional requirements. However,
Product Owners usually focus on the latter and tend to neglect
the previous ones. Since the classified USs and their related
assets are traceable, researchers can use specialized tech-
niques to improve the recommendation of NFRs.

Another Common SE problem is the effort estimation
problem. Effort estimation is the process of predicting the
effort required to develop a requirement. The literature
presents some studies proposing effort estimation meth-
ods based on historical data and machine learning tech-
niques [40]. These techniques use historical data to train and
provide more accurate effort estimates. In this case, the tax-
onomy can be useful since it enables us to retrieve similar
USs, already estimated in the past, and use them for training
the machine learning techniques.

Our focus in this study was on the taxonomy itself as a
classification scheme, and not in the procedure to apply it for
classifying user stories. Therefore, an improvement opportu-
nity is to develop methods to help practitioners to classify
the USs and task cards, using the taxonomy as the basis. For
this purpose, decision-support tools, such as chatbots, can be
developed to assist in the classification process. Another pos-
sibility is to use a dataset of user stories previously classified

107296 VOLUME 8, 2020

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

to train an ontology by using Natural Language Process
techniques.

The proposed taxonomy is tailored to WIS type; however,
we encourage researchers to conduct more empirical studies
on other domains to evolve the taxonomy. New modules and
operations can be identified and may increase the representa-
tiveness and potential of reuse of the taxonomy.

E. IMPLICATIONS FOR INDUSTRY
TThe USs are the main assets to capture descriptions of
software features in ADS and to facilitate product-related
discussions between the stakeholders. The proposed taxon-
omy allows the USs to became central points to establish
traceability links between themselves and their related assets.
Therefore, the results presented in this article can support
practitioners to improve the efficiency of software planning
activities. For instance, assuming the taxonomy has been
applied for a sufficient period in a software development com-
pany that uses the Scrum framework to manage their projects.
The taxonomy can assist the Scrum teams in decomposing
USs into task cards during the sprint planning meetings.
The team can retrieve similar USs from past projects and
analyze their task cards before performing the break down of
current USs. Similar USs have a higher probability of having
more task cards in common. This support can be specifically
useful for low experienced teams that may face challenges to
perform the US break down.

Similarly to the researchers, practitioners can also bene-
fit from the taxonomy for effort estimation purposes. One
commonly used method during the estimation process is the
Planning Poker, which consists of assigning story points to
sprint backlog items. In this case, the Scrum team can retrieve
similar USs and examine their estimated value. Afterward,
the team can execute the Planning Poker or another proper
method. This practice can help team members to provide
more accurate effort estimates since they can use baseline
USs to make their decision.

Moreover, the taxonomy enables practitioners to quickly
establish traceability links between USs, tasks, and related
commits. Therefore, practitioners can also search for similar
USs and tasks to examine the source codes from the associ-
ated commits, as done by StackOverflows’ users, when they
search for programming questions. An advantage of using
the taxonomy is that, since the code owner is a company’s
employee, it may be possible to share the experience or ask
questions. Therefore, the taxonomy can serve as a means to
promote knowledge sharing across the organization. Addi-
tionally, project managers can explore this traceability to
build project statistics and improve the decision-making pro-
cess. For instance, it would be possible to track the number of
bugs related to specific USs and plan actions to reduce them.

VII. THREATS TO VALIDITY
Validity threats concern factors that may have affect the
outcome of our study. In this section, we discuss those threats

considering categories proposed by [41]: internal, construct,
and reliability.

A. INTERNAL VALIDITY
The process to categorize US’s during the offline study was
made by the distribution of backlogs among the authors of
this article, which manually analyzed each US and selected
the most appropriate category. This process could generate
two different categories for similar U’s analyzed by differ-
ent authors, resulting in an inconsistent database and con-
sequently inconsistent results. However, the categorization
made by the authors was peer-reviewed to avoid a misunder-
standing of the meaning of each category, resulting in a more
consistent and realistic database, spreading the knowledge
and avoiding researcher bias.

B. CONSTRUCT VALIDITY
The results from the case study were reported on the metrics
of categorization coverage and representativeness. Although
concluding that the proposed taxonomy can be used to clas-
sify and retrieve historical data based on the meaningful
results – 100.00% of coverage and 18 categories to represent
all the business US’s – there is no empirical support that
indicates the consistency of those numbers, which can be
further collected in future works. Although the results from
tasks reuse were also very expressive – 95.77% for tasks
reuse, and 35.29% for tasks representativeness –, the same
validity applies since there is no empirical support to indicate
the conclusion.

C. RELIABILITY VALIDITY
The categories, as well as the tasks used in the case study,
were defined based on the definition dataset from projects
within one company and improved based on the improvement
dataset. Additionally, the research collected a high number
of backlogs from four companies. Both backlogs – the ones
used to define the categories used in the case study, as well
as the ones used to refine them – consisted of web infor-
mation systems type, which explains the significant number
of registration US’s and tasks. Considering another context
and the categories definedmust bring different numbers, once
the defined categories have a direct link with the type of the
system.

VIII. CONCLUSIONS AND FUTURE WORK
This article proposed a taxonomy for user stories and evalu-
ated its potential to promote reuse-driven software engineer-
ing for agile software development. The taxonomy is tailored
to Web Information Systems, and it was validated using
product backlogs from software projects of four software
development companies.

The validation process was divided into two steps. First,
we conduct an offline study to investigate its feasibility and
potential problems. To accomplish that, we applied the taxon-
omy in 26 product backlogs from delivered projects, includ-
ing 530 USs and 1879 task cards. Afterward, we performed a

VOLUME 8, 2020 107297

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

case study in two projects, containing 35 USs and 192 task
cards. The results indicate that the taxonomy enables the
reuse USs and their related assets. Besides, we applied the
Technology Acceptance Model, which allowed us to evaluate
the taxonomy’s ease of use and its perceived usefulness. The
results pointed out that teams readily adopted the taxonomy.

The contribution of this study can be further improved and
opens a new research field that explores the extensive reuse
of software artifacts in agile projects, even among different
projects, as well as the possibility of adding intelligent algo-
rithms to aid software developers with past projects experi-
ence proactively.

As a limitation, our current solution focused on propos-
ing the classification scheme (i.e., taxonomy) for enabling
adding link semantics between user stories, and, conse-
quently, promoting agile artifacts reuse. Conversely, in this
study, the researchers and software engineers manually clas-
sified the USs given the proposed taxonomy. Although we
recorded positive results with TAM, we are aware that agile
teams may show resistance to adopt the taxonomy given to
the current human dependency for classifying the USs.

As future work, we intend to apply the taxonomy in a more
significant number of companies to assess its representative-
ness in the context of other types of systems such as mobile
applications. Moreover, we intend to explore the potential
of reuse of other USs related assets such as test cases, non-
functional requirements, and others. Furthermore, we plan
to expand the database of classified user stories and apply
machine learning and natural language processing algorithms
to automate the classification procedure.

APPENDIX A
TECHNOLOGY ACCEPTANCE MODEL QUESTIONNAIRE
In what follows, the questionnaires applied to operationalize
the Technology Acceptance Model in the performed case
study are presented.

APPENDIX B
TECHNOLOGY ACCEPTANCE MODEL QUESTIONNAIRE
See Table 11.

REFERENCES

[1] R. Capilla, B. Gallina, C. Cetina, and J. Favaro, ‘‘Opportunities for soft-
ware reuse in an uncertain world: From past to emerging trends,’’ J. Softw.,
Evol. Process, vol. 31, no. 8, p. e2217, Aug. 2019.

[2] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, Manifesto for Agile Software Development. 2001.

[3] K. Beck and E. Gamma, Extreme Programming Explained: Embrace
Change. Reading, MA, USA: Addison-Wesley, 2000.

[4] K. Schwaber and M. Beedle, Agile Software Development With Scrum,
vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[5] R. Hoda, N. Salleh, and J. Grundy, ‘‘The rise and evolution of agile
software development,’’ IEEE Softw., vol. 35, no. 5, pp. 58–63, Sep. 2018.

[6] B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for
the Perplexed, Portable Documents. Reading, MA, USA: Addison-Wesley,
2003.

[7] X. Wang, L. Zhao, Y. Wang, and J. Sun, ‘‘The role of requirements engi-
neering practices in agile development: An empirical study,’’ in Require-
ments Engineering. Berlin, Germany: Springer, 2014, pp. 195–209.

[8] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband,
‘‘A systematic literature review on agile requirements engineering prac-
tices and challenges,’’ Comput. Hum. Behav., vol. 51, pp. 915–929,
Oct. 2015.

[9] Y. Andriyani, R. Hoda, and R. Amor, ‘‘Understanding knowledge manage-
ment in agile software development practice,’’ in Proc. Int. Conf. Knowl.
Sci., Eng. Manage. Cham, Switzerland: Springer, 2017, pp. 195–207.

[10] G. Lucassen, M. Robeer, F. Dalpiaz, J. M. E. M. van der Werf,
and S. Brinkkemper, ‘‘Extracting conceptual models from user stories
with visual narrator,’’ Requirements Eng., vol. 22, no. 3, pp. 339–358,
Sep. 2017.

[11] M. Cohn,User Stories Applied: For Agile Software Development. Reading,
MA, USA: Addison-Wesley, 2004.

[12] IEEE Standard for Information Technology–System and Software Life
Cycle Processes–Reuse Processes, IEEE Standard 1517-2010, IEEE
Standards Association, Aug. 2010.

[13] T. C. Lethbridge and R. Laganiere,Object-Oriented Software Engineering.
New York, NY, USA: McGraw-Hill, 2005.

[14] K. Pohl, G. Böckle, and F. J. van Der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques. Berlin, Germany:
Springer-Verlag, 2005.

[15] C. Palomares, C. Quer, and X. Franch, ‘‘Requirements reuse and require-
ment patterns: A state of the practice survey,’’ Empirical Softw. Eng.,
vol. 22, no. 6, pp. 2719–2762, Dec. 2017.

[16] X. Franch, C. Quer, S. Renault, C. Guerlain, and C. Palomares, ‘‘Construct-
ing and using software requirement patterns,’’ in Managing Requirements
Knowledge. Berlin, Germany: Springer, 2013, pp. 95–116.

[17] D. Mairiza, D. Zowghi, and N. Nurmuliani, ‘‘An investigation into the
notion of non-functional requirements,’’ in Proc. ACM Symp. Appl. Com-
put. (SAC), 2010, p. 311.

[18] C. L. Pacheco, I. A. Garcia, J. A. Calvo-Manzano, and M. Arcilla, ‘‘A pro-
posed model for reuse of software requirements in requirements catalog,’’
J. Softw., Evol. Process, vol. 27, no. 1, pp. 1–21, Jan. 2015.

[19] A. Espinoza and J. Garbajosa, ‘‘A study to support agile methods more
effectively through traceability,’’ Innov. Syst. Softw. Eng., vol. 7, no. 1,
pp. 53–69, Mar. 2011.

[20] R. Elamin and R. Osman, ‘‘Towards requirements reuse by implementing
traceability in agile development,’’ in Proc. IEEE 41st Annu. Comput.
Softw. Appl. Conf. (COMPSAC), vol. 2, Jul. 2017, pp. 431–436.

[21] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova,
‘‘Best practices for automated traceability,’’ Computer, vol. 40, no. 6,
pp. 27–35, Jun. 2007.

[22] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause, ‘‘Rule-based
generation of requirements traceability relations,’’ J. Syst. Softw., vol. 72,
no. 2, pp. 105–127, Jul. 2004.

[23] J. P. Winkler, J. Grönberg, and A. Vogelsang, ‘‘Optimizing for recall in
automatic requirements classification: An empirical study,’’ in Proc. IEEE
27th Int. Requirements Eng. Conf. (RE), Sep. 2019, pp. 40–50.

[24] F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, and S. Çevikol, ‘‘Requirements
classification with interpretable machine learning and dependency pars-
ing,’’ in Proc. IEEE 27th Int. Requirements Eng. Conf. (RE), Sep. 2019,
pp. 142–152.

[25] R. Prieto-Diaz and P. Freeman, ‘‘Classifying software for reusability,’’
IEEE Softw., vol. 4, no. 1, pp. 6–16, Jan. 1987.

[26] R. Prieto-Diaz, ‘‘Implementing faceted classification for software reuse,’’
in Proc. 12th Int. Conf. Softw. Eng., 1990, pp. 300–304.

[27] M. Usman, R. Britto, J. Börstler, and E. Mendes, ‘‘Taxonomies in software
engineering: A systematic mapping study and a revised taxonomy devel-
opment method,’’ Inf. Softw. Technol., vol. 85, pp. 43–59, May 2017.

[28] F. D. Davis, ‘‘A technology acceptance model for empirically testing new
end-user information systems: Theory and results,’’ Ph.D. dissertation,
Massachusetts Inst. Technol., Cambridge, MA, USA, 1985.

[29] P. Bourque and R. E. Fairley, Guide to the Software Engineer-
ing Body of Knowledge (SWEBOK (R)): Version 3.0. Los Alami-
tos, CA, USA: IEEE Computer Society Press, 2014. [Online]. Avail-
able: https://www.computer.org/education/bodies-of-knowledge/software-
engineering

[30] V. Broughton, ‘‘The need for a faceted classification as the basis of all
methods of information retrieval,’’ Aslib Proceedings, vol. 58, nos. 1–2,
pp. 49–72, 2006.

107298 VOLUME 8, 2020

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

[31] D. S. Cruzes and T. Dybå, ‘‘Recommended steps for thematic synthesis in
software engineering,’’ in Proc. Int. Symp. Empirical Softw. Eng. Meas.,
2011, pp. 275–284.

[32] D. Šmite, C. Wohlin, Z. Galviņa, and R. Prikladnicki, ‘‘An empirically
based terminology and taxonomy for global software engineering,’’ Empir-
ical Softw. Eng., vol. 19, no. 1, pp. 105–153, Feb. 2014.

[33] G. R. Wheaton, ‘‘Development of a taxonomy of human performance:
A review of classificatory systems relating to tasks and performance,’’
Amer. Inst. Res., Pittsburgh, PA, USA, Tech. Rep. 1, 1968.

[34] U. H. Graneheim andB. Lundman, ‘‘Qualitative content analysis in nursing
research: Concepts, procedures and measures to achieve trustworthiness,’’
Nurse Educ. Today, vol. 24, no. 2, pp. 105–112, Feb. 2004.

[35] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009.

[36] T. Saenphon, ‘‘An analysis of the technology acceptance model in under-
standing university student’s awareness to using Internet of Things,’’ in
Proc. Int. Conf. E-Commerce, E-Bus. E-Government (ICEEG), vol. 13,
2017, pp. 61–64.

[37] I. C. Swu, S. P. Singh, and Gautam, ‘‘Constraints perceived by broiler
farmers in adoption of scientific poultry production practices,’’ Vet. Prac-
titioner, vol. 13, no. 1, pp. 116–120, 2012.

[38] R. Wieringa, ‘‘Design science methodology: Principles and practice,’’ in
Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng. (ICSE), vol. 2. New York,
NY, USA: Association for Computing Machinery, 2010, p. 493–494.

[39] S. D. Huan, J. C. Yau, E. Tomiak, R. Goel, C. Cripps, S. Z. Gertler,
I. A. Prosser, and D. J. Stewart, ‘‘Hydroxyurea did not enhance the clinical
response to vinblastine in patients with anthracycline-resistant metastatic
breast cancer,’’ Tumori J., vol. 82, no. 6, pp. 576–578, Nov. 1996.

[40] P. Sharma and J. Singh, ‘‘Systematic literature review on software effort
estimation using machine learning approaches,’’ in Proc. Int. Conf. Next
Gener. Comput. Inf. Syst. (ICNGCIS), Dec. 2017, pp. 43–47.

[41] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Berlin, Germany:
Springer-Verlag, 2012.

EDNALDO DILORENZO received the M.Sc.
degree in computer science from the Federal Uni-
versity of Pernambuco, Brazil, in 2012. He is cur-
rently pursuing the Ph.D. degree with the Fed-
eral University of Campina Grande. He is also a
Professor with the Federal Institute for Education,
Science, and Technology of Paraíba (IFPB), and a
Researcher with the Intelligent Software Engineer-
ing Group (ISE/VIRTUS). His research interests
are in the application of intelligent techniques to
software engineering problems.

EMANUEL DANTAS received theM.Sc. degree in
computer science from the Federal University of
Fortaleza, Ceará, Brazil, in 2014. He is currently
pursuing the Ph.D. degree with the Federal Uni-
versity of Campina Grande, Paraíba, Brazil. He
has been a Professor with the Federal Institute of
Paraiba, since 2015. He is also a Researcher with
the Intelligent Software Engineering Research
Group, VIRTUS, which is the Research, Develop-
ment, and Innovation Center in Information Tech-

nology. His current research interest is in artificial intelligence applied to
software engineering to solve complex problems. In the software engineering
field, the main topics of interest are software project management, agile
software development, effort estimation, risk management, and others.

MIRKO PERKUSICH received the Ph.D. degree
in computer science. He is currently a Research
Manager with VIRTUS Innovation Center, lead-
ing the Intelligent Software Engineering Research
Group. His current research interests are in apply-
ing intelligent techniques, including recommender
systems, to solve complex software engineering
problems, with over 50 published articles.

FELIPE RAMOS received the M.Sc. and Ph.D.
degrees in computer science from the Federal
University of Campina Grande, Paraiba, Brazil,
in 2012 and 2019, respectively. He is currently
a Professor with the Federal Institute of Paraiba.
He is a member of the Intelligent Software Engi-
neering Research Group, VIRTUS, which is the
Research, Development, and Innovation Center
in Information Technology. His current research
interests are in artificial intelligence applied to

software engineering to solve complex problems. His main topics of interest
are in agile software development and requirement engineering focused on
supporting the elicitation of non-functional requirements on scrum-based
projects.

ALEXANDRE COSTA received the M.Sc. and
Ph.D. degrees in computer science from the
Federal University of Campina Grande, Paraiba,
Brazil, in 2014 and 2019, respectively. He has been
a Professor with the Federal Institute of Paraiba,
since 2020. He is currently a Researcher with the
Intelligent Software Engineering Research Group,
VIRTUS, which is the Research, Development,
and Innovation Center in Information Technology.
His current research interests are in artificial intel-

ligence applied to software engineering to solve complex problems. In the
software engineering field, his main topics of interest are software project
management, agile software development, resource allocation focused on
team formation for software development, and others.

DANYLLO ALBUQUERQUE received the M.Sc.
degree in informatics from the Federal University
of Paraiba, Brazil, in 2013. He is currently pur-
suing the Ph.D. degree in computer science with
the Federal University of Campina Grande. He
has been a Professor with the Federal Institute
for Education, Science, and Technology of Paraiba
(IFPB), since 2020. He is also a Systems Analyst
with the Federal University of Campina Grande.
He is a member of the Intelligent Software Engi-

neering Research Group, VIRTUS, which is a Research, Development, and
Innovation Center in Information Technology. His current research interests
are in software quality, technical debt, software architecture, artificial intel-
ligence, as well as intelligent techniques applied to solve complex software
engineering problems.

VOLUME 8, 2020 107299

E. Dilorenzo et al.: Enabling the Reuse of Software Development Assets Through a Taxonomy for USs

HYGGO ALMEIDA received the Ph.D. degree
in electrical engineering and the M.Sc. degree in
computer science from the Federal University of
Campina Grande, in 2007 and 2004, respectively.
He has been a Professor with the Computer and
Systems Department, Federal University of Camp-
ina Grande (UFCG), since 2006. He is currently
the Head of the Intelligent Software Engineer-
ing Group, and the Founder and the Director of
Operations with the VIRTUS Innovation Center

(VIRTUS/UFCG). He is also a Researcher with the Embedded and Perva-
sive Computing Laboratory (Embedded/UFCG). He is also the Executive
Director of the EMBRAPII Unit, CEEI-UFCG, with more than 150 RD&I
projects developed in cooperation with industrial companies within the area
of information, communication, and automation technologies. He has more
than 15 years of teaching experience in the university as well as training
courses for industry in the context of software engineering. He has more
than 200 articles published, 37 master thesis, and 13 doctoral dissertations
advised. His current research interest is applying intelligent techniques to
solve complex software engineering problems.

ANGELO PERKUSICH (Member, IEEE) received
the master’s and Ph.D. degrees in electrical engi-
neering from the Federal University of Paraíba,
in 1987 and 1994, respectively. He was a Vis-
iting Researcher with the Department of Com-
puter Science, University of Pittsburgh, Pittsburgh,
PA, USA, from 1992 to 1993, and has developed
research activities on software engineering and
formal methods. He has been a Professor with the
Electrical Engineering Department (DEE), Fed-

eral University of Campina Grande (UFCG), since 2002. He is currently the
Principal Investigator of research projects financed by public institutions,
such as FINEP (Brazilian Agency for Research and Studies) and CNPq
(Brazilian National Research Council), as well as private companies. He is
also the Founder and the Director of the VIRTUS Innovation Center and
Embedded and Pervasive Computing Laboratory. His research projects focus
on formal methods, embedded systems, mobile pervasive and ubiquitous
computing, and software engineering. He has more than 30 years of teaching
experience in the university as well as training courses for industry in the
context of software for real-time systems, software engineering, embedded
systems, computer networks, and formal methods. His main research areas
are embedded systems, software engineering, mobile pervasive computing,
and formal methods, with more than 300 articles published, 80 master thesis,
and 21 doctoral dissertations advised.

107300 VOLUME 8, 2020

	INTRODUCTION
	PROBLEM STATEMENT
	RESEARCH METHODOLOGY
	PLANNING
	IDENTIFICATION AND EXTRACTION, AND DESIGN AND CONSTRUCTION
	VALIDATION

	PROPOSED SOLUTION
	TAXONOMY OVERVIEW
	GUIDELINES TO USE THE PROPOSED TAXONOMY

	VALIDATION OF THE TAXONOMY
	OFFLINE STUDY
	OFFLINE STUDY RESULTS

	CASE STUDY
	CASE STUDY RESULTS

	DISCUSSION
	RQ2.1: WHAT IS THE PROPOSED TAXONOMY'S POTENTIAL FOR REUSING USs?
	RQ2.2: WHAT IS THE PROPOSED TAXONOMY'S POTENTIAL FOR REUSING USs RELATED ARTIFACTS?
	RQ2.3: WHAT IS THE PRACTICAL UTILITY OF USING THE PROPOSED TAXONOMY FOR REUSING USs AND RELATED ARTIFACTS?
	IMPLICATIONS FOR ACADEMIA
	IMPLICATIONS FOR INDUSTRY

	THREATS TO VALIDITY
	INTERNAL VALIDITY
	CONSTRUCT VALIDITY
	RELIABILITY VALIDITY

	CONCLUSIONS AND FUTURE WORK
	TECHNOLOGY ACCEPTANCE MODEL QUESTIONNAIRE
	TECHNOLOGY ACCEPTANCE MODEL QUESTIONNAIRE
	REFERENCES
	Biographies
	EDNALDO DILORENZO
	EMANUEL DANTAS
	MIRKO PERKUSICH
	FELIPE RAMOS
	ALEXANDRE COSTA
	DANYLLO ALBUQUERQUE
	HYGGO ALMEIDA
	ANGELO PERKUSICH

