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ABSTRACT The work ratio is a primary factor in the applications relevant to wide bandwidth requirements
because a bandwidth depends on resonant peaks. Especially, since a single-body system can have up to six
resonant peaks, a six degree-of-freedom spatial system is more desirable for a broad bandwidth design. This
paper presents a novel design method of a spatial vibration system for any prescribed ratio of energy peaks.
Firstly, we introduce an important and concise geometric nature of a spatial vibration system with a single
rigid body when it has only rotational vibration modes. The vibration modes represent vibration axes and six
lines of action can be obtained by transforming the vibrationmodes by themassmatrix. It is shown that the six
axes of vibration and six lines of action form two orthocentric tetrahedra that share the orthocenter coincident
with the mass center. It is also shown that the stiffness matrix determined from two tetrahedra can always
be realized by means of parallel connection of line springs. Using the orthocentric tetrahedra, we acquire
analytical expressions for the energy produced by external forces at resonant frequencies, which is used to
determine vibration modes that satisfy the requirements for given mass properties and six target resonant
frequencies. Finally, the stiffness matrix that satisfies requirements is found and realized. To illustrate the
process of the presented method, we use four numerical examples with different work ratios and demonstrate
that the method is useful for a wide bandwidth.

INDEX TERMS Broad bandwidth, spatial vibration system, resonant frequency, rotational vibration mode,
work ratio.

I. INTRODUCTION
When designing vibration systems such as vibration-based
energy harvesters and vibration absorbers, the magnitudes of
resonant peaks are considered more important because the
bandwidth is affected by the magnitudes of peaks. It has
been known that the specific ratio of energy peaks allows
for a vibration system to have a broad bandwidth [1]. Thus,
the ratio of the resonant peaks should be considered in the
design stage of a vibration system which requires a wide
bandwidth.

For a multimodal system, it is difficult to tune the mag-
nitudes of resonant peaks to suit requirements because they
depend on both vibration modes and resonant frequencies.
Furthermore, when designing a vibrating system, vibration
modes must be specified so that they satisfy orthogonality
with respect to the mass matrix and a spatial stiffness matrix
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designed for given requirements should satisfy realization
condition since the stiffness matrix is not always realiz-
able [2]. These constraints complicate the design of a spatial
vibration system.

To overcome the complexity, some researchers suggested
a system consisting of one degree-of-freedom (DOF) beam-
mass systems [3], [4]. Since 1-DOF systems are independent,
the magnitude of a peak of each system can be easily tuned.
Another approach is to design a 3-DOF planar vibration
system. There are two advantages of the design using a planar
system. First, there is a transparent geometric property that
three vibration centers form a triangle of which the orthocen-
ter is coincident with the center of mass [5]. Second, a planar
stiffness matrix with rank 3 can always be realized by using
either parallel connection of line springs or serial connection
of torsion springs [6]. Kim et al. [1] utilized those advantages
to develop a design method of a 3-DOF vibration system
for prescribed work ratios. This method was applied to the
design of a vibration energy harvester composed of serial
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linkages [7], [8]. However, since a rigid body has 6-DOF in
space, it may be said that a 6-DOF spatial system is more
desirable for high efficiency.

A vibration mode of a spatial system can be viewed as
a repetitive small screw motion [9]. This complex motion
gives rise to complicated geometric relations among vibra-
tion modes. Some researchers have made efforts to find
the conditions that simplify the geometric characteristics of
a spatial vibration system. Representatively, the conditions
for plane(s) of symmetry were discovered and presented
in [10]–[13]. If a vibrating system has a plane of symmetry,
the vibration modes are decoupled into in-plane and out-
of-plane vibration modes, which refer to rotational vibrations
whose axes are perpendicular to the plane of symmetry and
lying on the plane, respectively. Jang et al. [14] derived the
geometric relations between in- and out-of-plane vibration
modes from orthogonality with respect to the mass matrix.
Recently, Lee et al. [15] proposed a new development of
geometric conditions for a vibration system to have only
rotational modes. They also showed that there exist three
configurations of vibration axes with simple geometry.

In order to develop a design method of a spatial vibra-
tion system with a realizable stiffness matrix, we utilize one
of three configurations of vibration axes presented in [15].
Using the geometric relations between vibration modes,
we develop a systematic design method for prescribed ratios
of energy peaks at six target resonance frequencies. It will be
shown that the stiffness matrix synthesized using this method
can always be realized bymeans of parallel connection of line
springs.

This paper is organized as follows: Section II explains
theoretical preliminaries. Section III describes geometrical
relationships between vibration modes found from orthogo-
nality with respect to the mass matrix. It is also shown that
the synthesized stiffness matrix is realizable. In section IV,
we present the design method of both direct and base excita-
tion systems. Section V illustrates numerical examples with
demonstration of usefulness of the proposed method. A con-
clusion is given in the final section.

II. PRELIMINARIES
A. GEOMETRIC REPRESENTATION OF VIBRATION MODES
We consider a rigid body supported by two sets of line
springs (Fig. 1): 1) one set of n springs intersecting at the
point A and 2) the other set of n springs lying on the plane
P for n ≥ 3. Then, a symmetric and positive definite rank 6
stiffness matrix K

(
∈ R6×6

)
can be expressed as [16]–[18]

K = K1 + K2 = j1k1j1 + j2k2j2
=

∑n

i=1
kαiα̂iα̂Ti +

∑n

i=1
kβiβ̂ iβ̂

T
i , (1)

where j1 and j2 are 6× n Jacobian matrices with rank 3

j1 =
[
α̂1 · · · α̂n

]
and j2 =

[
β̂1 · · · β̂n

]
(2)

FIGURE 1. Spatial vibration system consisting of two sets of line springs.

and k1 and k2 are n× n diagonal matrices

k1 =

 kα1 0
. . .

0 kαn

 and

k2 =

 kβ1 0
. . .

0 kβn

 . (3)

Each column α̂i(or β̂ i) of j1(or j2) represents a line of action
of a force produced by the line spring with the spring constant
kαi(or kβi). The lines of action α̂i and β̂ i are unit line vectors
(of zero pitch), or simply lines, expressed in (Plücker’s) ray
co-ordinates

α̂i =

{
sαi

rαi × sαi

}
and β̂ i =

{
sβi

rβi × sβi

}
, (4)

where sαi(or sβi) and rαi(or rβi) denote the unit direction and
position vector to a point on the line of action α̂i(or β̂ i).
It is noted here that α̂i’s and β̂ i’s are respectively the lines
of action intersecting at the point A and lying on the plane
P (Fig. 1). Clearly, the line vectors satisfy the following
relation:

α̂Ti 1α̂i = β̂
T
i 1β̂ i = 0, (5)

where 1 =

[
03×3 I3×3
I3×3 03×3

]
. From (5), the trace of K1

becomes zero:

tr (K1) =
∑n

i=1

(
kαiα̂Ti 1α̂i + kβiβ̂

T
i 1β̂ i

)
= 0. (6)

This means that K can be realized by means of parallel
connection of line springs when K satisfies (6) [2].

Now, the equation of motion for undamped free vibration
can be given by

MẌ + KX = 0, (7)
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where M is 6× 6 mass matrix. A small harmonic displace-
ment can be expressed as

X = X̂ejωt , (8)

where X̂ is a screw expressed in (Plücker’s) axis co-ordinates.
Using (7) and (8), we have:(

K − ω2M
)
X̂ = 0. (9)

From (9), we obtain the natural frequencies ωi(i = 1, . . . , 6)
and the corresponding vibration modes X̂ i(i = 1, . . . , 6).
As illustrated in Fig. 1, we assume that the vibration system
satisfies the following two conditions:

1) The moments of inertia about all the principal axes are
identical (e.g. a sphere-shaped rigid body).

2) The mass center G is internal division of AH and AG ·
GH = r2g . H is the foot of perpendicular drawn from A
to the plane P and rg is radius of gyration of the rigid
body.

Under these assumptions, all the vibration modes become
rotational ones [15]. That is, X̂ i’s become line vectors

X̂ i =

{
ri × si
si

}
, (10)

where si and ri denote respectively the unit direction and
position vector to a point on the axis of X̂ i. Furthermore,
the vibration axes can be grouped into two sets (Fig. 2): 1) one
set of three axes intersecting at the point A and 2) the other
set of three axes lying on the plane P. This configuration
of vibration axes is used to derive the design method in this
paper. It is noted that the white and black arrowheads in all
the figures depict the line vectors expressed in ray and axis
co-ordinates, respectively.

FIGURE 2. Two groups of vibration axes.

B. DESIGN EQUATION
The design equation can be derived from orthogonality of a
vibration system. Orthogonal characters with respect to the

mass and stiffness matrices are given by

STMS =

 m̃1 0
. . .

0 m̃6

 (11)

and

STKS =

 k̃1 0
. . .

0 k̃6

 , (12)

where S =
[
X̂1 · · · X̂6

]
, m̃i = X̂T

i MX̂ i, and k̃i = X̂T
i KX̂ i

for i = 1, . . . , 6. From (11) and (12), we can obtain the
following design equation:

K = MS
[
ω2
]
S−1 (13)

where
[
ω2
]
= diag

(
ω2
1, . . . ,ω

2
6

)
. Equation (13) implies that

if the desired natural frequencies are prespecified, the stiff-
ness matrix can be determined by a proper assignment of
the modal matrix for the given mass properties of a rigid
body. Considering that a vibration mode can be viewed as a
geometric element (e.g. a line), from (11), we can obtain new
geometric constraints on the two groups of vibration axes for
the given inertia matrix.

III. MODAL SYNTHESIS
A. GEOMETRIC CONSTRAINTS ON VIBRATION AXES
To derive the geometric constraints on vibration axes from
orthogonality with respect to the mass matrix M , we first
investigate the geometric properties of M as a linear one-to-
one transformation, which maps a screw expressed in axis co-
ordinates into one in ray co-ordinates [15]. For the givenmass
matrixM , the mapping ofM between two screws is invariant
with respect to co-ordinate frame transformations. Thus, if we
place the co-ordinate frame so that its origin is coincident
with the mass center, then the mass matrixM becomes:

M = diag (m,m,m, I , I , I ) , (14)

where m is the mass and I denotes the moment of inertia.
Transforming the vibration mode X̂ i byM yields:

MX̂ i =

{
m (ri × si)

Isi

}
.

If we choose the position vector ri to be perpendicular to si,
si can be denoted by

si =
1

r2i
(−ri × (ri × si)) , (15)

where ri = ‖ri‖. Using (15), we can rewriteMX̂ i as

MX̂ i = mrîxi, (16)

where

x̂i =
{

s′i
r′i × s

′
i

}
, (17)
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The vectors s′i and r
′
i are given by

s′i =
1
ri
(ri × si) (18)

and

r′i = −
(
rg
ri

)2

ri (19)

The observation of (18) and (19) reveals the following geo-
metrical relationships between the mass center and two lines
(X̂ i and x̂i):
1) The two lines X̂ i and x̂i are perpendicular to each other

since si · s′i = 0.
2) The mass center lies on the common perpendicular of

X̂ i and x̂i since r′i and ri are collinear.
3) The distances from the mass center G to two lines X̂ i

and x̂i satisfy that rir ′i = r2g where r ′i =
∥∥r′i∥∥.

The above relations are illustrated in Fig. 3.

FIGURE 3. Geometrical relation between X̂ i and x̂i.

In what follows, the relation between X̂ i and x̂j for i 6= j
can be obtained from (11) and (16) as

X̂T
i x̂j = 0 for i 6= j. (20)

When the two lines X̂ i and x̂j satisfy (20), it is said that they
are reciprocal to each other. Equation (20) can be expressed
geometrically as [9]:

X̂T
i x̂j = −dij sin θij (21)

where θij and dij are the angle and shortest distance between
axes of X̂ i and x̂j. Therefore, X̂ i and x̂j for i 6= jmust meet or
be parallel.

Now, we present the first geometric constraint on vibration
axes as follows:
Constraint 1: The two groups of lines (X̂1, X̂2, X̂3, x̂1,

x̂2, x̂3) and (X̂4, X̂5, X̂6, x̂4, x̂5, x̂6) construct two correspond-
ing orthocentric tetrahedra which share the altitude AH .

A tetrahedron is said to be orthocentricwhen all three pairs
of opposite edges are perpendicular. The above statement of
Constraint 1 can be proved as follows: Referring to Fig. 4(a),

x̂3 lies on the plane P since the mass matrixM transforms the
lines passing through the point A into the lines lying on the
plane P, and vice versa (see APPENDIX in [15]). In addition,
it is shown in (20) and (21) that x̂3 meets both X̂1 and X̂2.
Similarly, it becomes clear that x̂6 penetrates the point A and
meets both X̂4 and X̂5(Fig. 4(b)). Therefore, it can be shown
that two tetrahedra that share the altitude AH are constructed
by two groups of lines (X̂1, X̂2, X̂3, x̂1, x̂2, x̂3) and (X̂4, X̂5,
X̂6, x̂4, x̂5, x̂6), and they are orthocentric since all three pairs
of opposite edges (X̂ i and x̂i) are perpendicular. The proof is
complete.

An important property of the orthocentric tetrahedron is
that its four altitudes are always concurrent, and the intersect-
ing point is orthocenter. The second geometric constraint on
vibration axes is about the orthocenter and the mass center.
Constraint 2: The tetrahedra share orthocenter, which

coincides with the center of mass.
To prove this statement, we consider three planes (P1, P2,

and P3) respectively containing the axes of X̂ i(i = 1, 2, 3)
and perpendicular to the opposite edges x̂i(i = 1, 2, 3)
(Fig. 5). Since P1 contains the common normal to X̂1 and x̂1,
the mass center G lies on P1. Similarly, P2 and P3 also
contain G, and thus G lies on the altitude AH since AH is
the intersection of P1, P2, and P3. Consequently, we can
show that the four altitudes intersect at the mass center G,
i.e.,G is orthocenter of the tetrahedron. In the similar manner,
it can also be shown that G coincides with orthocenter of the
tetrahedron formed by X̂ i(i = 4, 5, 6) and x̂i(i = 4, 5, 6).
These results complete the proof of Constraints 2.

Finally, we present the third geometric constraint about the
faces of the tetrahedra.
Constraint 3: The four faces of each tetrahedron are acute

triangles.
To prove this, if we assume that a face has the obtuse angle

6 BCD (Fig. 6), then the orthocenter, or the mass center G
is clearly outside of the tetrahedron, and the normal position
vectors ri and r′i are in the same direction. However, this is
contradictory to (19) since ri and r′i should be in opposite
directions. It concludes that all the faces of the tetrahedron
cannot have an obtuse angle. If a face is a right triangle, then
G and H coincide with the vertex with the right angle. Since
AG ·GH = r2g , rg becomes zero or A is infinitely distant from
G (and H ). Because we only consider a rigid body (not point
mass) and the case that vibration axes are finite distant from
G in this study, all the faces of the tetrahedra must be acute
triangles.

Recalling that three vibration modes of a 3-DOF planar
vibration system form an acute modal triangle, the ortho-
center of which is coincident with the mass center [1], [5]
(Fig. 7). Therefore, the aforementioned geometric properties
of the 6-DOF spatial vibration system can be considered an
extension of the planar system.

B. SEPARATION AND REALIZATION OF STIFFNESS MATRIX
In order to show that the stiffness matrix synthesized
from (13) is always realizable, we separate the stiffness
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FIGURE 4. Orthocentric tetrahedra formed by vibration axes and lines of action.

FIGURE 5. Geometrical relationships between the mass center and
vibration axes.

matrix K into the sum of two rank 3 matrices in the form
of (1). For the given two tetrahedra shown in Fig. 4, the modal
matrix S satisfies the following equation:

STSr =


X̂T
1
...

X̂T
6

[ x̂1 · · · x̂6
]
=

 d11 0
. . .

0 d66


(22)

where dii = X̂T
i x̂i (θii = −π/2 in (21)). Then, we can obtain

S−1 as

S−1 =

 d
−1
11 0

. . .

0 d−166

STr (23)

FIGURE 6. Orthocentric tetrahedra of which the face is obtuse.

FIGURE 7. Geometric relation between mass and vibration centers in
3-DOF planar system.

Premultiplying right side of (13) by S−TST and sub-
stituting (11) and (23) into (13), K can be represented
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FIGURE 8. Two orthocentric tetrahedral in a vibration system.

as

K = Sr

 m̃1ω
2
1d
−2
11 0

. . .

0 m̃6ω
2
6d
−2
66

STr
and K is given in a similar form of (1)

K =
∑3

i=1
m̃iω2

i d
−2
ii x̂îxTi +

∑6

i=4
m̃iω2

i d
−2
ii x̂îxTi . (24)

Clearly, tr (K1) = 0 since x̂i1̂xTi = 0 for all i. Therefore,
if the modal matrix S is specified using the orthocentric
tetrahedra, the stiffness matrix determined from (13) can
always be realized by means of the parallel connection of line
springs.

Additionally, the first and second terms of the right side
of (24) correspond toK2 andK1 in (1), respectively, since x̂i’s
(for i = 1, 2, 3) are the lines of action lying on the planeP and
x̂i’s (for i = 4, 5, 6) are ones intersecting the point A (Fig. 4).

IV. DESIGN METHOD
A. DESIGN PARAMETERS
In this subsection, we consider the parameters that are used
to determine two orthocentric tetrahedra. For the simplicity
of design, the co-ordinate frame is chosen such that the origin
coincides with the center of mass and we let the intersecting
point A (0, 0, z1) lie on the z-axis and the plane P(z = z2) be
perpendicular to the z-axis (Fig. 8). Since G is the internal
division of AH and AG · GH = r2g , z1 and z2 should satisfy
the following relation:

z1z2 = −r2g (25)

As shown in Fig. 8, we select six points (B1,B2,C1,C2,D1,
and D2) on the plane P(z = z2) such that the two tetrahedra
(AB1C1D1 and AB2C2D2) are orthocentric. It can be shown

from (20) and (21) that even if one of the tetrahedra rotates
about the z-axis, the vibration modes still satisfy orthogonal-
ity with respect to the mass matrix. Thus, we can assume
that B1 and B2 lie on the zx- and yz-planes, respectively
(Fig. 9). Then, the co-ordinates of the points can be written
as B1 (x2, 0, z2) and B2 (0,Y2, z2). Since H is the orthocenter
of the triangles (B1C1D1 and B2C2D2), C1D1 and C2D2 are
respectively parallel to the y- and x-axes, and therefore their
co-ordinates can be written as C1 (x3, y3, z2), D1 (x3, y4, z2),
C2 (X3,Y3, z2) and D2 (X4,Y3, z2) as illustrated in Fig. 9.

Now, the vibration modes can be expressed in terms of
the co-ordinates of the seven points. The unit direction and
position vectors of X̂1 are given by s1 =

−→
B1A/

∥∥∥−→B1A∥∥∥ and

r1 =
−→
GA. Similarly, we can calculate the other si’s and ri’s

using (10) to obtain

X̂1 =
1∥∥∥−→B1A∥∥∥



0
x2z1
0
x2
0

−z1 + z2


,

X̂2 =
1∥∥∥−−→C1A
∥∥∥



−y3z1
x3z1
0
x3
y3

−z1 + z2


,

X̂3 =
1∥∥∥−−→D1A
∥∥∥



−y4z1
x3z1
0
x3
y3

−z1 + z2


,
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FIGURE 9. Six vertices on the plane P chosen to determine orthocentric tetrahedra.

X̂4 =
1∥∥∥−−−→C2D2

∥∥∥



0
z2 (X4 − X3)
−Y3 (X4 − X3)

X4 − X3
0
0


,

X̂5 =
1∥∥∥−−→D2B2
∥∥∥



−z2 (Y2 − Y3)
−z2X4
X4Y2
−X4

Y2 − Y3
0


,

X̂6 =
1∥∥∥−−→B2C2

∥∥∥



−z2 (Y3 − Y2)
z2X3
−X3Y2
X3

Y3 − Y2
0


. (26)

If we let H1 be the foot of perpendicular drawn from B1 to
C1D1 (Fig. 9(a)), GH1 and the common normal to C1D1 and
B1A are collinear. Thus, orthogonal relation

−−→
GH1·
−→
B1A = 0

gives:

−x2x3 = z22 − z1z2 = z22 + r
2
g , (27a)

and
−−→
HC1 ·

−−→
D1B1 = 0 (Fig. 9(a)) yields:

−y3y4 = x23 − x2x3. (27b)

In the similar manner, we can obtain the following relations
between X3, X4, Y2, and Y3:

−X3X4 = Y 2
3 − Y2Y3, (28a)

−Y2Y3 = z22 + r
2
g . (28b)

Because we have ten parameters (x2, x3, y3, y4, X3, X4,
Y2, Y3, z1, and z2) in five equations (26), (27a), (27b), (28a),

and (28b), there exist five free choices. In the design process,
we will use the following five dimensionless variables to
determine two orthocentric tetrahedra:

h = −
z2
z1
, u = −

x3
x2
, v = −

y4
y3
,

U = −
Y3
Y2
, V = −

X4
X3
. (29)

Now, the ten parameters can be rewritten in terms of the
dimensionless variables as

z1 = rg
1
√
h
, z2 = −rg

√
h,

x2 = rg

√
h+ 1
u

, x3 = −rg
√
(h+ 1) u,

y3 = rg

√
(h+ 1) (u+ 1)

v
,

y4 = −rg
√
(h+ 1) (u+ 1) v,

X3 = −rg

√
(h+ 1) (U + 1)

V
,

X4 = rg
√
(h+ 1) (U + 1)V ,

Y2 = rg

√
(h+ 1)
U

, Y3 = −rg
√
(h+ 1)U . (30)

B. DESIGN OF A DIRECT EXCITATION SYSTEM
If an oscillatory forceFext is externally applied to a rigid body
supported by springs and dampers, the equation of motion is
given by

MẌ + CẊ + KX = Fext , (31)

where C is the damping matrix. It is assumed that the damp-
ing matrix C can be diagonalized by the modal matrix S as
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follows:

STCS =

 c̃1 0
. . .

0 c̃6

 , (32)

where c̃i = X̂T
i CX̂ i. The applied force can be expressed as

Fext = f ŝf ei�t , (33)

where f is the intensity of the force and � is the driving
frequency. ŝf is the line of action of the force

ŝf =
{

sf
rf × sf

}
. (34)

FIGURE 10. Direct excitation system.

If we choose the co-ordinate frame such that the y-axis is
parallel to ŝf (Fig. 10), the position vector can be selected
as rf =

{
rx 0 rz

}T , and the line of action ŝf becomes:

ŝf =
{
0 1 0 −rz 0 rx

}T
. (35)

The time invariant form of (31) is written as(
K −�2M + j�C

)
X̂ = f ŝf . (36)

X̂ can be represented by the linear combination of the modes

X̂ = Sν, (37)

where ν =
{
ν1 · · · ν6

}T
∈ R6×1 is a constant vector.

Premultiplying (36) by ST and substituting (37) into (36)
yields: k̃1 −�

2m̃1 + j�c̃1 0
. . .

0 k̃6 −�2m̃6 + j�c̃6

 ν

=


f X̂T

1 ŝf
...

f X̂T
6 ŝf

 . (38)

Equation (38) gives:

νi =
f X̂T

i ŝf
k̃i −�2m̃i + j�c̃i

. (39)

Using (39), the frequency response is given by

X̂ =
∑6

i=1
νiX̂ i =

∑6

i=1

(
f X̂T

i ŝf
k̃i −�2m̃i + j�c̃i

)
X̂ i. (40)

If the damping is assumed to be light damping, i.e., ζi =
c̃i

2m̃iωi
< 0.05, the ith resonant frequency�i is almost the same

as the ith natural frequency ωi, i.e., �i ≈ ωi [19]. Thus,
the dominant term of (40) at the ith resonant frequency �i
can be expressed approximately as

X̂ (� = �i)≈
f X̂T

i ŝf
j�ic̃i

X̂ i =
f X̂T

i ŝf
j2m̃i�2

i ζi
X̂ i. (41)

In what follows, when the driving frequency matches the
ith resonant frequency, thework done by external force during
one cycle can be written as

Wi =

∫ 2π
�i

0
Re [Fext ] · Re

[
Ẋ
]
dt, (42)

where Re [Fext ] · Re
[
Ẋ
]
represents the instantaneous power.

From (41), Ẋ is given by

Ẋ = j�iX̂ iej�it =
f X̂T

i ŝf
2m̃i�iζi

X̂ iej�it . (43)

Thus, the work is given by

Wi =

∫ 2π
�i

0

f 2
(
X̂T
i ŝf

)2
2m̃i�iζi

cos2�itdt.

or,

Wi =
π f 2

(
X̂T
i ŝf

)2
2m̃i�2

i ζi
=

π f 2

2�2
i ζi
·

(
X̂T
i ŝf

)2
X̂T
i MX̂ i

. (44)

If we substitute (14), (26), and (35) into (44) and summarize
using (25), (27), and (28), we can obtain:

W1 = ε1 ·

{
rx
(
z22 + r

2
g

)
−

(
rzz2 + r2g

)
x2
}2

r2g
(
z22 + r

2
g

) (
x22 + z

2
2 + r

2
g

) ,

W2 = ε2 ·

{
rx
(
z22 + r

2
g

)
−

(
rzz2 + r2g

)
x3
}2

r2g
(
z22 + r

2
g

) (
x23 + y

2
3 + z

2
2 + r

2
g

) ,
W3 = ε3 ·

{
rx
(
z22 + r

2
g

)
−

(
rzz2 + r2g

)
x3
}2

r2g
(
z22 + r

2
g

) (
x23 + y

2
4 + z

2
2 + r

2
g

) ,
W4 = ε4·

Y 2
2 (z2 − rz)

2(
z22 + r

2
g

) (
Y 2
2 + z

2
2 + r

2
g

) ,
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W5 = ε5·
Y 2
3 (z2 − rz)

2(
z22 + r

2
g

) (
X2
3 + Y

2
3 + z

2
2 + r

2
g

) ,
W6 = ε6·

Y 2
3 (z2 − rz)

2(
z22 + r

2
g

) (
X2
4 + Y

2
3 + z

2
2 + r

2
g

) , (45)

where εi =
π f 2

2mζi�2
i
. Substituting (30) into (45) yields:

W1 = ε1 ·

{
px
√
(h+ 1) u−

(
1− pz

√
h
)}2

(h+ 1) (u+ 1)
, (46a)

W2 = ε2 ·
v
{(

1− pz
√
h
)
√
u+ px

√
h+ 1

}2
(h+ 1) (u+ 1) (v+ 1)

, (46b)

W3 = ε3 ·

{(
1− pz

√
h
)
√
u+ px

√
h+ 1

}2
(h+ 1) (u+ 1) (v+ 1)

, (46c)

W4 = ε4 ·

(√
h+ pz

)2
(h+ 1) (U + 1)

, (47a)

W5 = ε5 ·
UV

(√
h+ pz

)2
(h+ 1) (U + 1) (V + 1)

, (47b)

W6 = ε6 ·
U
(√

h+ pz
)2

(h+ 1) (U + 1) (V + 1)
, (47c)

where px = rx/rg and pz = rz/rg.
For the given m, �i’s, ζi’s, px , and pz, if the desired ratios

are prescribed as γi = Wi+1/W1 (i = 1, . . . , 5), we can get
the five equations, and thereby we may obtain the finite num-
ber of solutions of h, u, v,U , and V . From (46b), (46c), (47b),
and (47c), v and V are determined as

v =
γ1ζ2�

2
2

γ2ζ3�
2
3

(48)

and

V =
γ4ζ5�

2
5

γ5ζ6�
2
6

. (49)

From (47) and (49), we can determine U as

U =
γ4ζ5�

2
5 + γ5ζ6�

2
6

γ3ζ4�
2
4

. (50)

Using (46) and (48),
√
u can be expressed in terms of h as

√
u =
±R1

(
1− pz

√
h
)
− px
√
h+ 1(

1− pz
√
h
)
± R1px

√
h+ 1

, (51)

where R1 =

√
γ1ζ2�

2
2+γ2ζ3�

2
3

ζ1�
2
1

. Substituting (50) and (51) into

(46d) and (46a), respectively, and dividing (46d) by (46a)
yields the quadratic equation in terms of

√
h:(

p2x + p
2
z − R

2
2

) (√
h
)2
− 2pz

(
R22 + 1

)√
h

+p2x − R
2
2p

2
z + 1 = 0, (52)

where R2 =

√
ζ1�

2
1+γ1ζ2�

2
2+γ2ζ3�

2
3

γ3ζ4�
2
4+γ4ζ5�

2
5+γ5ζ6�

2
6
. For p2x + p2z − R22 6= 0,

the solutions of (52) are given by

√
h =

pz
(
R22 + 1

)
±
√
D

p2x + p2z − R
2
2

, (53)

where D = −
(
p2x + p

2
z + 1

) (
p2x − R

2
2p

2
z − R

2
2

)
. If p2x + p

2
z −

R22 = 0,
√
h becomes:

√
h =

1− p2z
2pz

. (54)

Close observations on (52), (53), and (54) reveal the fol-
lowing findings:

1) When p2x + p
2
z −R

2
2 6= 0, (52) has a real root if and only

if (px , pz) ∈
{
(px , pz) |

p2x
R22
− p2z≤ 1

}
.

2) For (px , pz) such that p2x
R22
− p2z≤ 1 and p2x + p2z −

R22 6= 0, if the sum of the roots of (52) is posi-
tive or their product is negative, i.e., (px , pz) ∈{
(px , pz) |

2pz
(
R22+1

)
p2x+p2z−R

2
2
> 0 or

p2x−R
2
2p

2
z+1

p2x+p2z−R
2
2
< 0

}
, then there

exists at least one solution such that
√
h> 0.

3) When p2x+p
2
z−R

2
2 = 0, pz ∈ {pz|pz< −1 or 0 <pz< 1}

since
√
h> 0.

From these findings, we can obtain the feasible region of the
points (px , pz) (Fig. 11). Therefore, it can be said that the exis-
tence of a positive root of (52) depends on R2 and the position
vector rf =

{
rx 0 rz

}T .

FIGURE 11. Feasible region (red region) of the points
(
px,pz

)
such that

there exists a positive solution of
√
h.

Finally, from (51) and (53) (or (54)), we can acquire the
solutions of

√
u. Theoretically, the maximum number of

√
u is four, if there is a positive value of

√
u, we choose

one of them, then two tetrahedral (or modal matrix S)
can be determined for a vibrating system to satisfy the
requirement.
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FIGURE 12. Base excitation system.

C. DESIGN OF BASE EXCITATION SYSTEM
The equation of motion for a base-excited system can be
written as (Fig. 12)

M Z̈ + CŻ + KZ = −MẌ0, (55)

where X0 is a small displacement of foundation and
Z(= X − X0) is the relative displacement of the rigid body
with respect to the foundation. The time invariant form of (55)
is (

−�2M + j�C + K
)
Ẑ = �2MX̂0

(
= F̂ext

)
. (56)

If the base is harmonically rotated about the axis, then X̂0 can
be written in terms of a line vector

X̂0 = φ0

{
r0 × s0
s0

}
,

where φ0 is the amplitude of oscillatory rotation. The external
force F̂ext in (56) can be expressed in terms of a line of
action ŝf

F̂ext = fB̂sf = mr0φ0�2
{

s′0
r′0×s

′

0

}
, (57)

where s′0 =
r0×s0
r0

, r′0 = −
(
rg
r0

)2
r0, r0 = ‖r0‖, and r0⊥s0.

Although the intensity of the force fB
(
= mr0φ0�2

)
seems to

be proportional to�2, we consider fB to be constant through-
out the driving frequency since the input acceleration due to
base excitation is assumed to stay the same in a practical
design of a base excitation system.

If the co-ordinate frame is selected such that the rotation
axis of the foundation lies on the zx-plane, s′0 and r′0 can
be given by s′0 =

{
0 1 0

}T and r′0 =
{
r ′0x 0 r ′0z

}T . The
external force becomes parallel to the y-axis

F̂ext = fB
{
0 1 0 −r ′0z 0 r ′0x

}T
. (58)

The energy produced by the relative vibration caused by base
excitation at � = �i during one cycle is

Wi =

∫ 2π
�i

0
Re [Fext ] · Re

[
Ż
]
dt,

where

Ż =
f X̂T

i ŝf
2m̃i�iζi

X̂ iej�it .

Accordingly, Wi can be obtained by substituting f = fB,
px = r ′0x/rg, and pz = r ′0z/rg into (46), and thus we
can directly use the aforementioned solutions of the direct
excitation system to obtain two orthocentric tetrahedra such
that a base excitation system has the prespecified ratio of
energy peaks.

If the vibration axis X̂0 goes to infinity, the input displace-
ment of base excitation becomes a repetitive translational
motion

X̂0 = δ0
{
0 1 0 0 0 0

}T
.

where δ0 is the amplitude of translational vibration. In this
case, the direction of translation becomes parallel to the
y-axis of the co-ordinate frame. The external force in (58)
becomes:

F̂ext = fB
{
0 1 0 0 0 0

}T
,

where fB = mδ0�2. Since px = pz = 0 in (51) and (52),
u and h are determined as

u =
γ1ζ2�

2
2 + γ2ζ3�

2
3

ζ1�
2
1

(59)

and

h =
γ3ζ4�

2
4 + γ4ζ5�

2
5 + γ5ζ6�

2
6

ζ1�
2
1 + γ1ζ2�

2
2 + γ2ζ3�

2
3

. (60)

Since v, V , andU are independent of px and pz, they are given

by v =
γ1ζ2�

2
2

γ2ζ3�
2
3
, V =

γ4ζ5�
2
5

γ5ζ6�
2
6
, and U =

γ4ζ5�
2
5+γ5ζ6�

2
6

γ3ζ4�
2
4

.

V. NUMERICAL EXAMPLES
In this section, we present a design example of a vibration
energy harvester to demonstrate how to utilize the proposed
design method. It will be shown that the method can be
used to widen the valid working bandwidth within a target
frequency range.

In order to illustrate the design process and advantages
of the proposed design method, four spatial vibration sys-
tems under base excitation (energy harvesters) are designed.
We assume 1) that mass properties in all the systems are
given by m = 0.04 kg and I = 1.6 × 10−6 kg·m2,
2) that the base excitation is a repetitive translational motion
such that fB of 1.5 N is constant throughout the driving fre-
quency, and 3) that all the modal damping ratios are identical,
i.e., ζ1 = ζ2 = · · · = ζ6 = ζ . The reference frame
G − xyz is chosen such that its origin is positioned at the
mass center and the y-axis is parallel to the translational
motion of base (Fig. 13). The design requirement is that the
range of the bandwidth is from 50 Hz to 75 Hz. To achieve
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FIGURE 13. Vibration system embedded on the foundation that vibrates
translationally.

this, we specify the desired resonance frequencies as
follows:

�1 = 50 Hz, �2 = 60 Hz, �3 = 70 Hz,

�4 = 55 Hz,�5 = 65 Hz, and �6 = 75 Hz. (61)

For each system, we set the work ratios as follows:

1) System1 : 1 :γ1:γ2:γ3:γ4:γ5 = 1 : 1 : 1 : 1 : 1 : 1

2) System2 : 1 :γ1:γ2:γ3:γ4:γ5 = 1 : 1 : 0.5 : 1 : 0.5 : 0.5

3) System3 : 1 :γ1:γ2:γ3:γ4:γ5 = 1 : 1 : 1 : 2 : 2 : 2

4) System4 : 1 :γ1:γ2:γ3:γ4:γ5

= 1 : 1.8 : 2.6 : 1.4 : 2.2 : 3. (62)

The frequency responses will be plotted for all systems
(Fig. 15), but the design process is described in detail for only
the case of System 1.

On the assumption of the identical modal damping
ratio, substituting (61) and (62) into (47), (49), (50),
(59), and (60), the dimensionless variables are determined
as

h = 1.1705, u = 3.400, v = 0.7347,

U = 3.2562, V = 0.7511. (63)

Using (30), the co-ordinates x2, x3, y3, y4, X3, X4, Y2, Y3, z1,
and z2 can be computed as

x2 = 0.0051, x3 = −0.0172,

y3 = 0.0228, y4 = −0.0168,

X3 = −0.0222, X4 = 0.0167,

Y2 = 0.0052, Y3 = −0.0168,

z1 = 0.0058, and z2 = −0.0068 (m) (64)

The two orthocentric tetrahedra are shown in Fig. 14. The
vibration modes X̂ i’s are calculated from (26) as

X̂1 =


0

−0.0022
0

−0.3700
0

0.9290

 , X̂2 =


0.0043
0.0032

0
0.5499
−0.7298
0.4061

 ,

X̂3 =


−0.0036
0.0037

0
0.6329
0.6172
0.4674

 ,

X̂4 =


0

−0.0068
0.0168

1
0
0

 , X̂5 =


0.0055
0.0041
0.0031
−0.6041
0.7969

0

 ,

X̂6 =


−0.0048
0.0049
0.0037
−0.7103
−0.7038

0

 ,

and the lines of action x̂i’s from (16) as

x̂1 =


0
−1
0

−0.0068
0

0.0172

 , x̂2 =


0.7987
0.6018

0
0.0041
−0.0055
0.0030

 ,

x̂3 =


−0.6981
0.7160

0
0.0049
0.0048
0.0036

 ,

x̂4 =


0

−0.3769
0.9262
0.0022

0
0

 , x̂5 =


0.7251
0.5497
0.4148
−0.0032
0.0042

0

 ,

x̂6 =


−0.6203
0.6261
0.4725
−0.0037
−0.0036

0

 .
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FIGURE 14. (a), (b) Synthesized orthocentric tetrahedra, (c) and (d) six vertices on the plane P.

Finally, the stiffness matrix K can be computed from (13)
as

K =


7129.1 −926.9 −389.5

6737.3 983.0
symm. 5518.7

symm.

0.2061 3.3599 −2.0760
−3.1145 −0.2061 5.2541
−5.7468 −2.2768 0
0.2664 0.0369 0.0360

0.2818 0.0142
symm. 0.1845

 .

Using (24), the stiffness matrix can be separated into the sum
of K1 and K2

K1 =


4109.3 −516.1 −389.5

3878.7 983.0
symm. 5518.7

symm.

3.0171 24.0026 0
−22.6745 −3.0171 0
−5.7468 −2.2768 0
0.1326 0.0176 0

0.1404 0
symm. 0

 ,
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FIGURE 15. Frequency responses for various work ratios and damping ratios.

K2 =


3019.8 −410.8 0

2858.7 0
symm. 0

symm.

−2.8110 −20.6626 −2.0760
19.5600 2.8110 5.2541

0 0 0
0.1338 0.0192 0.0360

0.1414 0.0142
symm. 0.1845

 .

Since tr (K11) = tr (K21) = 0, K1 and K2
can be realized by means of parallel connection of
line springs. Using the realization technique proposed

in [20], we can find one feasible set of six line springs.
The lines of action of the springs are determined
as

α̂1 =


0

−0.6428
0.7660
0.0038

0
0

 , α̂2 =


−0.8467
0.3629
0.3891
−0.0021
−0.0049

0

 ,

α̂3 =


0.3449
0.5902
0.7299
−0.0035
0.0020

0

 ,
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TABLE 1. Simulated values of energy peaks and work ratios for each damping ratio of system 1.

FIGURE 16. Frequency responses for (a) the specified work ratio of the 6-DOF spatial system, (b) arbitrary work ratio of the 6-DOF spatial system, and
(c) the specified work ratio of the 3-DOF planar system.

β̂1 =


−0.3420
0.9397

0
0.0064
0.0023
−0.0051

 , β̂2 =


0.8318
−0.5550

0
−0.0038
−0.0057
−0.0073

 ,

β̂3 =


0.8074
0.5900

0
0.0040
−0.0055
0.0040

 .

and the spring constants are found:

kα1 = 3.6943, kα2 = 4.9203, kα3 = 4.8921,

kβ1 = 1.6688, kβ2 = 2.0039, kβ3 = 2.2057(×103 N/m).

The works generated by the base excitation are simulated
for different work ratios and damping ratios (Fig. 15). The
simulated values of energy peaks and their work ratios for
each damping ratio of System 1 are listed in Table 1.
Figure 16 illustrates the frequency responses of three

different systems. Figure 16(a) depicts the frequency
response of the spatial vibration system with the work ratio

of 1 : 1 : 1 : 1 : 1 : 1 at the six target frequencies of (61).
Figure 16(b) illustrates the frequency response of a spatial
system designed for the target frequencies of (61) with-
out consideration for work ratio. Figure 16(c) shows the
frequency response of a planar system with work ratio of
1 : 1 : 1 at three target frequencies (50 Hz, 62.5 Hz, and
75 Hz). The design method of the planar system is explained
in detail in [1]. For the three systems, the mass properties
are identical and the identical damping ratio of ζ = 0.045 is
used.
For the effective bandwidths with the energy more than

0.003 J, Fig. 16 shows that the bandwidth illustrated
in Fig. 16(a) is 57.7 % and 43.2 % wider than those shown
in Fig. 16(b) and (c), respectively. In addition, the produced
works at the valleys of the spatial system designed for spec-
ified work ratio are significantly greater than those of the
other systems. Considering that energy produced by a typical
vibration energy harvester is significantly reduced due to a
slight deviation of the driving frequency from resonant fre-
quencies, the high energy productions at the valleys are useful
for designing a vibration energy harvester which requires a
broad bandwidth. Therefore, the proposed method can be
utilized to design a vibration energy harvester with a broad
bandwidth.
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VI. CONCLUSION
A novel method to design a spatial vibration system for pre-
scribed work ratios at six target resonant frequencies is pre-
sented. This research makes two major contributions. First,
the synthesis method of a spatial vibration system with a
realizable stiffness matrix is developed through geometrical
investigation into vibration modes. It is shown that six vibra-
tion axes and six lines of action obtained by transforming the
vibration modes by the mass matrix form two orthocentric
tetrahedra that share orthocenter coincident with mass center.
It is also shown that a realizable stiffness matrix is synthe-
sized by using the orthocentric tetrahedra. Second, the analyt-
ical representations for vibration energy produced by a direct
(and base) excitation are derived in terms of the vertices of the
tetrahedra. These expressions can be used to find vibration
modes that satisfy the requirements for the specified work
ratios aswell as six target resonant frequencies. In conclusion,
the systematic design methods are developed to synthesize a
spatial system with specific work ratio as well as six target
resonant frequencies.
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