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ABSTRACT Alert signals like sirens and home alarms are important as they warn people of precarious
situations. This work presents the detection and separation of these acoustically important alert signals,
not to be attenuated as noise, to assist the hearing impaired listeners. The proposed method is based on
convolutional neural network (CNN) and convolutional-recurrent neural network (CRNN). The developed
method consists of two blocks, the detector block, and the separator block. The entire setup is integrated with
speech enhancement (SE) algorithms, and before the compression stage, used in a hearing aid device (HAD)
signal processing pipeline. The detector recognizes the presence of alert signal in various noisy environments.
The separator block separates the alert signal from the mixture of noisy signals before passing it through SE
to ensure minimal or no attenuation of the alert signal. It is implemented on a smartphone as an application
that seamlessly works with HADs in real-time. This smartphone assistive setup allows the hearing aid users
to know the presence of the alert sounds even when these are out of sight. The algorithm is computationally
efficient with a low processing delay. The key contribution of this paper includes the development and
integration of alert signal separator block with SE and the realization of the entire setup on a smartphone
in real-time. The proposed method is compared with several state-of-the-art techniques through objective
measures in various noisy conditions. The experimental analysis demonstrates the effectiveness and practical
usefulness of the developed setup in real-world noisy scenarios.

INDEX TERMS Alert signals, convolutional-recurrent neural networks (CRNN), detection, separation,
speech enhancement (SE), hearing aid (HA), smartphone, real-time.

I. INTRODUCTION
There are a variety of sounds produced in the environment.
The range of environmental sounds includes the sounds
created indoors and outdoors. Usually, such sounds con-
vey information about surrounding environmental activities.
In environmental sounds, alert signals like sirens from emer-
gency vehicles or alarms from home security systems have
high importance as they forewarn people of cautious and
life-threatening situations. In adverse noisy environments,
even a normal hearing individual can miss these critical
warning signals leading to hazardous situations. The per-
ception of the alert sounds becomes extremely difficult for
hearing impaired listeners especially when the signals are
mixed with various kinds of background noise and when
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they are out of sight. National Institute on Deafness and
other Communication Disorders (NIDCD) reports that there
are over 360 million people worldwide, including 15% of
American adults i.e. about 37 million, suffering from hear-
ing loss of some kind [1]. Personalized hearing devices like
hearing aid devices (HADs) and cochlear implants (CIs) have
been developed by researchers and manufacturers to improve
hearing capabilities of impaired people. Developments have
been made to improve the speech perception of the hear-
ing aid (HA) users through noise suppression and speech
enhancement (SE) techniques [2]. While hearing impairment
is one of the most common physical disabilities in the world,
little work has dealt with the role of alert sounds for people
with listening impairment.

The HAD signal processing pipeline has several impor-
tant modules. Acoustic feedback cancellation [3], [4], speech
source localization [5], [6], SE [7]–[9], dynamic range
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compression (DRC) [10], [11] are some of the fundamental
modules in the pipeline. SE is a vital module in the HAD
signal processing pipeline as it tries to suppress the noise and
enhance the performance of HADs by improving the speech
quality and intelligibility perceived by people with hearing
loss. Extensive studies can be found in which SE algorithms
are developed to improve the efficiency of HADs in the pres-
ence of background noise. SE algorithms proposed based on
statistical models [12], [13] have been effective in reducing
noise at a higher signal to noise ratio (SNR) levels. There
are some computationally efficient SE methods [14], [15]
that work in real-time. Microphone array based SE methods
[16], [17] have also worked with HADs. However, these
methods achieve better performance at the cost of higher
computational complexity. Recently, SE based on deep neu-
ral networks (DNN) have been proposed by researchers
[18]–[21]. In the aforementioned methods, a model based
on supervised learning is trained to estimate clean speech
features from the noisy speech features. These DNN based
approaches are known to have superior performance by
achieving better noise suppression. However, the primary
objective of all these methods is to suppress the background
noise without causing any speech distortion. Most of the SE
algorithms are application specific. The presence or the effect
of the alert signals are not considered when SE algorithms are
developed. Therefore, SE algorithms could mostly consider
alert signals as a type of background noise and tend to attenu-
ate these critical sounds especially when these are mixed with
other environmental noise and last for rather long period of
time. Although the human brain can identify specific sounds
as alert sounds even if it is heard for the very first time,
it becomes very difficult for HA users to identify the alert
sounds when the signals are attenuated or when the source is
unseen.

Research shows that hearing aid (HA) users want to be
aware of different environmental sounds at all places [22].
The lowered interaction and the auditory cues from the envi-
ronment can lead to a feeling of reduced safety for people
with hearing impairment [23]. For example, in situations
whereHAuser is driving a car. In such cases, theHAusermay
be unable to hear the emergency vehicle approaching nearby
when there is high background noise or if it is attenuated.
People with hearing loss will feel more safe if they are cau-
tioned about the warning sounds and it would be even better
if the warning sounds are perceived well. In literature, there
are someworks to detect the alert signals and thereby enhance
environmental awareness. In [24], a simulated environment is
generated and a set of pre-selected alarm sounds are detected
through cross-correlation techniques. Artificial neural net-
work (ANN) based pattern matching technique was used to
detect police vehicle sirens in [25]. In [26]–[28] we can see
works on detecting the sirens of emergency vehicles like
ambulance and police cars. In [29], an alarm sound detector
based on support vector machine was proposed that is tested
using several audio features. A simple siren detection system
that runs in real-time is described in [30]. Recently, in [31]

authors proposed a warning sound detector working on a
mobile platform. However, most of the methods mentioned
focus only on particular type of alert signals and do not
generalize. Some of the above mentioned methods do not
consider frequency shifts of certain alert signals due to the
Doppler effect and are tested in controlled environment like
the laboratories or simulations. The majority of the methods
do not have feasible solutions on how to transmit the alarm
detection information to the HA user. Most importantly, these
methods only consider the detection of the alert signal and do
not take separation of it from the noisy speech into account.
Therefore, it becomes highly improbable to incorporate many
of these methods into the HAD pipeline which has noise
suppression and SE modules in it. Thus, we need a better
system to improve the surrounding awareness of hearing
impaired people in real-world noisy environments.

In this paper, we present a smartphone assistive setup that
enhances the perception of alert signals for the HA users in
noisy environments. The proposed alert signal detector and
separator modules are based on convolutional neural network
(CNN) and convolutional-recurrent neural networks (CRNN)
respectively. We propose to use the real and the imaginary
parts of the frequency domain signal as the input features
for both the models. The convolutional layers extracts the
information of the local patterns in input features and the
recurrent layers maps the correlations between the consecu-
tive frames. This joint optimization for the considered fea-
tures improves the performance of the entire setup. The
proposedmethodworks in conjunction with SEmodules used
in HADs. The developed method works as an application on
a smartphone in real-time that can be used as an assistive
tool for hearing impaired listeners. We use a smartphone-
based platform for integrating and running indispensable
signal processing algorithms in real time to assist hearing
impaired users. This is because it is impractical to do the
same on HAD due to its limitations in size and processing
capabilities. Smartphones have built-in, efficient ARMmulti-
core processors and sufficient resources to even run complex
machine learning algorithms with low power consumption.
Most importantly, smartphones are pervasive and are one
of the most widely used devices everywhere. In the pro-
posed approach, the smartphone captures the noisy speech
signal comprising of alert signals, background noise and
speech. The CNN based alert signal detector continuously
monitors the presence of any emergency sound. If the alert
signal detector detects any emergency sound, the detection
is displayed on the smartphone application. The CRNN-
based alert signal separator separates the alert signal from
the mixture of noisy speech before passing it through SE
module. The input to the SE module now contains only the
speech mixed with background noise. Once the SE module
is executed, the enhanced speech along with the separated
alert signal goes to compression stage, and the final processed
output is sent from the smartphone to the HAD through
a wired connection or wirelessly via Bluetooth low energy
(BLE) [32]. The proposed setup (Figure 1) ensures that there
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FIGURE 1. Block diagram of the proposed setup involving signal detector, separator. SE is integrated with the two blocks.

is no attenuation and/or over-amplification of the alert sig-
nal, while the alert signal detection is shown to the user
on the display panel of smartphone application. The novel
contribution in this work is the high performance realization
and operation of the alert signal detection and separation
blocks and their integration to the SE module. To the best
of our knowledge, there are no published works where there
is an entire setup with an alert signal detector and separa-
tor combined with the SE module of HADs. Furthermore,
the whole setup is implemented on a smartphone working
with low latency in real-time. The objective evaluations show
the overall benefits and usability of the proposed setup for
end-users.

The remainder of this paper is organized as follows.
In Section II, we describe the signal model, the features
used in the proposed algorithm and the developed architec-
tures for the alert signal detector and separator. Analysis and
experimental results are presented in Section III. Section IV
describes the real-time implementation of the developed
method on smartphone. Conclusion is in Section V.

II. PROPOSED ALERT SIGNAL DETECTION
AND SEPARATION
In this section, we discuss the signal model, the primary
features, alert signal detection block, the separation block
and its integration to SE module of the HAD processing
pipeline. The block diagram of the proposed method is shown
in Figure 1.

A. FORMULATION AND INPUT FEATURES
Speech processing applications like speech enhancement
(SE) and dynamic range compression (DRC) usually consider
additive mixture model for noisy speech y(n), with clean
speech s(n) and noise v(n).

y(n) = s(n)+ v(n) (1)

We have to note that the noise v(n) can be mixture of back-
ground noise d(n) and alert signal w(n). The input noisy
speech signal is transformed to frequency domain by taking

short time Fourier transform (STFT).

Yk (λ) = Sk (λ)+ Vk (λ) (2)

Yk (λ), Sk (λ), and Vk (λ) represent the noisy k th STFT coef-
ficient of y(n), s(n) and v(n) respectively for frame λ.
k = 0, 1, . . . ,N − 1 where N is the STFT size.
The proposed method is based on supervised learning.

It has two stages; training and testing/inferencing. Offline
training is executed to generate a model and this pre-trained
model is implemented on a smartphone in real-time. For
both the stages, the features remain the same and the choice
of the features is crucial in determining the performance
of the method. A wide range of options are available to
parametrically represent the speech signal. Ideal binarymask,
Log power spectrum, Mel filterbank energy, Gammatone
frequency power spectrum [33] are some of the widely used
speech features. But, for alert signals the characteristics are
different. The selection of the features for these signals plays
a critical role in developing a detection model. Time domain
features like pitch, Zero crossing rate (ZCR), short time
energy and frequency features like spectral flux, spectral cen-
troid, Mel frequency cepstral coefficients (MFCC) etc. have
been used to recognize the warning signals [29]. However,
some of the aforementioned features are not efficient in terms
of computational and space complexity. Importantly, these
features can only be used for signal detection and not for sep-
aration task. The alert signal separator reconstructs the signal
and the above-mentioned features cannot be used for signal
reconstruction (alert signal separation will be explained later
in this section). In the proposed approach, we consider real
and the imaginary values of the STFT of the signal as the
input features. The choice of the input features is based on the
fact that the trained model can learn better by using the raw
STFT feature than other hand-crafted features [5]. By con-
sidering these features, we focus on both the magnitude and
phase of the input which provides more information about
the signal. The STFT coefficients are easy to compute and
does not add much delay to input/output (i/o) latency. This is
significant as it reduces complexity specifically during real-
time processing. The real and the imaginary parts of the Yk (λ)
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FIGURE 2. Convolutional neural network architecture for the proposed alert signal detector.

are considered as the input features for the proposed method.
The following matrix shows the input feature sets.

Real part of Yk=0(λ)
...

Real part of Yk=N/2+1(λ)
Imag. part of Yk=0(λ)

...

Imag. part of Yk=N/2+1(λ)


(3)

Since Fourier transform of a signal is symmetric in the fre-
quency domain, we consider only the first half of STFT of
the data. Therefore, there are 2 × (N/2 + 1) number of
real and imaginary values for every frame of STFT. The
dimension of input feature set per time frame λ is, 1×F where
F = 2× (N/2+ 1).

B. CNN FOR ALERT SIGNAL DETECTION
A classification model that recognizes the presence of an
alert signal is designed using a convolutional neural network
(CNN). The proposedmethod is formulated as a classification
problem as there are two output classes i.e. ‘alert signal-only’
and the other class is ‘no-alert signal’. A typical CNN archi-
tecture consists of convolutional, pooling and dense or fully
connected layers as their hidden layers to learn complex rela-
tionships between input features and the output label. When
operated for audio related works, CNNs consider a matrix as
input, the hidden layers learn critical time-frequency auditory
features and finally are mapped to output labels through
activation functions [20].

Figure 2 shows the topology of the proposed CNN-based
alert signal detector. The proposed CNN architecture has
3 hidden layers, 2 convolutional and 1 fully connected (FC)
layer. The input layer consists of the input feature sets
explained in the previous section.We have a single dimension
matrix of size 1 × F consisting of real and imaginary parts
of STFT of the signal as input to the network. The input
features are processed by the convolutional layer. In the con-
volutional layer, a set of learnable filters (known as kernels)
are convolved with small parts of input matrix. The kernels
are repeated over the entire input space. The convolutional

kernels of size 5 × 1 learn the local patterns from the input
features in small windows of two dimensions. In the convolu-
tional layer, each kernel generates a 2D featuremap.We apply
γ separate filters to generate a collection of feature maps.
Instead of using pooling layers, which are usually used for
dimensionality reduction, the convolution operation is carried
on with the stride of size 2 in the proposed approach. This
makes the network computationally efficient without losing
much of prediction accuracy. The feature maps are flat-
tened before feeding to the FC layer. Rectified linear Unit
(ReLU) [34] is used as activation function in convolutional
layers to learn non-linear, and complex mapping between
the input features and the output labels. The selection of the
ReLU function is also based on its advantages of solving
vanishing gradient problems.

Relu (a) = max {a, 0}

The FC layer performs classification using Softmax activa-
tion function [35]. The softmax activation function gives the
probability of each class and the one with the maximum prob-
ability is selected as the output class. The architecture of the
proposed alert signal detector includes 2 convolution layers.
Each convolution layer has 64 filters (γ ) with size 5 × 1.
There is one FC layer with 512 nodes. We have 2 output
classes with Softmax activation at the output layer. The CNN
model receives real and imaginary parts of STFT as inputs
and generates classification results based on the presence of
alert signal.

βi = argmax{p (βc | φi}, c ∈ (0,C − 1)

βi denotes the estimated output class i.e. the input frame is
alert signal or not an alert signal, p(.) is the probability of cth

class when given the ith time frame φi. C is the number of
output classes, which is two in the proposed case.

Since the alert signal detection block should continuously
check the warning sounds in real-time, the CNN architecture
is considered for detection block. CNNs are simpler than
other deep learning methods. They are computationally less
complex with a fewer number of parameters. This is impor-
tant especially when these models have to be deployed on
edge devices.
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FIGURE 3. Convolutional-recurrent neural network architecture for the proposed alert signal separator.

C. ALERT SIGNAL SEPARATION USING CRNN
A regression based mapping network is developed for the
proposed alert signal separation technique. The real and the
imaginary values of the STFT of the siren signal is esti-
mated by the proposed convolutional-recurrent neural net-
work (CRNN). The alert signal separation is formulated as
regression problem, as it involves reconstruction of the warn-
ing signal. A regression model is trained to estimate the
features of the siren signal from the noisy input features.
The input features to the proposed network are the same
inputs as explained in the detector section i.e. the real and
the imaginary parts of the STFT of the noisy signal, shown
in Eq. (3). We consider the same features as that of the
signal detector as the STFT of the raw input signal as they
include spatial and temporal characteristics of a signal [36].
This also makes sure that there is no additional delay to the
setup as the features will be already created in the alert signal
detector block. Importantly, the real and the imaginary parts
in the STFT of the signal have all the information that can be
used to reconstruct the signal back to the time domain. The
output labels (features) for the alert signal separator are the
real and the imaginary parts of the STFT of the alert signal.
CRNN acts as a mapping function between the input and the
output features. Let Wk (λ) be the k th STFT coefficient of
the alert signal w(n). k represents the frequency bins k =
0, 1, . . . ,N − 1 where N is the size of STFT. Therefore,
the output labels for the proposed architecture is given by,



Real part of Wk=0(λ)
...

Real part of Wk=N/2+1(λ)
Imag. part of Wk=0(λ)

...

Imag. part of Wk=N/2+1(λ)


(4)

Convolutional Layers: As explained in the previous
section, only the positive half of the STFT of the signal
is considered due to symmetry. The dimension of the out-
put labels is equal to input dimension i.e. (1 × F) where
F = (2× N/2+ 1).

Figure 3 shows the architecture of the CRNN based alert
signal separator. There are 4 hidden layers in the topology
viz. two convolutional layers, a single recurrent neural net-
work layer (RNN) and a fully connected (FC) layer. The
input layer consists of the features with size (1 × F). The
convolutional architecture is similar to the detector block.
The two convolutional layers with 64 filters are used to
generate the feature maps. The kernel size is set to be (5×1).
Due to the local similarities in the adjacent frequency bins,
we propose to use stride of size 2 to perform convolution. This
would considerably reduce the dimension i.e. the number of
parameters and complexity in the following recurrent layer,
without significant loss of accuracy. In order to reconstruct
the estimated alert signal, we need to ensure the input and
the predicted output to have same length in time dimension.
Zero padding is applied to the input before convolution.
This assures that the generated feature maps and the input
are of the same dimension. The ReLU activation function
is considered for the convolutional layers. We note that the
advantage of using the convolutional layers in the architecture
is the layers learn the specific and non-linear local patterns
from the input features.
Temporal Learning using GRUs: Usually, the alert signals

are periodic and have longer duration. Therefore, to learn
the correlation between the adjacent frames, we use RNNs.
The RNNs accounts for the temporal dynamics of the alert
signals. In the proposedmethod, we stack twoGated recurrent
units (GRUs) to form a recurrent layer. GRUs are a type
of RNN which are capable of extracting dependencies of
various time scales by recurrent units that can been applied
effectively to sequential or temporal data [37]. These have
been widely used in speaker recognition, language modeling
etc., [38]. The GRUs have special gates to learn the relevant
information in the data and increase the efficiency of learning.
Figure 4 shows the GRU cell and the forward propagation of
the basic GRU cell is given by,

zt = σ (Gxz xt + Ghz ht−1 + bz) (5)

rt = σ (Gxr xt + Ghr ht−1 + br ) (6)

where, xt is the input state, zt is the update gate, rt is the reset
gate, ht−1 is the hidden states at time t − 1 (previous state),
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FIGURE 4. Conventional GRU cell.

bz and br are the biases at two gates. The update gate, zt ,
aids to determine how much of the past information (from
previous time steps) needs to be passed to update the hidden
states. The reset gate, rt , is degree to forget the previous
hidden state information. The gate mechanism in GRUs is
used to modulate the flow of information within the unit.
The G terms denote the weight matrices i.e Gxz is the weight
matrix between input state and update gate, Ghz is the weight
matrix between hidden states and the update gate. σ is the
non-linear activation function which are be used to switch
on or off the two gates.

σ (a) = 1/(1+ exp (−a))

In Eq. (7), h′t is known as the candidate hidden state which can
be viewed as the current memory content in the GRU cell. The
reset gate is used to remove the information from the previous
time steps and store the relevant information from the past.�
indicates an element-wise multiplication.

h′t = tanh(Gxz xt + Ghh (rt � ht−1)+ bh) (7)

ht = zt � ht−1 + (1− zt )� h′t (8)

yt = ht (9)

The tanh(.) is an activation function, given by,

tanh(a) =
ea − e−a

ea + e−a

After transforming the update gate and the reset gate, the final
memory at the current time step is given by ht . The update
gate controls the ht which holds information for the GRU
cell at current time step and passes it down to the network.
The model can learn to set the update gate values zt close to
0 or 1. If zt is close to 0, majority of the previous information
is not passed to the output state. When zt ≈ 0, 1− zt will be
close to 1 which can be observed as, big portion of the current
information is relevant to the output state at the current time
step. In order to aid efficient temporal feature extraction,
we use stackedGRU,which is composed of several GRU cells
as shown in Figure 5.

In the proposed method, we use two stacked GRUs to form
a recurrent layer. The recurrent layer is inserted between the
convolutional layer and the FC layer (shown in Figure 3).
We note that after the convolutional layer, the feature maps
are aggregated across feature dimension to form the stacked
2D feature maps. The GRU layer has 100 cells each and

FIGURE 5. The structure of stacked GRU. The two layered stacked
network is used in the proposed method.

the FC layer is composed of 512 nodes. The output layer
has F nodes which is equal to the size of the input feature
vector. Linear activation function is applied at the output to
map the predicted output features. The CRNN uses mean
squared error as the target loss function. The architecture
utilizes Adadelta [39] optimization with scheduled learning
for training the model.

D. INTEGRATION TO SPEECH ENHANCEMENT
Speech enhancement (SE) is a vital component in Hearing
Aid Devices (HADs). SE improves the quality and intel-
ligibility of speech in the presence of background noise.
Traditional SE algorithms are modeled considering speech
to be the signal of interest and the rest of the signals in
the additive mixture to be noise. Typically, in conventional
SE algorithms, speech is detected by a voice activity detec-
tor (VAD) or by statistical probabilities and the noise is
suppressed based on developed gain function. The warning
signals which usually do not contain speech, are attenuated
by SE algorithms. Recent neural network-based SE methods
consider clean speech features as their output label to develop
a neural network model. These SE methods tend to distort
the signals when warning signals are present in an unseen
environment. This performance is expected as the researchers
do not consider the presence of these critical signals while
training the SE model. Therefore, through our experiments,
we observed that most of the SE algorithms either attenuate
the alert signal or the processed signal is distorted when there
is an alert signal mixed in the background. In the proposed
setup, the real and the imaginary values i.e. the input features
are extracted from the input noisy signal. The developed
CNN-based alert signal detection block is used before the SE
module to continuously check for the presence of any alert
sounds in the input signal. If there is no presence of alert
signal, the signal is passed to the SE module for background
noise suppression. If the alert signal is detected by the alert
signal detector, the user is notified, and the same noisy input
features are used as the input to the alert signal separator.
The alert signal is separated from the mixture of the signals.
The input noisy speech free from the alert signal is processed
by the SE module. The alert signal is then be added back
to the enhanced speech. This signal can be passed to other
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signal processing modules in the HADs or can be converted
to the time domain by taking inverse Fast Fourier Transform
(IFFT) of the signal. The proposed setup ensures that there
is no attenuation of the alert signal and no distortion in the
processed speech. The setup overcomes the constraints of
losing the information in emergency conditions for hearing
impaired and even for normal hearing people. The overall
pipeline of the method is shown in Figure 1.

III. EXPERIMENTAL ANALYSIS AND RESULTS
In this section, we discuss the experimental evaluations
carried out on the alert signal detector and the alert signal
separator.

A. DATASET
To train and evaluate the developed CRNN-based alert sig-
nal detector and separator, the alert signals are mixed with
noisy speech files at different SNR levels. Different types
of alert signals have varying characteristics. A standard for
‘‘auditory danger signals’’ (ISO 7731) [40] has been estab-
lished by the International Organization for Standardisation.
However, this provides basic instructions for warning sounds
and is not commonly used around the world. In order to
achieve generalization and to generate robust models, it is
important to include the variety of alert signals with all the
unique characteristics. In [41], the common characteristics
of the alert signal are mentioned. Some of the types of alert
signals are,
• Pulsed alarms - Consists of a repeat of the same sound
with silence between the instances.

• Sirens - Sounds, in which the frequency varies con-
stantly. ‘Wail’, ‘Yelp’ and ‘Hi-Lo’ are the major patterns
found in sirens. Wail and Yelp are the signals in which
the pitch of the signal rises and falls over time. Wail and
yelp have the same basic composition. However, in Yelp,
the pitch alternates rapidly. Hi-Lo is the two-tone sirens
that have two signals with different frequencies.

• Alternating alarms - Consists of two distinct alternating
tones with no silence between them. These can also be
viewed as a type of Hi-Lo sirens.

Figure 6 shows the spectrogram of the types of alert signals
considered. A large database was designed using different
web sources. All the above mentioned types of alert signals
were included in the dataset. We note that, signals with fre-
quency shifts due to the doppler effect were also considered,
especially for Wail and Yelp type of outdoor siren signals.

The clean speech sentences were selected from HINT,
TIMIT and LibriSpeech corpus [42]. The noise files are
selected from the DCASE 2017 challenge database [43].
Three major outdoor noise types machinery, traffic and
multi-talker babble are considered as they are commonly
seen in real-life environment. Along with this, more than
50 smartphone collected realistic noise is included in the
noise database. The alert signals, speech sentences, and
noise files were selected from various sources as it improves
generalization. It is also important as it helps to work in
real-world noisy conditions. We note that the noisy speech

FIGURE 6. Spectrograms of different types of alarm sounds.
a) Alternating alarm usually used in Fire alarms. b) An emergency vehicle
driving away (Sirens). c) Yelp alarms (frequency continuously changes).
d) Pulsed alarm signals.

files were created by adding speech and noise at 0 dB SNR.
The noisy speech was mixed with alert signals at SNR levels
from −5 dB to +10 dB with an increment of 5 dB. All the
signals were sampled at 16 kHz. An overall of 60 hours of
data was used for training. Only 30% of the database had
alert signals mixed with noisy speech. This is because the
amount of alert signals is extremely low when compared to
the no-alert signals in real-life scenarios.

B. OFFLINE OBJECTIVE EVALUATION FOR ALERT
SIGNAL DETECTOR
The performance of the proposed detection method is evalu-
ated in this section. The proposed detection method is com-
pared with two other methods. A conventional method based
on autocorrelation [41] and a feed forward neural network
based siren detection [31] algorithms are compared with
the proposed detection technique. As performance metrics,
we use true positives (TP), False Positives (FP) and False
negatives (FN). TP can be viewed as the percentage of alert
signal frames correctly classified. FP is the percentage of non-
alert signal frames classified as alert signal frames. FN is the
percentage of alert signal frames classified as non-alert signal
frames. Higher TPmeans, higher is the accuracy of detection.
It is ideal to have lower FP and FN as they indicate smaller
chances of error. True Negatives (TN) are not considered
in this experiment as they are considerably less significant
in the proposed application. Figure 7 shows definition used
for TP, FP and FN. Experimental evaluations are performed
for 3 different noise types; machinery, multi-talker babble,
and traffic noise. Table 1 shows the comparison of TP, FP
and FN results averaged over 20 sentences. We note that,
the speech signals, the noise files, and the alert signals used
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TABLE 1. Comparison of the classification results of the proposed method with conventional and DNN based method at various SNRs and noise types.
The TP, FN, FP results are in %.

FIGURE 7. Representation of True Positives, False Positives and False
Negatives considered as the objective measures for siren detection.
An example of classification results for alert signal mixed with
background noise is shown.

for objective measures are validation data i.e. the dataset was
unseen by the model and were not included for training and
testing. On an average, the proposed method is ≈30% and
≈13% better in true positive rate when compared to conven-
tional and the DNN method respectively. From Table 1 we
can observe that higher the SNR, lower the TP and higher
the FP/ FN. This performance is expected because, as the
SNR increases, the power of the noisy speech increases.
The Objective measures show significant improvements over
conventional and deep learningmethods for all the three noise
types considered.

C. OFFLINE OBJECTIVE EVALUATION FOR ALERT
SIGNAL SEPARATION
This section describes the performance evaluation of the
proposed alert signal separation method when integrated with
the speech enhancement (SE) techniques. The alert signal
separator ensures that there is no attenuation of the warning
signals. However, it is essential to guarantee that there are
no distortions, and processing artifacts. It is also important
to note that the entire setup does not affect the speech intel-
ligibility. The proposed method is evaluated using a perfor-
mance measures, Signal to Distortion Ratio (SDR), Signal to
Interference Ratio (SIR), Signal to Artifact Ratio (SAR) [44],
and Coherence Speech Intelligibility Index (CSII) [45]. The
alert signal separation method can be considered as a type
of single channel source separation, therefore we use the
abovementioned objective measures. SIRmeasures the effect
of other sources on the separated source and shows how
much interference the other signals have on the signal of
interest. SARmeasures if there are any residual noise or other
artifacts introduced by the proposed method. SDR measures
the overall separation quality. Higher SIR, SAR and SDR
measures mean the separated signal has minimal artifacts and
distortion. CSII is the speech intelligibility measure which
varies from 0 to 1, with 1 being high intelligibility.

To the best of our knowledge, there are no published works
on alert signal separation and its integration with speech
enhancement. Therefore, we compare the proposed alert sig-
nal separation method integrated with several SE methods.
The conventional SE method based on Log-MMSE [13], and
a convolutional neural network (CNN) based SE [20] meth-
ods are integrated with the proposed alert signal separation
block to evaluate the performance. We test the results of the
integrated setup because the aim of the proposed method
is to ensure there is no attenuation of the alert signals and
no distortion in the processed speech after SE. Machinery,
Multi-talker babble and Traffic noise types are considered.
The noisy speech files were created by adding speech and
noise at 0 dB SNR. The noisy speech was mixed with alert
signals at different SNR levels. We note that if the SNR
mentioned is+10 dB, the power of the noisy speech is 10 dB
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TABLE 2. Comparison of SAR and SDR objective measures for 3 different noise types at various SNRs. The comparison is for unprocessed signal and for
the SE methods with and without the proposed separation module.

TABLE 3. Comparison of SIR and CSII objective measures for 3 different noise types at various SNRs. The comparison is for unprocessed signal and for
the SE methods with and without the proposed separation module.

higher than the power of the alert signal. As considered in the
previous section for detection method comparison, the val-
idation sentences are unseen by the model. Tables 2 and 3
show the objective results for the proposed separation method
integrated with SE techniques. The results shown are the
average of over 15 sentences. In the tables, the unprocessed
signal is the mixture of noisy speech and alert signal. The
Conv. and the CNN represent the signals processed using SE
methods [13] and [20] respectively without any separation.
i.e. the mixture of noisy speech and alert signal does not pass
through proposed separation block and are processed using
SE methods alone. Conv. + separation and CNN + separa-
tion represent the signals processed using SE methods [13]
and [20] respectively with separation. i.e. the mixture of
noisy speech and alert signal is processed using the proposed
alert signal separation method to separate the alert signal,
the estimated noisy speech free from the alert signal is pro-
cessed using SE methods to generate enhanced speech. The
separated alert signal is added back to the enhanced speech.

Objective measures show significant improvements over
conventional and deep learning method for all three noise
types considered. From the Tables 2 and 3 we observe
that on an average, the inclusion of the proposed separator
block increases the SAR and SDR ≈5.05 dB. The SIR also

increases by ≈6.18 dB. This shows that the overall qual-
ity of the output signal improves significantly while pre-
serving the alert signals. The proposed setup also improves
the speech intelligibility. Table 3 shows the CSII results at
different SNRs for three different noise types. This shows
that the addition of the alert signal separator block does
not degrade the intelligibility of speech. Objective measures
shown in Tables 2 and 3 reemphasize the fact that the pro-
posed method achieves comparatively more noise suppres-
sion without attenuating the warning signals and without
distorting speech.

D. SCALING NETWORK FOR SEPARATION BLOCK
The proposed CRNN architecture is scaled by controlling the
number of trainable parameters. The proposed architecture
is scaled to have total of a 3, 9, 15, and 27 million parame-
ters with a tolerance of 5%. Considering the limitations like
latency, accuracy, training time and the hardware capabilities,
through our experiments we consider the upper bound to be
27M parameters. The size of the model becomes significant
when it is used to deploy on edge devices (example: smart-
phones, laptops, raspberry pi, etc.). This experiment gives
an overview of how the performance of the model varies
for the architecture with the same depth but the different
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TABLE 4. Comparison of the architecture of scaling networks. The layers
considered, the width of the each layer and the total number of
parameters is shown.

TABLE 5. Comparison of the objective measures for scaling networks.
The clean speech is mixed with traffic noise at 0 dB SNR. The noisy
speech is at 0 dB to the alert signals.

number of hidden units. Table 4 summarises the details of
different structures including the layer width (the number of
feature maps). The width of each layer is changed to control
the number of parameters. We note that the depth of the
architecture is the same. This ensures that the hierarchy of
the learned features remains the same and only the number of
features in each layer changes. The size of the convolutional
kernel, the stride size, the training batch size are set to be
the same. Table 5 shows the comparison of the objective
measures used for the scaled CRNN network. The results are
shown for alert signals mixedwith noisy speech (traffic noise)
at 0 dB. We consider traffic noise type in this experiment as it
was considerably more challenging than the others. From the
table, we can observe that as expected, the objective results
were comparatively better as the number of learnable parame-
ters increased. However, the proposed architecture with≈9M
parameters had a better trade-off with the performance of
alert signal separation and computational complexity. Neural
network models under 10M parameters have been imple-
mented on edge devices like smartphones [20]. Considering
these parameters, the model with 9M parameters is used for
smartphone implementation. The same model is used for the
objective results shown in Tables 2 and 3. Models with a
higher number of parameters can also be implemented on
edge devices that have high computational capabilities.

E. COMPARISON OF GRU WITH LSTM
The efficiency of GRUs is compared with LSTMs (Long
Short Term Memory units) in this experiment. LSTMs are
a type of recurrent neural network which also use gating
mechanism to control the flow of information to the current
hidden units. LSTM cells have four gates to transfer the

TABLE 6. Comparison of the proposed GRU model with LSTM model for
different noise types. Noisy speech mixed with alert signal at 0 dB SNR.

information which is two more than GRUs. Two different
models are trained and evaluated. The proposedCRNNmodel
with stacked GRU cells as the RNN layer. The GRUs are
replaced with the stacked LSTM cells to compare the per-
formance. The rest of the network architecture remains the
same. The input and the output features are the same i.e.
the real the imaginary parts of the FFT of the input signal.
Table 6 shows the performance of the proposed setup with
GRU and LSTM networks. The clean speech is mixed with
different noise types at 0 dB SNR and the noisy speech is
at 0 dB SNR with respect to the alert signal. The perfor-
mance of the two networks integrated with conventional SE
technique is shown in Table 6. The results suggest that the
proposed GRU model performs slightly better than that of
the LSTMmodel. The additional gates in the LSTM network
increase the number of learnable parameters by≈10%. Thus,
the cost of computations and complexity increases. Because
of the following limitations and degradation, in the proposed
method we considered GRUs over LSTMs.

F. UNSEEN SNR EFFECT
In this experiment, we assess the influence of the unknown
SNR on the proposed model. The changes in the SNR is
common and often rapid in real-world noisy environments.
So, we need a robust model that will be able to overcome
these rapid SNR shifts in real time. To examine the effect of
unseen SNR, the proposed CRNN models trained at −5 dB
and +10 dB SNRs are tested with signals at different SNR.
We consider the two conditions as they are extreme cases
where the power of the alert signal is 5 dB higher than the
noisy speech and +10 dB lower than the noisy speech. The
model trained at−5 dB SNR is tested with the unseen signals
at an unseen SNR of −10 dB (the power of the alert signal is
10 dB higher than the power of the noisy speech). Similarly,
the model trained at +10 dB SNR is tested with the unseen
signals at an unseen SNR of +15 dB (the power of the
noisy speech is 15 dB higher than the power of the alert
signal). Table 7 shows the performance evaluation of the
proposed integrated setup tested at unseen SNR conditions.
Clean speech degraded by traffic noise at 0 dB SNR is used
as noisy speech to evaluate the performance of the proposed
method in unseen SNR. For comparison, we use unprocessed
noisy speech mixed with the alert signal, the signals pro-
cessed using only conventional SE method and the signals
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TABLE 7. Performance evaluation in unseen SNR condition for noisy
speech (traffic noise at 0 dB) mixed with alert signal. The neural network
models were trained at −5 dB and +10 dB SNR, tested at −10 dB and
+15 dB respectively.

processed using integrated setup of CRNN separation and
conventional SE method. From Table 7 we can see that,
even under unknown SNR conditions the proposed setup out-
performs other methods. The trends were similar with other
noise types like multi-talker babble and machinery noise. The
results shown in Table 7 indicate that the model can be used
in realistic environments with unknown and changing SNR
conditions.

IV. REAL-TIME IMPLEMENTATION ON SMARTPHONE
In this section, we discuss the steps and tools involved in
the real-time implementation on smartphone. As an example,
we choose iOS-based smartphones (iPhones) as our imple-
mentation platform. However, the proposed method can work
seamlessly on android devices or other edge devices like
laptops. The video demonstration of the proposed method
running on a smartphone can be seen in [46].

A. OFFLINE TRAINING AND TOOLS
The models used for smartphone implementation are trained
offline. For training the detection and the separation model,
the input features i.e. the real and the imaginary parts of the
STFT are generated using MatLab. For input data generation,
each input data frame of the noisy speech signal mixed with
the alert signal is sampled at 16kHz. Each frame input data
of size 32ms with a 50% overlap is windowed using the
Hamming window. An STFT size of 512 (N ) is considered
to generate the real and the imaginary parts of the STFT.
Therefore, 257 (N/2 + 1) real and imaginary parts of the
STFT form the input features. Therefore, the dimension of
the input data will be 514 for each frame. The output labels
for the detection and the separation models are generated in
MatLab. After data generation, GPU and cloud-based training
are employed for generating the detection and separation
models. Tensorflow software [47] is used for model design
and offline training. Tensorflow is considered for training
as it provides framework called Tensorflow-Lite (tflite) [48]
for implementing deep learning models on edge devices.
Tensorflow-Lite provides a library called tflite Converter to
convert trained models to (.tflite) version. These models in
(.tflite) versions are optimized to be used as inference-only
models on mobile and embedded devices that have limited
resources. Firebase software development kit (SDK) [49] is

used to provide custom APIs which are added to the iOS
application. These APIs help to provide on-device model
inference. The feature extraction and SE on smartphone
application were coded in C++. Xcode [50]was used for
coding and debugging. Objective C was used for on-device
inference and GUI deployment. Core Audio framework [51],
is used to carry out input/ output (i/o) handling for audio
processing. We note that all software tools and frameworks
used are open source.

FIGURE 8. GUI of the developed smartphone application running on an
iPhone.

B. REAL-TIME PROCESSING
The proposed set-up can work as a real-time application
on any ARM processing platform. In the proposed method,
we consider iPhone 11 smartphone running on iOS 13.1.1 for
real-time implementation. For real-time processing, the entire
setup that includes alert signal detection and separation inte-
grated to the SE module is implemented on a smartphone.
Input data is captured on the smartphone with a frame size
of 32ms with an overlap of 50% at a 48 kHz sampling
rate. The captured data is downsampled to 16 kHz by low-
pass filtering and a decimation factor of 3. Therefore, there
are 512 samples (32ms in time) for every processing frame
frame. A 512 point STFT is computed and only the first
257 (N/2+ 1) real and imaginary values are considered.
The input feature vector of size (514 × 1) is computed.
This feature vector is continuously fed to the pre-trained
CNN-based detection model. The output of the detection
model is the classification output which detects the presence
of the alert signal. The detection model works for every
frame to monitor the presence of any warning sounds. The
Graphical User Interface (GUI) is updated to display the
classification result on the smartphone screen for the user
as shown in Figure 8. If the 5 consecutive previous frames
are classified as alert signal, the input features, are fed to
the CRNN-based alert signal separation model. The output
of the separation model is the estimate of the real and the
imaginary parts of the STFT of the alert signal. The estimated
alert signal is separated from the mixture of noisy speech and
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the alert signal. The estimate of the noisy speech which does
not have the alert signal is then passed to the SE module for
noise suppression. After applying IFFT and reconstruction,
the enhanced speech and the alert signal are then transmitted
to the HAD via Bluetooth low energy. When the 20 con-
secutive previous frames are classified as non-alert signal,
the CRNN separation block is deactivated. This deactivation
time is set to be large because some pulsed alert signals
have large silence between the sounds. However, the detec-
tion block and the SE work continuously. In the Figure 8,
the button shown on the upper part of the screen controls
the application. When the button is ‘OFF’ the application
acts like usual audio play-back without any processing.When
the button is ‘ON’, the application works as SE alone. The
conventional SE based on LogMMSE [13] is implemented as
the SE module. The button on the lower part of the screen
controls the alert signal detection and separation. When this
button is ‘ON’ the alert signal detection and the separation
block is integrated with the SE module. Once the module is
integrated, the application takes approximately 1.8 seconds
for Firebase to initialize the tflite inference only models.
After the initialization, the application runs seamlessly in
real-time. The proposed CRNN model with 9M parameters
is considered for the smartphone implementation. The overall
i/o audio latency of the application≈14ms. The i/o latency on
iPhone≈9 ms [52]. The processing latency of the entire setup
is, 5.21ms. The SE alone has a processing delay of 4.2ms,
the alert signal detection and the separation inference time for
each frame is approximately 0.36ms and 0.65ms respectively.
All these measures were calculated on the smartphone for
an input frame of size 32ms. Reference [46] shows the iOS
app running on iPhone 11.

C. SMARTPHONE TESTING
In offline conditions with a controlled environment, most
of the methods work extremely well. However, their perfor-
mance degrades significantly when tested in real-time and
under varying acoustic conditions. Smartphones are portable
and can be used in challenging conditions, such as constant
motion, varying SNRs or varying noise. Therefore, it is
important to evaluate the real-time performance of the pro-
posed method on a smartphone platform. In order to test the
real-time operation of the proposed setup on the smartphone
platform, a mixture of alert signals and known noisy speech
sentences were played approximately at 0 dB SNR. These
signals were processed by smartphone (in real-time) and on
a PC (in offline mode). The classification and the separation
outcomes of the smartphone are stored to compare with the
offline method. The performance assessment in offline (PC)
and in real-time (smartphone) conditions of the proposed
method are shown in Tables 8 and 9. The true positives,
false positives and false negative results for the alert signal
classification performed in real-time and offline conditions
are shown in Table 8. Table 9 shows the performance evalua-
tion of the proposed integrated setup in real-time and offline
conditions. Tables 8 and 9 show that the results measured in

TABLE 8. Alert signal detection method tested on PC and smartphone
platform. The real-time smartphone tested results are on par with the
results tested offline.

TABLE 9. Alert signal separation method tested on PC and smartphone
platform. The real-time smartphone tested results are on par with the
results tested offline.

a real-time condition on smartphone are similar to the offline
process. This experiment shows that the model performs well
when tested on the smartphone platform. The sample audio
files enhanced using the integrated setup can be found in [53].

FIGURE 9. Battery, RAM and the CPU consumption of the proposed
integrated setup running on a smartphone as real-time application.

D. SMARTPHONE APPLICATION CHARACTERISTICS
In this section, we discuss the computational burden on the
smartphone when the entire setup is running as a real-time
app. The application’s CPU consumption is low. Even though
the app makes use of the audio frame work, Firebase APIs,
and inferences two neural network models, the overall CPU
usage of the setup is around 19-20%. Thememory used by the
application is around 44.3 MB. The iPhone 11 smartphone
has a RAM of size 4GB. Therefore, the app uses ≈1.1% of
the memory. The memory consumption is quite low consid-
ering the tools and the computations in the app. This shows
that the app will not overload the smartphone’s CPU and
memory space. Since the developed application uses minimal
smartphone resource, it can be used when the smartphone
is running other apps in the background. The energy impact
of the app is also low. The application runs about 8 hours
on a fully charged iPhone 11 which has a battery capacity
of 3046mAH. Figure 9 shows the CPU, memory and battery
usage of the proposed application when it is running on the
smartphone. While energy consumption and memory usage
are both low, it is worth noting that it is better to use simple
networks instead of larger networks with a higher number of
parameters. That is because deeper networks typically have
long inference time that can increase the overall latency in
real-time.
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V. CONCLUSION
In this paper, we presented a neural network-based alert
signal detector and separator. The alert signal detector is
based on convolutional neural network (CNN). The separator
is based on convolutional-recurrent neural network (CRNN)
with stacked GRUs as the recurrent layer. The developed
methods were integrated with speech enhancement tech-
niques used in hearing aid devices. The alert signal detector
and separator blocks ensure that there is no attenuation of
critical warning sounds. The entire setup is implemented on
a smartphone that works in real-time to improve the environ-
mental awareness for people with hearing loss. The proposed
method is computationally efficient and optimized to have
minimal audio latency. The objective measures for each block
of the setup affirm the usefulness and applicability of the
proposed approach in various noisy conditions in the real
world. The proposed setup on the smartphone provides a
cost-effective and portable system that can be used by people
with listening impairment, audiologists and researchers for
improving the hearing study.
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