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ABSTRACT In recent times, several metaheuristic algorithms have been proposed for solving real world
optimization problems. In this paper, a new metaheuristic algorithm, called the Border Collie Optimization
is introduced. The algorithm is developed by mimicking the sheep herding styles of Border Collie dogs.
The Border Collie’s unique herding style from the front as well as from the sides is adopted successfully
in this paper. In this algorithm, the entire population is divided into two parts viz., dogs and sheep. This is
done to equally focus on both exploration and exploitation of the search space. The Border Collie utilizes a
predatory move called eyeing. This technique of the dogs is utilized to prevent the algorithm from getting
stuck into local optima. A sensitivity analysis of the proposed algorithm has been carried out using the
Sobol’s sensitivity indices with the Sobol g-function for tuning of parameters. The proposed algorithm
is applied on thirty-five benchmark functions. The proposed algorithm provides very competitive results,
when compared with seven state-of-the-art algorithms like Ant Colony optimization, Differential algorithm,
Genetic algorithm, Grey-wolf optimizer, Harris Hawk optimization, Particle Swarm optimization andWhale
optimization algorithm. The performance of the proposed algorithm is analytically and visually tested by
different methods to judge its supremacy. Finally, the statistical significance of the proposed algorithm is
established by comparing it with other algorithms by employing Kruskal-Wallis test and Friedman test.

INDEX TERMS Benchmark test functions, Border Collie optimization, Friedman test, Kruskal-Wallis test,
metaheuristic, optimization, swarm intelligence.

I. INTRODUCTION
Optimization is the process of finding the most effective solu-
tion to a problem. Due to its versatile scope of application, it is
very difficult to provide an exact definition. Mathematically,
optimization can be defined as finding a maxima or minima
of a real function [1]. In terms of computing and engineering,
optimization can be defined as a system which maximizes the
objectives by utilizing fewer resources. Optimization algo-
rithms can be classified into different groups.

Based on the number of objectives, optimization problems
can be of two types viz., single objective and multi-objective
problems [2]. In real world scenario, most of the problems are
multi-objective.

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

Based on the nature of algorithms, optimization algorithms
can be classified as deterministic, stochastic and hybrid
algorithms. Deterministic algorithms are those which always
follow the same steps and produce the same results for a
particular problem. Stochastic algorithms on the other hand
are random in nature and may produce different results every
time. Hybrid algorithms are a combination of deterministic
and stochastic algorithms.

Metaheuristic algorithm are special types of stochas-
tic algorithms. They can produce near optimal solutions
in comparatively lesser time. Simplicity and efficiency of
the algorithms have made them extremely popular among
researchers. They are mostly derived from physical phe-
nomena or from behaviors of different living beings.
The behavioral study of ants, birds, fishes, wolves are
few well known examples which has inspired algorithms
like Ant Colony Optimization (ACO) [3], Particle Swarm
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FIGURE 1. Types of nature-inspired metaheuristic algorithms [9].

TABLE 1. List of evolutionary algorithms.

Optimization (PSO) [4] and Grey Wolf Optimization
(GWO) [5] among others. Metaheuristic algorithms are
extremely flexible in nature [5]. The same algorithm can be
efficiently used for different purposes such as, thresholding
of images [6], classification of satellite images [7] as well as
optimizing benchmark functions [8], etc. Metaheuristics also
have an excellent exploitation capability and local optima
avoidance mechanism, thus making them a popular choice
for solving optimization problems. Though they are efficient
algorithms, yet it has been proved that no metaheuristic is
capable of solving all optimization problems.

Metaheuristic algorithms are mostly inspired by natural
phenomena. They can be classified based on their sources [9],
as depicted in Fig. 1.

1) Evolutionary Algorithms - Biological evolution is a
gradual process of change and improvement, for the
purpose of producing better offsprings. The meta-
heuristic algorithms based on thismechanism are called
evolutionary algorithms. They use genetic operators
like mutation, natural selection and crossover to pro-
duce better evolved generations.
In Table 1, a timeline of few evolutionary algorithms is
presented.

2) Physics based Algorithms - These algorithms are
inspired from physical phenomena. Optimization is
done based on physical laws like gravitational force,
magnetic force and others.

TABLE 2. List of physics based algorithms.

TABLE 3. List of human based algorithms.

In Table 2, few widely used physics based metaheuris-
tics are enlisted.

3) Human based Algorithms - Metaheuristic algorithms
inspired from human behavior fall in this category.
The algorithms are based on the physical activities of
humans like walking, talking and others, as well as
non-physical activities like thinking.
Few of these optimization algorithms are presented
in Table 3.

4) Swarm based Algorithms - Swarm basedmetaheuristics
are inspired by the social behavior of insects or animals.
In a swarm, each individual has its own intelligence
and behavior. The combined behavior of the individuals
makes the swarm a powerful tool to solve complex
problems.
In Table 4, few popular swarm based algorithms are
presented. Swarm based metaheuristics are capable of
achieving more optimal results as compared to other
metaheuristics. They are easy to implement and require
lesser number of parameters. Complex operators like
mutation, elitism and crossover used in the evolution-
ary algorithms are not required to implement swarms.
They often preserve the search space over the iterations
and utilize memory to save the best solutions.

In Table 5, a comparative study of few well known meta-
heuristic algorithms are presented. Every algorithm has its
own merits and demerits. Hence one algorithm may perform
very well for any particular problem and very poorly for oth-
ers. To overcome these limitations, three kinds of approaches
are adopted. These are (i) improving the existing algorithms,
(ii) hybridizing the existing algorithms and (iii) introducing
new metaheuristic algorithms.

The improved algorithms are designed using the basic
principles of some algorithms, which have already been
introduced in the literature. These are basically the improved
versions of the said algorithms. In [65], a family genetic
algorithm has been proposed, which outperformed the
basic GA, with regards to convergence speed. An improved
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TABLE 4. List of swarm based algorithms.

DE algorithm with modification in chromosome represen-
tation has been developed by Das et al. in [66], called the
automatic clustering DE (ACDE). The ACDE has a faster
convergence speed than the original DE algorithm.
An improved version of the HS algorithm has been con-
ceptualized in [67] by Portilla-Flores et al. This algo-
rithm increased the exploration and exploitation of the
basic HS [27] algorithm, with decreased computational cost.
In [68], Liu and Ma developed an improved GSA algo-
rithm based on free search differential evolution, which
enhanced the exploitation capability of the GSA algorithm.
Wang et al. [69], improved the exploitation capability of the
sine cosine algorithm using an adaptive probability selection
technique. In [70], an improved version of the TLBO algo-
rithm has been proposed to enhance the searching ability and
accuracy of the basic TLBO [37] algorithm. This has been
achieved by introducing an S-shaped group learning phase
instead of the random learning phase.

A Multi-Population Co-Evolution Ant Colony Optimiza-
tion (ICMPACO) has been developed by Deng et al.
in [71]. This algorithm increased the population diver-
sity of the basic ACO [3] algorithm. In addition, it also
improved the convergence speed of the proposed algorithm.
An improved PSO, called the heterogeneous comprehensive
learning PSO (HCLPSO) has been proposed in [72]. The
exploration and exploitation capabilities of the PSO have also
been increased by employing comprehensive learning mech-
anisms. Zhang and Liu introduced a discrete and improved

artificial bee colony (DiABC) algorithm, with enhanced con-
vergence speed in [73]. CS [41] algorithm has a low search
efficiency since it uses a single search strategy in the pop-
ulation. Gao et al. [74] developed a multi-strategy adaptive
cuckoo algorithm (MSACS) to overcome the search effi-
ciency problem. Five different search strategies have been
used and compared with previous strategies and control
parameters, to perform the optimization process in MSACS.
The GWO proposed by Mirjalili et al. [5] performed poorly
in terms of exploration of the search space. To overcome
this limitation, a nonlinear control parameter strategy has
been introduced by Long et al. [75], to balance the explo-
ration and exploitation capabilities. In [76], an enhanced
GWO (EGWO) is proposed for diversifying the popula-
tion. The introduction of chaotic theory in GWO efficiently
increases the balancing between exploration and exploitation
of the search space. A lévy flight based variant of WOA
has been proposed in [77]. The use of lévy flight based
trajectory helped to increase the diversity of the population,
restrained it from premature convergence and enhanced the
capability of escaping from getting stuck in local optima.
Han et al. [78] introduced a weight coefficient along with a
guidance position and a spiral search mechanism, in CSA.
These helped to enhance the balancing between the explo-
ration and exploitation of the search space. By introducing
the gravity search operator in [79], the global exploration of
the GOA has been improved.

The Krill Herd algorithm [46] has a slow convergence
speed and gets stuck in local optima. In [80], three
one-dimensional chaotic maps viz., Circle, Sine and Tent
are introduced in the Krill Herd algorithm to overcome
the limitations. In [81], the fruit fly optimization algorithm
is applied to a Support Vector Machine (SVM) for inner
parameter optimization. The fruit fly optimization algorithm
effectively adjusts the SVM parameters, thus enhancing the
generalization capability of the SVM classifier in medical
data classification. Wang et al. [82] proposed a chaotic
moth flame optimization algorithm by introducing chaotic
behavior in two steps. Chaotic operation was introduced
during population initialization for getting a diverse popu-
lation. A chaotic disturbance mechanism was also adopted
for rescuing the algorithm from falling into local optima.
The chaotic moth flame algorithm along with kernel extreme
learning machine strategy provided a better classification
mechanism and reduced feature subsets in the field ofmedical
diagnosis. Xu et al. [83] introduced mutation operators like
Gaussian mutation, Cauchy mutation, Lévy mutation or their
combination in the moth flame algorithm. The exploration
and exploitation capabilities of the moth flame algorithm
are greatly enhanced by applying the mutation operators.
The Bacterial Foraging Optimization algorithm [38] has sev-
eral drawbacks like slow convergence speed, getting stuck
into local optima and fixed step lengths. To overcome
these limitations, an enhanced Bacterial Foraging Optimiza-
tion algorithm with gaussian mutation, chaotic local search
and chaotic chemotaxis step length has been proposed by

VOLUME 8, 2020 109179



T. Dutta et al.: Border Collie Optimization

TABLE 5. Merits and demerits of popular metaheuristic algorithms.

Chen et al. [84]. HHO [58] is a relatively new metaheuris-
tic algorithm proposed in 2019. Menesy et al. [85] applied
ten chaotic functions on the HHO algorithm, to enhance
its searching ability and reduce the probability from getting
stuck into local optima.

Hybridization of metaheuristic algorithms has been widely
adopted by researchers. These kinds of algorithms pro-
vide better results by improvising the inherent advan-
tages of the parent algorithms. In [86], a hybrid GA and
PSO algorithm has been developed to solve supply chain

distribution problem. Ouyang et al. [87] combined the
Teaching-learning-based algorithm with the HS algorithm to
enhance the global search capability and local exploitation
capability of the TLBO. In [88], the exploitation capability
of simulated annealing [26] has been combined with the
exploration capability of WOA. In [89], fuzzy logic has been
used to combine the gravitational search algorithm with a
local search technique for function optimization. In [90],
Bao et al. developed a hybrid algorithm by applying HHO
and DE in parallel. The proposed algorithm has been found
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to be a powerful tool for thresholding of color images. In [91],
a hybrid algorithm of GWO and CSA has been proposed for
function optimization and feature selection. The firefly algo-
rithm has been combined with PSO for automatic clustering
in [92].

From the above discussions, we can infer that several
methods have been developed so far to minimize the demerits
of the existing metaheuristic algorithms. In the literature,
numerous algorithms have been successfully designed to
handle certain problems. However, no single metaheuristic
algorithm has been found to be capable of addressing all the
optimization problems successfully.Moreover, improved and
hybridized algorithms may suffer from added computational
burden. Our aim is to develop a metaheuristic which can
overcome this limitation.

In [93], Wolpert and Macready stated that when an algo-
rithm produces effective results for a certain class of prob-
lems, it may not perform well for other kinds of problems.
Though a lot of researchers are rigorously working on this
from past few decades, no such metaheuristic has yet been
introduced so far that can efficiently handle all sorts of
optimization problems. This is called the ‘‘no free lunch’’
theorem [93]. So it can be inferred that new optimization
algorithms need to be developed that outperform the existing
algorithms, for dealing with certain problems.

This is the main inspiration behind this work to propose
a new swarm intelligent metaheuristic algorithm. In this
paper, we have proposed a metaheuristic algorithm, called the
Border Collie Optimization (BCO) by mimicking the herding
behavior of the Border Collie dogs.

Border Collies are affectionate, smart, and energetic breed
of dogs [94]. They are extremely intelligent, athletic and can
be easily trained. These dogs are usually healthy and active,
having a normal life span of about 12 to 15 years. It can be
said that, watching a border collie herd sheep is like watching
amaster craftsman at work. Herding is an inherent ability they
are born with. Even when a puppy is introduced to the herd
for the first time, they demonstrate immense control over the
sheep. A representative image of a Border Collie dog is given
in Fig. 2.

The intelligent and unique approach of these dogs in herd-
ing the sheep has inspired us to introduce a novel metaheuris-
tic, called BCO algorithm based on their herding behavior.
The main features of the proposed algorithm are as follows.
• New Swarm based algorithm on Border Collie dogs -
Imitating the herding behavior of Border Collie dogs,
a new swarm based algorithm has been proposed. To the
best of our knowledge, no metaheuristic has been devel-
oped so far by mimicking the intelligent behavior of
Border Collie dogs.

• Exploration and Exploitation mechanism - The pro-
posed algorithm is designed in such a way that, both
exploration and exploitation of the search space can
be achieved using the same equations. Proper tuning
between exploration and exploitation has a great influ-
ence in finding optimal results for metaheuristics. In the

FIGURE 2. A Border Collie dog [95].

proposed algorithm, these two parameters have been
efficiently balanced to get optimum results.

• Feedback implementation - Negative and positive feed-
backs are two inherent parts of a swarm. Three different
herding techniques of the Border Collie dogs are used to
achieve the effective feedbacks, that in turn help to find
effective results. Negative feedback is achieved by intro-
ducing the eyeing mechanism of the Border Collie dogs.
Positive feedback is attained by means of gathering and
stalking behavior of the dogs.

• Ability to recover from local optima - The eyeing mech-
anism introduced in the BCO algorithm also serves as an
important tool to rescue it from getting stuck into local
optima.

• Less Parameters - The algorithm is designed by exploit-
ing mainly two independent parameters.

• Easy Implementation - The algorithm is easy to imple-
ment and keeps track of the best solution. These are
inherent properties of swarm intelligence.

The rest of the paper is organized in the following manner.
Section II presents the proposed work comprising biologi-
cal inspiration, mathematical modeling and the algorithm in
details. In Section III, the experimental results and analysis
are presented. Section IV draws the conclusion of the paper
and provides an insight into the future directions of research.

II. PROPOSED METHODOLOGY
In this section, the biological inspiration of the proposed
method is discussed. Thereafter, a mathematical model is
drawn and the flow of the algorithm is discussed in details.

A. BIOLOGICAL INSPIRATION
Canis lupus familiaris or the Border Collie is an amazing
breed of dog. They have been ranked as the number one dog,
in terms of smartness by Stanley Coren in his book ‘‘The
Intelligence of Dogs’’ [96]. He also pointed out that they
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have the ability to obey 95% of human commands. In [97],
a study carried out on a nine year old Border Collie, named
Rico, established that he could understand around 200 human
commands and words. In [98], another Border Collie called
Chaser, could understand nouns similar to a human child.

Border Collies, in general are referred to as highly ener-
getic, medium sized, herding dogs. They are a cross between
old Roman dogs and Viking spitzes, according to the Ameri-
can Kennel Club [94]. Both the breeds had been brought to
Britain during invasions.

All Border Collies found today can be traced back to a
common ancestor, a dog called the Old Hemp [99]. He was
born to a black sheepdog named Meg and a tri-colored herd-
ing dog named Roy in September 1893, in West Woodburn,
Northumberland. He was different in physical appearance
than the present day Border Collie dogs. He was a tri-colored
dog with very less fur. His owner and breeder, Adam Telfer
was impressed with his intelligence and herding abilities.
He was highly sought after as a stud dog and is said to
have as many as 200 pups. He is the foundation sire of the
Border Collie breed and is enlisted in the stud book of the
International Sheepdog Society.

The origin of the word Collie is believed to have emanated
from the Celtic language, which means useful. Another origin
of the word is traced back to the colley sheep in the Scottish
Highlands. They are noted for their black markings, and
colley is an old Anglo-Saxon word for the color black. Hence
it is believed that, the Border Collie was named based on the
black markings on its coat.

In 1880’s and 1890’s, agriculture based countries like
Australia, New Zealand, the United States, Canada, and
Argentina exported these expert dogs from the British Isles.
A descendant of Old Hemp was gifted to Queen Victoria by
John Elliot, which was bred in Scotland.

They usually have double coats with straight furs. They are
found in different colors viz., black with or without white,
chocolate, blue, gold, tri-colors, sable, merle and others.
Nowadays, they are bred more for companionship and can
be very good pets. They are also excellent watchdogs.

Border Collies are the best herding dogs of all time and
are extremely workaholic. Their ability to judge a situation
and to take adaptive decisions has inspired us to develop a
metaheuristic algorithm based on their behavior.

1) THE HERDING STYLE OF BORDER COLLIES
These brilliant dogs follow their master’s command ardently,
but what makes them more appealing is that, they can think
and adapt themselves dynamically.

Border Collies adopt a different approach for herding.
Instead of approaching from back, they herd sheep from
sides and front. They mainly follow three herding techniques,
as demonstrated in Fig. 3. The stalking and eyeing behaviors
of real Border Collie dogs are presented in Fig. 4.

• Gathering: Border Collies control the sheep from sides
and front. They tend to gather them and direct them
towards the farm. This is known as gathering.

FIGURE 3. Herding techniques of Border Collie.

FIGURE 4. Different herding behaviors of Border Collies.

• Stalking: Border Collies adopt fewwolf-like movements
when it comes to controlling the sheep. They crouch
down lowering their heads, place their hindquarters high
and put their tails down. This behavior is called stalking.
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• Eyeing: Border Collies mimic the victim selection
behavior of wolves. This is called giving an eye or
eyeing. When sheep goes astray, these intelligent dogs
stare them in the eye. This exerts psychological pressure
on the flock to move in the correct direction.

B. MATHEMATICAL MODEL OF HERDING TECHNIQUES
In Subsection II-A, the main herding techniques of Border
Collie have been explained. A mathematical model of the
herding technique is presented in this subsection, along with
an explanation of the algorithm.

In Border Collie Optimization, a population of three dogs
and sheep is considered. In real life scenario, a single dog
alone is sufficient to control the herd. However, as the search
space can be vast for different optimization problems, hence
three dogs are considered. A group consisting of three dogs
and sheep is visualized while initiating the algorithm. The
sheep go out for grazing in different directions and the dogs
are responsible for bringing them back to the farm.

The locations of dogs and sheep are initializedwith random
variables. The dogs - lead dog, left dog and right dog are
named so on the basis of their positions. The lead dog controls
the herd from the front. The individual with best fitness (fitf )
is hence designated as the lead dog or dog in front of the herd,
in every iteration. They are responsible for mainly gathering.

The individuals with the 2nd and 3rd best fitness values are
chosen as left and right dogs. A tournament selection method
is applied to choose the left and right dog. These dogs mainly
participate in the stalking and eyeing of the herd. Their fitness
values are referred to as (fitle) and (fitri), respectively. The
remaining population consists of sheep, whose fitness values
are less than those of the dogs. The fitness of the sheep is
referred to as (fits).
The optimum solution is the dogs leading the sheep to the

farm. They travel from one point in the field to the farm.
The distance covered and direction of the sheep and dogs are
controlled by velocity, acceleration and time.
• Velocity of Dogs: The velocity of all the three dogs,
at time (t+1) is calculated using the following equations.

Vf (t + 1) =
√
Vf (t)2 + 2× Accf (t)× Popf (t) (1)

Vri(t + 1) =
√
Vri(t)2 + 2× Accri(t)× Popri(t) (2)

Vle(t + 1) =
√
Vle(t)2 + 2× Accle(t)× Pople(t) (3)

Equations (1), (2) and (3), Vf (t + 1), Vri(t + 1) and
Vle(t + 1) stand for velocity at time (t + 1) for lead,
right and left dogs, respectively. Similarly, Vf (t), Vri(t)
and Vle(t) stand for velocity at time (t) for lead, right
and left dogs. Accf (t), Accri(t) and Accle(t) stand for
acceleration at time (t) for the lead dog, right dog and left
dog, respectively. Popf (t), Popri(t) and Pople(t) are the
positions of the lead dog, right dog and left dog at time
(t), respectively. eqnarray (1) updates the velocity of the
lead dog. Equations (2) and (3) update the velocities of
the right and left dogs, respectively.

• Velocity of Sheep: The velocity of the sheep is updated
using the three herding techniques.
– Gathering: The sheep which are nearer to the lead

dog, move in the direction of the lead dog. Hence,
these sheep are only gathered. They are chosen
based on their fitness values.

Dg = (fitf − fits)− ((
fitle + fitri

2
)− fits) (4)

In (4), if the value of Dg is positive, it indicates that
the sheep is nearer to the lead dog. In this case the
velocity of the sheep is updated using the following
equation.

Vsg(t+1)=
√
Vf (t + 1)2+2× Accf (t)× Popsg(t)

(5)

In (5), the velocity of the sheep, Vsg is directly
influenced by the velocity of the lead dog at time
(t + 1) and acceleration of the lead dog, at time (t).
Popsg is the present location of the sheep to be
gathered.

– Stalking: The sheep which are nearer to the left
and right dogs, need to be stalked from the sides
to keep them on track. These sheep are those whose
Dg values are found to be negative. The velocity of
these sheep are more influenced by the velocities
of the left and right dogs. The equations for the
velocity updation of the stalked sheep are presented
below.

vri=
√
(Vri(t+1)tan(θ1))2+2×Accri(t)×Popri(t)

(6)

vle=
√
(Vle(t+1)tan(θ2))2+2×Accle(t)×Pople(t)

(7)

Vss(t + 1) =
vle + vri

2
(8)

In (8), the velocity of the stalked sheep, Vss depends
on the velocities of the left and right dogs. As the
dogs guide the sheep from the sides, hence the
tangent of the random traversing angles, θ1 and θ2
are taken. The value of θ1 varies from (1 − 89)
degrees and that of θ2 varies from (91 − 179)
degrees. The values of θ1 and θ2 are chosen ran-
domly.

– Eyeing: The sheep which are totally astray are the
ones which need eyeing. Eyeing is implemented,
when in consecutive iterations, the fitness of an
individual does not improve. In this case, the dog
with the least fitness is assumed to go behind
the sheep and give them an eye. Hence they are
assumed to undergo retardation, which can be pre-
sented by the below mentioned equations.

Vse(t+1)=
√
Vle(t + 1)2−2×Accle(t)×Pople(t)

(9)
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Vse(t+1)=
√
Vri(t+1)2−2×Accri(t)×Popse(t)

(10)

In (9), Vle(t + 1) and Accle(t) are the velocity and
acceleration of the left dog, when it has the worst
fitness among the three dogs. In (10), Vri(t+1) and
Accri(t) are the velocity, acceleration of the right
dog, when it has the least fitness among the three
dogs. Popse is the present location of the sheep to
be gathered. The dog with least fitness is considered
because it is assumed that this dog is closest to the
sheep.

• Acceleration of Dogs and Sheep: The equation for accel-
eration updation is derived from the most commonly
used equation in physics and is mentioned below.

Acci(t + 1) =
(Vi(t + 1)− Vi(t))

Timei(t)
(11)

The acceleration of all the dogs and sheep viz.,
Accf (t + 1),Accri(t + 1),Accri(t + 1),Accsg(t +
1),Accss(t + 1) and Accse(t) are updated using (11).
i ∈ {f , le, ri, sg, ss to se}.

• Time of Dogs and Sheep: The time (T ) of traver-
sal is updated for each individual using the following
equation.

Timei(t + 1) = Avg
d∑
i=1

(Vi(t + 1)− Vi(t))
Acci(t + 1)

(12)

where, the average time of traversal of each individual
is of dimension (d).

• Population Updation of Dogs: The positions of the dogs
are updated using the basic physics equation of displace-
ment.

Popf (t + 1) = Vf (t + 1)× Timef (t + 1)

+
1
2
Accf (t + 1)× Timef (t + 1)2 (13)

Pople(t + 1) = Vle(t + 1)× Timele(t + 1)

+
1
2
Accle(t + 1)× Timele(t + 1)2 (14)

Popri(t + 1) = Vri(t + 1)× Timeri(t + 1)

+
1
2
Accri(t + 1)× Timeri(t + 1)2 (15)

Equation (13) updates the position of the lead dog,
whereas the positions of the left and right dogs are
updated using (14) and (15).

• Population Updation of Sheep: The positions of the
sheep are updated using the following equations, when
the sheep belong to the gathering and stalking groups.

Popsg(t + 1) = Vsg(t + 1)× Timesg(t + 1)

+
1
2
Accsg(t + 1)×Timesg(t + 1)2 (16)

Popss(t + 1) = Vss(t + 1)× Timess(t + 1)

−
1
2
Accss(t + 1)× Timess(t + 1)2 (17)

FIGURE 5. Gathering of sheep by Lead Dog.

FIGURE 6. Stalking of sheep by Left and Right Dogs.

In case of sheep which are eyed, the below mentioned
equation is used.

Popse(t + 1) = Vse(t + 1)× Timese(t + 1)

−
1
2
Accse(t + 1)× Timese(t + 1)2 (18)

The important symbols used and their meanings are presented
in Table 6. Figs. 5, 6 and 7 show the different herding
techniques.

C. ALGORITHM
The initialization process and the different steps for
the proposed optimization algorithm are shown
in Algorithm 1.
Dependency of Parameters: The BCO algorithm is

designed with the help of mainly four parameters. The
updation of the states depends on mainly two independent
parameters viz., velocity and time. The other two parameters,
acceleration and population are dependent parameters, which
can be easily derived from the aforesaid independent param-
eters. From (11), we derive that Acci(t + 1) can be obtained
if velocity and time are known. Similarly, by substituting the
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TABLE 6. Important symbols, their purpose and relevant Equation nos. used in BCO algorithm.

FIGURE 7. Eyeing of sheep by Left Dog.

value of Acci(t+1) in (13), we obtain the following equation.

Popf (t + 1) = Vf (t + 1)× Timef (t + 1)

+
1
2
(Vf (t + 1)−Vf (t))

Timei(t)
× Timef (t+1)2 (19)

or,

Popf (t + 1) = Vf (t + 1)× Timef (t + 1)

+
1
2
(Vf (t + 1)− Vf (t))× Timef (t + 1) (20)

The populations of the left dog, right dog, gathered sheep,
stalked sheep and eyed sheep can be obtained in a similar
manner, by substituting the value of Acci(t + 1) in (14), (15),
(16), (17) and (18), respectively.

D. AVOIDANCE FROM GETTING STUCK IN LOCAL OPTIMA
In Algorithm 1, at every iteration, the fitness of each sheep
is checked to determine whether it is stuck in local optima
or not. If the fitness of the sheep doesn’t improve in five
consecutive steps, the sheep is considered to be stuck in local
optima. Then this sheep is eyed by the dog to get it back on
track.

E. EXPLORATION AND EXPLOITATION OF BCO
ALGORITHM
Exploration and exploitation of the search space play
an important role in achieving optimal solutions [72].
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Algorithm 1 Border Collie Optimization
1: Initialize
Popt → A random population of n individuals having d
dimensions each, 3 dogs and (n− 3) sheep;
Acct → Random acceleration for each of the n individu-
als having d dimensions;
Timet→ Random time for each of the n individuals;
Vt→ Zero velocity for n individuals having d dimen-
sions;
k = 0;

2: while t < Max_Iterations do
3: Eyeing = 0
4: fitt = Calculate fitness of n individuals
5: if fitt < fitt−1 then
6: k = k + 1
7: end if
8: if k = 5 then
9: Eyeing = 1

10: k = 0
11: end if
12: LeadDog = Individual with best fitness (fitf ))
13: R = Random Number[2, 3]
14: if R = 2 then
15: RightDog = Individual with 2nd best fitness (fitri)
16: LeftDog = Individual with 3rd best fitness (fitle)
17: else
18: LeftDog = Individual with 2nd best fitness (fitle)
19: RightDog = Individual with 3rd best fitness (fitri)
20: end if
21: Sheep = Rest of the individuals excluding top three

(fits)
22: Update velocity of dogs (using (1), (2) & (3) )
23: while i > 3 and i <= n do
24: if Eyeing ≡ 1 then
25: Update velocity of sheep (using (9))
26: else
27: if Dg > 0 then
28: Update velocity of sheep (using (5))
29: else
30: Update velocity of sheep (using (8))
31: end if
32: end if
33: end while
34: Update Acceleration of n individuals (using (11))
35: Update Time of n individuals (using (12))
36: Update Population of Dogs (using (13), (14) & (15))
37: while i > 3 and i <= n do
38: if Eyeing ≡ 1 then
39: Update Population of sheep (using (18))
40: else
41: Update Population of sheep (using (16) & (17))
42: end if
43: end while
44: end while

The algorithms having the capability to balance between the
two, have more chance of being successful in not getting
stuck in local optima. Exploration stresses on finding poten-
tial solution regions in the search space. The movement of
the three dogs viz., lead dog, right dog and left dog controls
the exploration capability of the BCO algorithm. They move
in different directions and are independent of each others’
movement. Hence, they are capable of finding the promising
regions in the search space.

On the other hand, exploitation means to focus on refining
the search results. The movements of the gathered sheep
and stalked sheep are directly influenced by the three dogs.
Hence, they concentrate on finding more optimal solutions
in that part of the search space where the dogs are present.
Moreover, if the BCO algorithm gets stuck in local optima,
the ‘‘eyed sheep’’ rescues the algorithm by applying the
concept of retardation. Figs. 8 and 9 graphically explain the
three herding behaviors of the Border Collie dogs. The farms
presented in the images are assumed to be the optima.

F. COMPLEXITY ANALYSIS
The worst case time complexity of the proposed BCO algo-
rithm is given below.

• In BCO algorithm, the time complexity for producing
the initial population is O(n × d). Here, n is the size of
the population and d is the dimension of each of them.

• The fitness of each individual is calculated using dif-
ferent benchmark functions. The time complexity to
compute fitness for each generation is O(n).

• The time complexity of velocity updation at every step
is O(3).

• The time complexity for updation of time is O(n).
• The algorithm is run for Max_Iterations number of
times. Hence, the time complexity becomes O(n × d ×
Max_Iterations).

From the above discussion, we can thus state that the overall
worst case time complexity for the proposed BCO algorithm
is O(n× d ×Max_Iterations).

III. RESULTS AND DISCUSSIONS
In this section, the results of the BCO algorithm and other
associated comparable algorithms are presented. The entire
process has been implemented in MATLAB 2019a, on Intel
(R) Core (TM) i7 8700 Processor with Windows 10 environ-
ment. Nineteen conventional benchmark functions [5] [100]
(BF1) and sixteen other functions, taken fromCEC’17 bench-
mark suite [101] (BF2) are used for experimental purpose.
The BCO algorithm is compared with seven state-of-the-
art metaheuristic algorithms (ACO [3], DE [16], GA [11],
GWO [5], HHO [58], PSO [4], WOA [52]) to establish its
effectiveness. These algorithms are chosen in such a manner
that their distinct characteristics and different advantages help
to find out the merits of the proposed BCO algorithm.
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FIGURE 8. (a) Hierarchy of fitness of Border Collie Dogs and Sheep, (b) & (c) Dogs’ and sheep’s initial positions and potential solution regions,
(c) - (f) Herding behaviors and 3D View of Herding behaviors.
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FIGURE 9. (a) - (d) Herding behaviors and 3D View of Herding behaviors.

To maintain an unbiased approach, all competitive algo-
rithms need to be evaluated using either equal number of
fitness evaluations or equal processing time [59]. We have
adopted the first aproach to conduct the experiments for all
participating algorithms. All participating algorithm are run
50 number of times, having 200 iterations each to ensure a
fair comparison. The results of all the eight algorithms are
compared on the basis of different statistical tests like mean
and standard deviation, to ensure fair analysis. To perceive the
overall performance of the algorithms, two popular statistical
analysis tests, called Friedman Test [102], [103] andKruskal -
Wallis Test [104] are also conducted among them.

The parameters of ACO [3], DE [16], GWO [5], HHO [58]
and WOA [52] are calibrated as mentioned in the original
papers. The parameter tuning for GA [11] and PSO [4] is
adopted from [65] and [72], respectively for conducting the

experiments. The comparable algorithms are chosen in such
a way that they possess diverse characteristics that can help
us to judge the acceptability of the proposed algorithm based
on multiple features. ACO [3], DE [16], GA [11] and PSO [4]
are all popular metaheuristics, that usually produce effective
results. The other three algorithms viz., GWO [5], HHO [58]
andWOA [52] are relatively new popular metaheuristics. The
individual features of these algorithms are already discussed
in details and presented in Table 5.

A. SENSITIVITY ANALYSIS OF BCO
Every metaheuristic algorithm has a number of uncertain
parameters. Their evaluation, accuracy, limitations and scope
need to be extensively studied. These uncertainties can be
addressed by performing a sensitivity analysis test [105]. The
sensitivity analysis test can be conducted by studying one
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TABLE 7. Parameters of the compared algorithms.

parameter at a time (Local Method) or by evaluating multiple
parameters at a time (Global Method).
To check the robustness of the BCO algorithm, a global

sensitivity analysis test is conducted on the independent
parameters using the Sobol’s sensitivity indices [106]. The
sensitivity in this method is measured in terms of conditional
variances, as given by

Sti =
Vxi
(
Ex∼i (F |xi)

)
V (F)

(21)

where, Sti is the first-order index. It measures the direct
contribution of each input factor to the output variance. F is
the output of the model, xi represents the ith input parameter,
E stands for the expected value and V is the variance. It can
be noted that higher indices value indicates better effective-
ness on the output. The total indices [107] are interpreted as
follows

StToti =
Ex∼i

(
Vxi (F |x∼i)

)
V (F)

(22)

The total indices measure the influence of the ith parameter
on the output. If the total indices value of a parameter is zero,
it indicates that the parameter has no influence on the output.
A standard benchmark function for sensitivity calculation,
called the Sobol g-function [105] is used for this purpose.
Only the independent parameters viz., velocity and time are
considered for the purpose of sensitivity analysis along with
the population size and number of iterations. The parameters
are compared in Table 8. The first order sensitivity indices and
total indices are also reported in this table. The best values
obtained are marked in boldfaced and are considered as the
final parameters.

In this paper, two phenomena viz., population size of
dogs and steps to trigger eyeing are analyzed using the
Sobol’s method. The number of dogs is taken as three.

TABLE 8. Parameter sensitivity analysis result.

In Table 8, it is found that increasing or decreasing the
number of dogs, reduces the efficiency of the algorithm.
The eyeing mechanism is optimized by varying the number
of steps. Optimum results are obtained when the number
of steps for eyeing is taken as 5. Increasing or decreasing
the number of steps for eyeing, reduces the efficiency of
the algorithm. The velocity parameter is used to tune both the
processes.

B. ANALYSIS OF BF1
In this paper, nineteen traditional benchmark functions [5],
[100] are used for experimental purpose. The details of
these functions are presented in the supplementary document.
Table 7 presents the individual parameter settings of the com-
pared algorithms. It can be noted that F1 − F7 are Unimodal
benchmark functions. Functions F8 − F13 are Multimodal
benchmark functions and F14 − F19 are Fixed-dimension
multimodal benchmark functions. The 2-D versions of some
of these functions are plotted in Fig. 10.

The means, standard deviations (STD), minimum val-
ues (Min) and maximum values (Max) obtained by the
functions and the minimum time taken to converge are
reported in Tables 9 and 10. Kruskal-Wallis test [104]
is applied to the results obtained from ACO [3], BCO,
DE [16], GA [11], GWO [5], HHO [58], PSO [4], WOA [52].
This statistical test is carried out with 1% significance
level for finding the p value. Lower p value indicates
higher significance. A p value less than 0.05 represents
‘‘significant’’, whereas less than 0.001 represents ‘‘highly
significant’’. The null hypothesis, that all values have same
distribution across all the methods, stands rejected. Three
representative box plots for the Kruskal-Wallis tests [104]
are given in Fig. 11 and rest of them are provided in
the supplementary document. The p values are recorded
in Table 11.
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TABLE 9. Results of BF1 [5], [100].
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TABLE 10. Results of BF1 [5], [100].

FIGURE 10. 2-D versions of BF1 [5], [100].

1) EXPLOITATION CAPABILITY OF BCO ALGORITHM
Unimodal functions are useful to compare the exploitation
ability of different algorithms, as they have only one global
optima. In functions F1, F2, F3, F4 and F7, the BCO
algorithm outperforms all the other seven algorithms. The
values are recorded in Table 9. The convergence curves are
presented in Fig. 12. This clearly indicates that BCO has
faster convergence speed and better optimal value finding
ability in most cases. This proves that better exploitation of
the search space is achieved by the BCO algorithm in most
cases as compared to other state-of-the-art algorithms.

2) EXPLORATION CAPABILITY OF BCO ALGORITHM
Multimodal functions have the ability to judge the exploration
capability of an algorithm. From Tables 9 and 10, the supe-
rior performance of the BCO algorithm can be derived.
In functions F9,F12,F14 and F15, the proposed algorithm
outperforms the others. It outperforms majority of the other
algorithms for the rest of the multimodal functions. This
proves that the BCO algorithm has good efficiency in terms
of exploration of the search space.

C. ANALYSIS OF BF2
To evaluate the performance of the BCO algorithm, six-
teen functions from the CEC’17 Benchmark Suite [101]

TABLE 11. Results of Kruskal-Wallis test [104] on BF1 [5], [100].

FIGURE 11. Box plot of Kruskal-Wallis test [104] on BF1 [5], [100].

(BF2) are selected. The details of the functions are pro-
vided in the supplementary document. The functions from
the CEC’17 Benchmark Suite [101] are chosen in such a
manner that unimodal functions (CEC ′17−1, 3), simple mul-
timodal functions (CEC ′17 − 4, 5, 6, 7, 9, 10), hybrid func-
tions (CEC ′17 − 11, 16, 18, 20) and composition functions
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FIGURE 12. Convergence curves of BF1 [5], [100].

(CEC ′17−22, 23, 25, 27) are all included to conduct rigorous
tests on the BCO algorithm. As mentioned in III-B, unimodal
functions have a single global optima and multimodal func-
tions have numerous local optima. Hybrid and composition
functions are designed by keeping in mind the real-world
problems. Hybrid functions are randomly divided into some
subcomponents and each subcomponent is a basic function.
Composition functions are combinations of basic and hybrid
functions. The properties of the sub-functions are merged in
a better way, to maintain continuity around the global/local
optima in composition functions.

All the CEC’17 Benchmark functions [101] used are
minimization problems. The 30D functions present in
CEC’17 Benchmark Suite [101] are considered for this pur-
pose. A total of 50 runs and 200 iterations are taken for every
algorithm. The BCO algorithm is compared with ACO [3],
DE [16], GA [11], GWO [5], HHO [58], PSO [4], WOA [52]
algorithms.

Themeans, standard deviations, minimumvalues andmax-
imum values obtained by the functions and theminimum time
taken to converge are presented in Table 12. Kruskal-Wallis
test [104] is applied to the results obtained from ACO [3],
BCO, DE [16], GA [11], GWO [5], HHO [58], PSO [4],
WOA [52]. This statistical test is carried out with 1% sig-
nificance level for finding the p value. The p values of
the Kruskal-Wallis tests [104] are recorded in Table 14.
Three representative box plots are presented in Fig. 13 and
rest of them are given in the supplementary document. The
null hypothesis, that the values have the same distribution
across all the eight methods, stands rejected. The BCO algo-
rithm outperforms all other seven algorithms completely in
functions CEC ′17− 3, 6, 16.
The composition functions are extremely challenging func-

tions for testing metaheuristic algorithms. They can simul-
taneously benchmark exploration and exploitation capabili-
ties. They contain numerous local optima. Hence, they can
effectively examine the local optima avoidance capability

FIGURE 13. Box plot of Kruskal-Wallis test [104] on BF2 [101].

FIGURE 14. Convergence curves of BF2 [101].

of any algorithm. The BCO algorithm provides competitive
results and outperforms ACO [3], DE [16], HHO [58] and
WOA [52] in all the four functions. This shows that the BCO
algorithm maintains a good balance between exploration and
exploitation of the search space. This also ensures that it
effectively avoids getting stuck into local optima.

D. ANALYSIS OF CONVERGENCE CURVES OF BCO
Three representative convergence curves, for each category
of BF1 and BF2 functions are presented in Figs. 12 and 14,
respectively. The convergence curves of BCO are compared
to ACO [3], DE [16], GA [11], GWO [5], HHO [58],
PSO [4] and WOA [52] algorithms. In most of the cases,
the BCO algorithm converges faster than the other seven algo-
rithms with optimal values. The other convergence curves for
BF1 and BF2 are provided in the supplementary document.

A non-parametric test, called the Friedman Test [102],
[103] is conducted among the participating algorithms. This
method finds the individual rank of each of these algorithms,
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TABLE 12. Results of BF2 [101].
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TABLE 13. Friedman test [102], [103] on the results of BF1 [5], [100] and BF2 [101].

which helps to determine the overall comparative perfor-
mance. In Table 13, the results of this test are presented,
which clearly show that the proposed BCO algorithm outper-
forms others.

IV. CONCLUSION AND FUTURE DIRECTIONS
A novel swarm based optimization algorithm is proposed
in this paper. The herding style of the Border Collie dogs
is the main inspiration behind the development of the algo-
rithm. Sobol’s sensitivity indices are applied on the proposed
algorithm for optimal tuning of the parameters. The Sobol
g-function is used for implementing the sensitivity analysis.
Thirty-five test functions are used to evaluate the performance
of the algorithm. The exploration, exploitation and local
minima avoidance capabilities of the Border Collie Optimiza-
tion algorithm are compared with seven state-of-the-art algo-
rithms viz., ACO, DE, GA, GWO, HHO, PSO andWOA. The
exploration and exploitation of the search space are evaluated
by using unimodal and multimodal functions. Few rotated
and shifted functions from CEC’17 benchmark suite are also
utilized for evaluating the performance of the BCO. The
local minima avoidance capability of the BCO is observed

TABLE 14. Results of Kruskal-Wallis test [104] on BF2 [101].

using the eyeing technique. To judge the accuracy and sta-
bility of the proposed BCO algorithm, means and standard
deviations of all the benchmark functions are reported.
The results clearly indicate the superiority of the proposed
algorithm in this regard. The BCO algorithm produces com-
petitive results in terms of minimum and maximum fitness
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values. In addition to this, the convergence times obtained are
superior in most cases for the proposed algorithm. A statisti-
cal analysis test, called the Kruskal-Wallis test is performed,
which proves the superiority of the proposed algorithm in
most of the cases. The faster convergence capability of BCO
algorithm is established using the convergence curves for all
the test functions. The superiority of the BCO algorithm is
also established by the Friedman Test.

Methods remain to be investigated to evaluate the perfor-
mance of the BCO algorithm on other problems. More robust
analysis for single objective optimization can be performed
in future. The proposed algorithm can be compared with
evolved or modified versions of state-of-the-art algorithms.
The authors are presently engaged in developing different
versions of the BCO algorithm for solving multi-objective
problems. Moreover, the development of the extension of
BCO algorithm, for dealing with real world and several engi-
neering problems, is of prime interest to the authors. More-
over, evolution of hybrid algorithms can be developed by
combining the BCO algorithmwith other popular algorithms,
may also be an interesting avenue for the researchers.

CODE AND DATA AVAILABILITY
The software code for the proposed algorithm is pub-
licly available at GitHub: https://github.com/Tulika-opt/
Border-Collie-Optimization.git.
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