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ABSTRACT With the extensive installation of intelligent electronic devices with bi-directional fault
monitoring capabilities, richer fault direction information can be collected and utilized to achieve an
accurate fault diagnosis. In this paper, we consider the fault diagnosis problem in active distribution systems
with distributed generators connected, such as rotating electrical machine power sources and centralized
inverter interfaced renewable energy resources. The fault diagnosis problem is modeled as a linear integer
programming problem with an objective to minimize the numbers of fault zones and false alarms. A novel
functional form is derived to capture the expected alarms sent by bi-directional fault monitoring devices to
be compared with the actual alarms received by the dispatch center. Uncertainties in both the monitoring
and communication stages are considered in the model by formulating the numbers of false alarms in the
objective function. Three types of suspected false alarms can be detected: ‘‘missing alarms’’, ‘‘distorted
alarms’’, and ‘‘reverse alarms’’. By solving the developed optimization model for fault diagnosis, false
alarms and suspected fault zones can be found. Case studies in a modified IEEE 33-bus system and a 55-bus
system in Guangzhou, China are carried out in several different scenarios with multiple faults to demonstrate
the performance of the proposed model. Numerical tests show that the proposed approach is superior in
computational time such that it can be used for real-time fault diagnosis in active distribution systems.

INDEX TERMS Active distribution system, bi-directional fault monitoring devices, fault diagnosis, linear
integer programming.

I. INTRODUCTION
With the rapid construction of distribution systems world-
wide, especially urban distribution systems, efficient system
troubleshooting has become increasingly important. Fault
location, isolation and service restoration (FLISR) are the
three main steps of self-healing for power systems [1]. The
fault location, as the first of these three steps, is influential to
the effectiveness and efficiency of the entire FLISR process.
As distributed generators (DGs) are extensively connected to
distribution systems, conventional power distribution systems
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are being reshaped into active distribution networks [2]. This
development increases the complexity of fault location issues.

Due to the acquisition and uploading of more sen-
sor information, the automation of modern power sys-
tems is constantly being improved, which enables accurate
fault diagnosis under information redundancy. However,
power distribution systems have in general fewer sensors
(calledmonitoring devices) than power transmission systems.
As more attention is being paid to the monitoring of power
distribution systems, a large number of intelligent electronic
devices (IEDs) have been adopted. Nowadays, IEDs have
been used to communicate with gateways of supervisory
control and data acquisition (SCADA) systems in accordance
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with specified protocols [3], by providing data to be captured
by dispatching centers. In recent years, SCADA systems
that collect and process data generated by IEDs have been
extensively installed in power distribution systems.

Fault indicators (FIs), as the representatives of IEDs, are
extensively installed in power distribution systems due to
reliable performance and low cost [4], [5]. Unlike most
impedance-based fault location methods, the approach pro-
posed in [6] does not assume that all feeder sections have
the same impedance characteristics, and uses the indication
information of FIs to improve the accuracy of fault location.
In [7], a matrix-based approach is used for automated fault
diagnosis, which reveals the relationship between possible
fault segments and fault currents detected by FIs. In [8],
a downstream marking algorithm utilizing status informa-
tion generated by FIs is proposed, which is more accurate
than a conventional upstream marking one. Reference [9]
determines a final fault area based on evidence informa-
tion obtained from FIs, distribution transformers, and trouble
calls, using an improved Dempster-Shafer theory. Unfortu-
nately, the methods proposed in [6]–[9] have not specifi-
cally addressed fault diagnosis in active power distribution
systems, where power flow changes can be bi-directional,
making these methods unadaptable.

A distribution-level phasor measurement unit (D-PMU)
[10], also called a micro phasor measurement unit (µ PMU)
[11] for its small volume, is one type of monitoring device
installed in a power distribution system capable of sampling
voltage and current data with a high frequency, which makes
online fault analysis available [12]. In [13], fault location
is found by iteratively checking voltage and current data of
each segment recorded by D-PMUs such that this method can
be implemented in distribution systems with DGs connected.
In [12], a method for real-time fault monitoring of active dis-
tribution systems is proposed by calculating state estimation
of parallel synchronized phasors. Since vector monitoring
data can be acquired by D-PMUs, they can be implemented
in active distribution systems to indicate fault areas.

As pointed out in [8] and [14], some unique bi-directional
FIs can indicate not only faults in a single preset direction,
but also faults in both upstream and downstream directions.
In terms of indicating faults in bi-directions, D-PMUs can
function similarly as bi-directional FIs. Additionally, feeder
termination units (FTUs) can also provide indications of three
fault monitoring states, which have been explained in [15]
and [16]. In [15], an analytic fault diagnosis method is estab-
lished, which can find suspected fault sections correctly even
in some scenarios where the measurements of some FTUs
are unreliable. In [16], a linear integer model based on states
sent by FTUs is proposed to provide the globally optimal
fault segment location of an active distribution network. This
method, however, can only find a single fault in [16], instead
of multiple faults.

As more and more remote residential areas and industrial
factories need to be powered, the multi-branch topology of
modern urban distribution systems has become increasingly

complicated, rendering the corresponding fault location [17],
[18] or fault zones estimation [19]–[21] issues research
hotspots. The method proposed in earlier literature is based
on the analysis of physical circuits, such as the direct circuit
analysis method proposed in [17] and the impedance-based
calculation method proposed in [20]. And the methods pro-
posed in some recent pieces of literature are based on the
fusion of multiple methods, such as the multi-sensor fusion
method proposed in [18] and the method based on the natural
frequency components of fault voltages proposed by [21].

Moreover, the urgent need for power supply may prioritize
the construction of physical systems above reliable com-
munication systems, which leads to delays in the collection
and analysis of monitoring data related to faults. Reference
[22] pointed out that sensor faults may lead to a decline in
diagnostic performance, and a data-driven Bayesian network-
based three-phase inverter fault diagnosis method is proposed
to solve this matter. In [23], dynamic Bayesian networks
are used to solve the degradation problem of structural sys-
tems caused by the coupling of multiple factors. Aiming
at the problem that the performance of electronic products
will decrease with time, the method proposed in [24] uses
dynamic Bayesian networks to characterize the dynamic
degradation process of electronic products. Additionally,
as pointed out in [18] and [17], without reliable communi-
cation systems, the alarms sent by IEDs may not be reliable
at all. The malfunction of any measuring devices and/or the
block of communication channels under extreme conditions
may further contribute to missing or distorted alarms.

This paper will address two important tasks in fault
diagnosis problems: the estimation of fault zones and the
identification of false alarms. A linear integer programming
model utilizing alarms sent by bi-directional fault monitoring
devices is proposed in this paper to address fault diagnosis
issues in active power distribution systems. The major con-
tributions of this paper are summarized as follows:

1) The concepts of generalized upstream and downstream
power supply paths are given for bi-directional fault moni-
toring devices (such as D-PMUs, FTUs, bi-directional FIs)
installed in active power distribution systems. Then, a novel
expected alarm function for bi-directional fault monitoring
devices is proposed, which can be used in scenarios with mul-
tiple faults. By changing the input values of the corresponding
variables, the expected alarm function can be easily adapted
to model changes in the topology of the distribution system
and the connection state of each DG.

2) To address the problems of fault diagnosis, the identifi-
cation of fault zones and false alarms can be obtained together
by solving the proposed model. In particular, the false alarms
sent by the bi-directional fault monitoring device are classi-
fied into three types: ‘‘reverse alarms’’, ‘‘distorted alarms’’,
and ‘‘missing alarms’’, whose evaluation states are given
different weights in the objective function.

3) The fault diagnosis problem is modeled as a linear
integer programming problem, which means that the rele-
vant objective function and constraints can be equivalently
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FIGURE 1. A sample distribution system with a BFMD installed.

FIGURE 2. The integration of multiple BFMDs in a sample distribution
system with a single fault.

represented in a linear form. Therefore, the global optimal
fault diagnosis hypothesis can be obtained using existing
rigorous approaches, instead of heuristic algorithms that can
only find local optima.

II. FUNCTIONS OF BI-DIRECTIONAL FAULT MONITORING
DEVICES IN ACTIVE POWER DISTRIBUTION SYSTEMS
A. BI-DIRECTIONAL FAULT MONITORING DEVICES
In distribution systems with DGs (e.g., diesel engines, gas
engines and centralized renewable energy resources), fault
related alarms generated by IEDs with bi-directional overcur-
rent monitoring capabilities can be classified into three types:
1) fault(s) are detected upstream; 2) fault(s) are detected
downstream; and 3) no fault detected.

To facilitate the presentation, the IEDs which are capable
of generating these three monitored fault states of alarms,
including D-PMUs, FTUs and bi-directional FIs, are collec-
tively referred to as bi-directional fault monitoring devices
(BFMDs) hereinafter. In order to clarify the function of
BFMDs, a sample power distribution system with a single
fault is shown in Fig. 1.

The direction of the overcurrent flowing through the
BFMD is consistent with the red triangle in Fig. 1. When
the distribution feeder is operating well, the BFMD is trig-
gered only when the monitored current value or its rising
rate exceeds the threshold. As can be seen in Fig. 1, when
a permanent ground fault occurs on the line, the BFMD is
triggered by an overcurrent. Obviously, when the load on
the feeder is powered by a single-sided supply, the BFMD
will be triggered by a fault that occurs downstream of its
installation location. Since only one BFMD is not sufficient
in indicating the fault location, the integration of multiple
BFMDs is needed, which is presented in Fig. 2.

As shown in Fig. 2, five BFMDs are installed, which
are located near buses 1, 3, 6, 9, and 11, respectively.
Since BFMD-1 is triggered with the downstream direction,
the fault may be located in the downstream of it. Suppose that

BFMD-3, BFMD-9 and BFMD-11 are also triggered and
indicate the fault location in the upstream of them. The fault
can be determined in the shaded zone by the integration of
these four triggered BFMDs. It can be seen from this simple
example that the fault state of BFMDs being triggered or not
corresponds uniquely to the fault location.

An obvious challenge is how to maximize the accuracy of
fault diagnosis if false alarms may be received by the dis-
patching center. This prompts us to develop a fault diagnosis
model that can accommodate false alarms.

III. GENERALIZED UPSTREAM AND DOWNSTREAM
POWER SUPPLY PATHS OF BFMDs IN AN ACTIVE
POWER DISTRIBUTION SYSTEM
Prior to introducing the proposed optimization model for
fault diagnosis, it is necessary to clarify the definition of
the forward and backward directions and the generalized
upstream and downstream paths of BFMDs installed in an
active distribution system.

A. FORWARD AND BACKWARD DIRECTIONS
OF BFMD
When the power distribution system is only powered by the
grid side (i.e., without connecting to any DGs), the power
direction flowing through a BFMD is called the forward
direction of the BFMD when there is no fault, and the
opposite direction is called the backward direction of
this BFMD.

B. GENERALIZED UPSTREAM AND DOWNSTREAM
POWER SUPPLY PATH
The paths fromwhere a BFMD is installed to all power supply
nodes that can provide a positive short circuit current to this
BFMD is referred to as the generalized upstream paths of this
BFMD in this work. Similarly, the paths from the installation
location of a BFMD to all power supply nodes that can pro-
vide a negative short circuit current to this BFMD is referred
to as the generalized downstream paths of this BFMD. Taking
BFMD-3 in Fig. 2 as an example, the highlighted faulted zone
(around nodes-1,2,3) can be referred to as its upstream power
supply path, while the zones between nodes-3, 4, 9, 10, 11,
and 12 can be referred to as BFMD-3’s downstream power
supply path. Furthermore, if the DG located at node-8 in
Fig. 2 is connected to the distribution system, the generalized
downstream paths of BFMD-3 consist of the zones between
nodes 3, 4, 9, 10, 11,12 and the zones between nodes 4, 5, 6,
7, 8 together.

IV. LINEAR INTEGER PROGRAMMING MODEL FOR
FAULT DIAGNOSIS
The proposed fault diagnosis model consists of an objective
function and BFMD related constraints. The nonlinear for-
mulation will be introduced first, followed by its linearization
form.
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A. THE OBJECTIVE FUNCTION AND RELATED
CONSTRAINTS
A comprehensive objective function is introduced to address
the two basic functions of fault diagnosis: fault zones esti-
mation and the identification of false alarms. Therefore,
the objective function E(L) consists of the sum of the num-
ber of suspected fault zones Nf and the number of false
alarms WRBFMD, as shown in(1); both numbers are to be
minimized:

E(L) = Nf +WRBFMD (1)

where L= [l1, l2, . . . , lNL] is the fault state vector of all zones
separated by BFMDs on the feeder; each element in L is a
binary variable, which takes the value of 1 when a fault occurs
on the corresponding zone and 0 when there is no fault, and
NL is the number of zones separated by BFMDs. The two
terms in the objective function are detailed in (2) and (3).

Nf =
NL∑
m=1

lm (2)

Suspected false alarms are classified as the missing, distorted
or reverse alarms, whose meanings are described as follows:

1) A missing alarm: an alarm has been sent by a BFMD but
has not been received by the dispatch center.

2) A distorted alarm: an alarm received by the dispatch
center should not have been sent by a BFMD.

3)A reverse alarm: an alarm received by the dispatch center
has the indicated fault direction opposite to the expected one.

WRBFMD = ωBFMD

∑
i

MBFMD,i + βBFMD

∑
i

DBFMD,i

+γBFMD

∑
i

RBFMD,i ∀i ∈ 9 (3)

whereWRBFMD is the penalty function of false alarms sent by
BFMDs; 9 is the index set of the nodes where BFMDs are
installed;MBFMD,i is a binary variable whose value is 1 if the
alarm sent by BFMD-i (a shorthand for the BFMD at node i)
is missing. DBFMD,i is a binary variable whose value is 1 if
the alarm sent by BFMD-i is distorted; RBFMD,i is defined
similarly for a reverse alarm send by BFMD-i. Parameters
ωBFMD, βBFMD and γBFMD are penalty coefficients of these
three different types of false alarms.

If an alarm triggered by a BFMD is received by the
dispatch center, the actual alarm function of this BFMD is
positive and shall take the value of 1; otherwise the out-
come is negative and will take the value of 0. Nevertheless,
the expected alarms sent by BFMDs subject to an actual fault
scenario may not be consistent with the corresponding alarms
actually received. To identify false alarms, it is necessary
to compare the expected alarms that BFMDs should send
with the actual alarms received by the dispatching center.
Therefore, the ‘‘expected alarm function’’ of a BFMD needs
to be defined.

B. BFMDs RELATED CONSTRAINTS
1) THE EXPECTED ALARM FUNCTIONS SENT BY BFMDs
WITH A SINGLE FAULT
The expected alarms sent by bi-directional FIs have been
studied in [16], using the notion of a ‘‘switch function’’.
In terms of the variables used in this paper, this function is
shown in (4).

G∗i = (Pdown,i)TL− kDG,i(Pup,i)TL ∀i ∈ 9 (4)

where G∗i is the expected alarms sent by bi-directional FIs;
kDG,i is a binary variable indicating the connection state
of DGs on the generalized downstream path of FI-i. When
kDG,i = 1 (or 0), it means that at least one DG is (or not)
connected; Pdown,i and Pup,i are the binary vector of gener-
alized downstream and upstream with the BFMD installed
at node-i, respectively. Specifically, in IV-B2 if the segment
is on the generalized downstream path or the generalized
upstream path of FI-i described in Section III-B, the value
of the corresponding element in Pdown,i or Pup,i is taken as 1,
otherwise it is taken as 0.

Note that although the expected alarm function in IV-B2 is
concise, it is only applicable to scenarios with a single fault.
Next we shall extend the switch function in IV-B2 to a more
general expected alarm function applicable to situations with
multiple faults.

2) THE EXPECTED ALARM FUNCTIONS OF BFMDs WITH
MULTIPLE FAULTS
The expected alarm sent by BFMD-i applicable to the scenar-
ios with multiple faults can be calculated by (5)-(7) below.

F∗i = Fforw,i − Fbacw,i ∀i ∈ 9 (5)

F ′forw,i = (1−WT
grid,iL)+

∑
n

kDG,n(1−WT
up,i,nL)

∀i ∈ 9, n ∈ ϒup,i (6)

F ′bacw,i =
∑
n

kDG,n(1−WT
down,i,nL) ∀i ∈ 9, n ∈ ϒdown,i

(7)

In (5), given BFMD-i F∗i represents the BFMD’s expected
alarm; Fforw,i is a binary variable indicating whether the
power supplies (including DGs) located in the BFMD’s
generalized upstream direction (defined in Section III-B)
can provide overcurrent to the forward direction (defined in
Section III-A) of BFMD-i. Similarly,Fbacw,i = 1/0 represents
whether the power supplies (including DGs) located in the
BFMD’s generalized downstream direction can provide over-
current to the backward direction of the BFMD.

In (5)-(6), ϒup,i and ϒup,i are the index sets of the nodes
connected with the DG(s) in the generalized upstream and
the generalized downstream directions of BFMD-i, respec-
tively; F ′forw,i (or F

′
bacw,i) represents a binary variable indicat-

ing whether the forward (or backward) overcurrent through
BFMD-i exists; Wgrid,i is a vector whose size is the number
of zones to be diagnosed, where each binary element, say
the k-th, indicates whether the k-th line zone is on the path
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TABLE 1. Meaningful/optional values of F ∗

i and their meanings.

FIGURE 3. A sample distribution system with DGs-12,14 connected.

from the grid side (node-1, generally) to node-i; Wup,i,n and
Wdown,i,n are vectors of the same size as Wgrid,i, where each
binary element, say the k-th, indicates whether the k-th line
zone is on the path from node-i to node-n.
Regarding the intermittent characteristics of renewable

energy resources, when the output power from a RER
decreases to a certain threshold (determined by the spe-
cific fault monitoring devices) that cannot be detected by
BFMDs installed at the upstream nodes, kDG,i can be set to
0. In addition, some centralized renewable energy resources
are equipped with energy storage devices, such as battery
energy storage systems, flywheel energy storage systems and
compressed air energy storage systems, to smooth the output
power profile and suppress the power output intermittence of
a renewable energy generator.

Since BFMDs are capable of monitoring bi-directional
overcurrent, the meaningful/optional values of F∗i can be
0, +1 or −1, as presented in Table 1.

Note that as the value of (Wgrid,i)TL, (Wup,i,n)TL and
(Wdown,i,n)TLmay be greater than 1 under the scenarios with
multiple faults, the value of F ′forw,i and F

′
bacw,i may be greater

than 1 as well. To make (5) hold with the meaningful values
of F∗i in Table 1, Fforw,i and Fbacw,i need to be constrained by
F ′forw,i and F

′
bacw,i using linearization as described in (8)-(9).

F ′forw,i
M
≤ Fforw,i ≤ F ′forw,i ∀i ∈ 9, nDG ∈ ϒup,i (8)

F ′bacw,i
M

≤ Fbacw,i ≤ F ′bacw,i ∀i ∈ 9, nDG ∈ ϒdown,i (9)

where M is a sufficiently large positive constant.
A detailed description of the expected alarm function

shown in (5)-(9) will be illustrated by a sample distribution
system with multiple faults in two scenarios, as presented
in Fig. 3 and Fig. 4.

FIGURE 4. A sample distribution system with DGs-8,12,14 connected.

We will use BFMD-9 as an example to illustrate the idea
of the proposed expected alarm functions. Although in this
example the fault state vector L is a constant vector consistent
with the fault scenario, it is a vector of variables in the actual
diagnosis process.

In Fig. 3, since a fault occurred on the path between the
grid side power supply (node 1) and BFMD-9, the first term
(1−WT

grid,9L) in (6) is constrained to be 0. Note that DG-14 is
also connected to the generalized upstream path of BFMD-9,
and there is no fault on the path between them, so kDG,14 = 1
and the term WT

up,9,14L = 0 by (6). Therefore, Fforw,9 =
F ′forw,9 = 1 can be obtained. Next, since DG-12 is connected
in the generalized downstream path of BFMD-9, kDG,12 = 1
in (7) can be determined. However, as a fault zone is on
the path between BFMD-9 and node-12, the termWT

down,9,12
L= 1 is constrained to be 0. Therefore,Fbacw,9 = F ′bacw,9 = 1
can be obtained. To sum up, it can be determined that F∗9 = 1
in the scenario described in Fig. 3 by constraints (5)-(7).

Note in Fig. 4 the only difference from the analysis in Fig. 3
is that both DG-8 and DG-14 are connected to the generalized
upstream path of BFMD-9, and no fault occurs on the path
between these two DGs and BFMD-9. Thus, kDG,8 = 1,
WT
up,9,8L = 0 and kDG,14 = 1, WT

up,9,14L = 0 can be
determined; F ′forw,9 = 2 can then be obtained. Using the
linearization given in (8), Fforw,9 = 1 and F∗9 = 1 are obtained
within the required ranges.

As shown in Fig. 3 and Fig. 4, the two scenarios both have
the same fault state set L= [1,1,0,0,1]. As the connection
states in these two figures are different, some values of the
expected alarm functions sent byBFMDs are different, as pre-
sented in Table 2.

As shown in Table 2, in scenarios with multiple faults, the
expected alarms of BFMD-3 and BFMD-6 in Fig. 4 are cor-
rected by equation (9), and the expected alarm of BFMD-9 is
constrained by equation (8). In these two different scenarios,
all the expected alarms of BFMDs are calculated correctly by
the formulas (5)-(9).

With the help of these two scenarios with multiple faults,
the reason that the expected alarms of BFMDs calculated
by IV-B2 may be incorrect is evident. In the scenario pre-
sented in Fig. 3 or Fig. 4, G∗9 = −1 can be obtained using
(4), which means that the direction of the overcurrent flowing
through BFMD-9 represented by the alarm is interpreted
incorrectly. In addition, without the constraints such as (8)
and (9), G∗6 = −3 is obtained by (4).
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TABLE 2. Values of the expected alarm functions associated with each
Bfmd in two scenarios.

TABLE 3. Evaluation variables of false alarms.

3) MISSING/DISTORTED/REVERSE ALARMS AND THEIR
RELATED CONSTRAINTS
The expected alarms of the bi-directional fault monitoring
devices introduced previously are used to derive the expres-
sions of false alarm states, including missing, distorted and
reverse alarms. The relationships between these three types of
alarms and the evaluation variables are illustrated in Table 3.

From the combination of all possible values of F∗i and
Falarmi presented in Table 3, the numerical logic of the eval-
uation variables, including MBFMD, DBFMD and RBFMD, can
be summarized as:

DBFMD,i =

{
1 when F∗i = 0 and Falarmi 6= 0
0 otherwise

∀i ∈ 9

(10)

MBFMD,i =

{
1 when Falarmi = 0 and F∗i 6= 0
0 otherwise

∀i ∈ 9

(11)

RBFMD,i =


1 when F∗i + F

alarm
i = 0

and F∗i F
alarm
i 6= 0

0 otherwise

∀i ∈ 9 (12)

where (10) and (11) can be expressed by F∗i and
Falarmi through simple arithmetic operations, as presented

in (13)-(14):

DBFMD,i =

∣∣∣Falarmi

∣∣∣ (1− ∣∣F∗i ∣∣)
=

∣∣∣Falarmi

∣∣∣− ∣∣∣Falarmi F∗i
∣∣∣ ∀i ∈ 9 (13)

MFI ,i =
∣∣F∗i ∣∣ (1− ∣∣∣Falarmi

∣∣∣)
=
∣∣F∗i ∣∣− ∣∣∣F∗i Falarmi

∣∣∣ ∀i ∈ 9 (14)

Next, θi and xi are used to express the two absolute values
of F∗i and the product term of F∗i F

alarm
i as follows:{

θi =
∣∣F∗i ∣∣

xi =
∣∣F∗i Falarmi

∣∣ ∀i ∈ 9 (15)

Then the evaluation variable for distorted alarms DBFMD,i
and that for missing alarms MBFMD,i can be rewritten as:{

DBFMD,i = (Falarmi )2 − xi
MBFMD,i = θi − xi

∀i ∈ 9 (16)

Note that in the fault diagnosis, the actual alarm Falarmi is
a constant; therefore, equation (16) is linear. However, it is
obvious that the expressions in (15) are not linear. To convert
the formulation into a linear integer programming problem,
(15) must be linearized, which is done as detailed in (17).

−F∗i ≤ ξi ≤
1− F∗i

2
θi = F∗i + 2ξi
xi ≤ θi
xi ≤ (Falarmi )2

xi ≥ θi + (Falarmi )2 − 1

∀i ∈ 9
xi, ξi, θi ∈ {0, 1}

(17)

where θi, xi and ξi are three binary transition variables to
satisfy the relationship in (16).

Although the evaluation variable for reverse alarms
RBFMD,i cannot be expressed by simple arithmetic operations,
it can be set as a binary variable with equation (12) replaced
by the following constraint:

RBFMD,i ≥ −Falarmi F∗i ∀i ∈ 9 (18)

To prove the correctness of the proposed linearization
method, all possible values of the variables in (16)-(18) are
shown in Table 4.

Comparing Table 3 with Table 4, it can be concluded that
these three evaluation variables, along with the constraints
(16)-(18), can correctly identify the states and types of false
alarms.

The proposed linear integer programming model for fault
diagnosis is thus completed, with an objective function (3) to
be minimized subject to constraints (5)-(9), and (16)-(18).

C. THE SUITABLE FAULT TYPES
The proposed fault diagnosis model is a basic framework for
alarm analysis considering communication failures, and it is
suitable for all possible faults that can be detected by fault
monitoring devices installed in the distribution system. To be
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TABLE 4. All possible combinations of alarms and corresponding values
of variables.

specific, we focus on the alarm analysis in an active distribu-
tion system rather than the technique used for detecting faults.

The types of faults that can be detected are directly related
to the distribution density and detecting accuracy of the
installed monitoring devices. The penetration level of the
monitoring devices in different areas varies. For example,
the density of the monitoring devices in a rural-area distribu-
tion system is usually lower than that in an urban distribution
system. In addition, high-resistance grounding faults can only
be detected by devices with high-precision sensors, which are
commonly installed in the urban distribution system, but not
in the rural one.

D. THE ALGORITHM AND THE FLOWCHART
The proposed model can be efficiently solved by branch and
bound algorithms, which have been integrated by commercial
solvers, such as CPLEX and Gurobi.

Because of the efficiency of the solution approach,
the proposed fault diagnosis model can be run online by
the dispatching center of the power distribution system. The
solution flowchart for addressing a fault diagnosis problem is
presented in Fig. 5.

V. CASE STUDIES
In this section the performance of the proposed method is
tested in a modified IEEE 33-bus system and an actual dis-
tribution power system in Guangzhou, China. All simula-
tions were performed on a PC with Intel Core i5 Processor
(2.8 GHz) and 8-GB RAM. The proposed linear integer
programming model for fault diagnosis was solved by the
branch and bound algorithm integrated with the commercial
optimization solver Gurobi-8.0. Yalmip/MATLAB is used as
the optimization platform. Note that the calculation time in
this paper was verified with the consumed CPU time that
returned by Gurobi optimization solver.

The values of the three penalty coefficients involved in the
objective function (3) need to be discussed.

Actually, the accuracy of fault diagnosis is affected by
these three coefficients (βBFMD, γBFMD and ωBFMD) involved
in the multi-objective function due to the diversity of the
installed BFMDs in various locations. A feasible method to
determine the relative magnitudes of these three coefficients

FIGURE 5. Solution flowchart for fault diagnosis.

by experiences of exsisting publications and seleceting the
specific values of these coefficients by sensitivity tests with a
standard system, such as IEEE-33 bus system.

It is also possible to examine the relationship among the
values of these three coefficients based on engineering expe-
riences. According to some exsisting papers such as refs.
[24], [25], [26], and [28], generally the probability of an
alarm being lost is greater than that of a distorted alarm
being received. In addition, as for a false alarm sent by
a bi-directional fault monitoring device, a ‘‘reverse’’ alarm
(i.e., the sign of the alarm changes) is different from a
‘‘distorted’’ alarm (i.e., the content of the alarm changes).
Specfically, a ‘‘reverse’’ alarm that indicates a fault can be
received only when the sign bit changes, while a ‘‘distorted’’
alarm could involvemore changes in relevant data. Therefore,
the values of the penalty coefficients in (3) should respect the
inequality: βBFMD>γBFMD>ωBFMD. According to sensitivity
tests of the coefficients values with the IEEE 33-bus test
system, the best values of βBFMD, γBFMD and ωBFMD can
be set as 1.5, 1.3 and 1.1, respectively, whose performance
analysis will be illustrated hereinafter.
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FIGURE 6. A modified IEEE 33-bus system without DG connected.

A. FIVE CASE STUDIES WITH IEEE 33-BUS SYSTEM
1) SCENARIO I: MULTIPLE FAULTS WITH NO DG
CONNECTED AND ALL ALARMS ARE CORRECT
In Fig. 6, the numbers of the nodes where BFMDs are
installed have been marked. The direction indicated by the
red triangle is consistent with the fault direction indicated by
actual alarms received by the dispatch center. In this case, it is
assumed that all alarms sent by BFMDs are correct.

As shown in Fig. 6, the feeder is separated into 16 zones
with 12 BFMDs. When two three-phase grounding faults
occur on zone-(5) and zone-(15), the values of actual alarms
sent by BFMDs-2, 3, 6, 19, 24, and 26 can be obtained as
1, and the values of the actual alarms sent by other BFMDs
are 0. After taking 0.21 seconds, the model was successfully
solved, and the optimal solution is presented as follows:

L = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0];

M = D = R = 0.

The optimal solution obtained is consistent with the sce-
nario assumed. Specifically, the alarm of BFMD-10 indi-
cates that the fault should not be located in its downstream
(also confirmed by BFMDs-12 and 16), and the alarms of
BFMDs-2, 3, 6, 24, and 26 indicate that the fault occurs
downstream of node-6, so a fault-zone is determined to be
zone-(5). Similarly, the alarm of BFMD-21 indicates that the
fault should not be located on its downstream, and the alarms
of BFMDs-2 and 19 indicate that the fault occurs downstream
of node-19, so zone-(15) can be determined to be a fault zone.
This analysis can be illustrated mathematically by the model
proposed.

2) SCENARIO II: MULTIPLE FAULTS WITH DGs CONNECTED
AND ALL ALARMS ARE CORRECT
In this scenario, three DGs are connected at nodes-18, 22
and 33, while the other part of the topology is consistent
with Fig. 6. Three three-phase grounding faults are assumed
to occur in zones-(5), (7) and (15), as presented in Fig. 7.
Due to the different control strategies of the DG’s inverter,
the magnitude of the short-circuit current provided by a DG
will be various. To verify whether the proposed fault diag-
nosis method can be effectively applied in active distribution
systems with a high penetration level, the capacities of DGs-
18, 22, and 33 are respectively 0.8MW, 0.8MW and 1.0MW,

FIGURE 7. A modified IEEE 33-bus system with DGs connected.

which are 15.7%, 15.7% and 19.7% of the total typical load
power (5.084MW). Simulation results show that when a fault
occurs, the minimum overcurrent produced by each DG is
2.3 times of that in the normal operating condition, and hence
the fault can be easily detected by BFMDs.

Compared with scenario I, the values of alarms sent by
BFMD-16, 21, 28, and 31 in scenario II are changed from 0 to
−1 due to the connections of DGs. After taking 0.22 seconds,
the model was solved successfully, and the optimal solution
is presented as follows:

L = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0];

M = D = R = 0.

It can be seen that the fault zones-(5), (7), and (15) can be
determined accurately. Note that the alarm sent by BFMD-16
indicates that fault(s) may locate on the upstream of it and the
alarm sent by BFMD-6 indicates that fault(s) may locate on
the downstream direction, zones-(5), (6), and (7) are all pos-
sible fault-zones. As alarms sent by BFMD-10 and BFMD-
12 indicate that there is no possibility for a fault to occur in
zone-(6), both zone-(5) and zone-(7) can be determined to be
the fault zones finally.

3) SCENARIO III: MULTIPLE FAULTS WITH DGs CONNECTED
AND MISSING ALARMS ARE RECEIVED
Based on scenario II, to verify the performance of the fault
diagnosis model when alarms are lost, the alarms sent by
BFMDs-3, and 26 are set to 0 in this scenario. After 0.23 sec-
onds of computation, the value of the optimal objective
function is 5.4, and the optimal values of the variables are
presented below.

L = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0];

M = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]; D = R = 0.

It can be seen that three fault zones and the three missing
alarms can be identified accurately. Note that in the evaluation
vector M for missing alarms, the evaluation vector D for
distorted alarms, and the evaluation vector R for reverse
alarms, there are zero elements at the node indexes where no
BFMDs were installed. Since there are no constraints on the
variables at these nodes, their values are set to 0 because of
the minimization of the objective function.
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4) SCENARIO IV: MULTIPLE FAULTS WITH DGs CONNECTED
AND DISTORTED ALARMS ARE RECEIVED
Based on scenario I, alarms sent by BFMD-4 and BFMD-
10 are changed from 0 to −1 in this scenario, i.e., these two
alarms are distorted. After taking 0.29 seconds for computa-
tion, the optimal objective value is 6.0, and the optimal values
of the variables are presented below.

L = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0];

D = [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; M = R = 0.

It can be seen that the assumed scenario IV is correctly
reflected by the optimal solution. Note that as there is no
DG connected to node-5, the expected alarm of BFMD-4 is
constrained by the related constraints in (5)-(9).

5) SCENARIO V: MULTIPLE FAULTS WITH DGs CONNECTED
AND MISSING AND REVERSE ALARMS ARE RECEIVED
Based on scenario II, assume alarms sent by BFMD-31 and
BFMD-16 are changed from -1 to +1 in this scenario, i.e.,
the direction of fault location indicates by these two alarms
are reverse. After 0.35 seconds of computation, the optimal
objective value is 8.0, and the optimal values of the variables
are presented below.

L = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0];

M = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0];

R = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]; D = 0.

It can be seen that three fault zones, twomissing alarms and
two reverse alarms are identified accurately. Although four
incorrect alarms have been found by the optimal solution,
there is no possibility to find a better solution. For instance,
assuming that the alarm sent by BFMD-16 is determined to be
correct, the only reasonable solution is that the alarms sent by
BFMD-10 and BFMD-12 are lost, and zone-(8) is identified
to be a fault instead of a zone-(5) and zone-(7). However,
the objective value for this possible solution is 8.1, which is
larger than the optimal one.

B. COMPARISON: BFMDs AND UFMDs
Most studies in literature focused on fault location methods
utilizing the data collected by uni-directional fault monitor-
ing devices, instead of the bi-directional ones. To illustrate
the contribution of this paper, it is necessary to compare
the performance between our proposed approach with those
in literature, such as [7], [15], [26]–[28]. To facilitate the
presentation, the uni-directional fault monitoring devices are
abbreviated as UFMDs.
Consider the modified IEEE 33-bus system with DGs con-

nected, as shown in Fig. 8, which is the same as Fig. 7 except
that all BFMDs are replaced with UFMDs. The default

FIGURE 8. The modified IEEE 33-bus system with UFMDs.

TABLE 5. Evaluation variables of false alarms.

directions of all UFMDs are indicated by the directions of
the blue triangle in Fig. 8.

By testing the same five scenarios with multiple faults
in Section IV-A, the comparison of the results, UFMDs vs.
BFMDs, is summarized in Table 5. Note that in scenario V, as
the alarms sent by UFMD-16 and UFMD-31 cannot be
reversed for their uni-directional monitoring function, these
two alarms are set to be lost.

As can be seen from Table 5, the diagnostic results using
UFMDs are correct only when there is no DG connected and
the alarms sent by UFMDs are correct. With the connection
of DGs (scenarios II–V), fault zone-(15) was not successfully
identified, and some false alarms are identified incorrectly.
As the number of false alarms increases, more fault zones
found by UFMDs are missed. In scenario V, when there
are insufficient false alarms and directional fault indications
available, all fault zones are missed.

C. TEST WITH A 55-BUS SYSTEM IN GUANGZHOU
Next we use a 55-bus power distribution system in
Guangzhou (GZ-55-bus system),as presented in Fig. 9, to test
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FIGURE 9. The GZ-55-bus system.

the feasibility of the online fault diagnosis by the proposed
linear integer programming model.

The average CPU times and diagnostic accuracies of fault
zone identification are summarized in Table 6. In each case
(given the numbers of fault zones andmissing alarms), 50 dif-
ferent fault scenarios (including missing alarms) were ran-
domly generated and solved to calculate the average CPU
time and diagnostic accuracy.

TABLE 6. Average CPU time and fault diagnosis accuracy in the
GZ-55-bus system.

It can be seen that the time performance is excellent as the
average CPU time is less than one second, indicating that the
proposed approach can be used for the online fault diagnosis
of distribution feeders for its light computational require-
ment. In terms of the diagnostic accuracies, when there is no
missing alarm received, the results of fault diagnosis are all
correct when there are one or two faults on the feeder. As can
be seen from Table 6, although more missing alarms will lead
to a lower accuracy rate of fault diagnosis, the number of fault
zones carries more influence on the diagnosis accuracy.

D. PERFORMANCES WITH DIFFERENT
SCALES OF SYSTEMS
With several tests carried out with IEEE-33 bus system and
theGZ-55-bus system, the performances of the proposed fault
diagnosis model different scale test systems are summarized
as follows:

1) The average solving time represented by CPU time
consumed in Gurobi with the IEEE 33-bus test system is
0.24 seconds for a test scenario with two simultaneous faults
and two missing alarms. The average solving time with the
same number of fault sections and missing alarms tested in
the GZ-55-bus test system is 0.37 seconds, and meets the
requirement for on-line fault diagnosis. Actually, as the fault
diagnosis problem is formulated as a linear integer program-
ming model, the increased scale of the distribution system
may not necessarily lead to longer solving time since the fault
diagnosis is limited to the outage area(s).

2) The increasing scale of the distribution system is not
the main factor having impacts on the accuracy of the fault
diagnosis results. It can be clearly seen from the numerical
results in Table 6 that the number of simultaneous fault
zones and the number of false alarms sent by BFMDs have
significant impacts on the fault diagnosis accuracy. The fault
diagnosis under scenarios with unreliable communications is
an intractable issue to be investigated further.

E. COMPARISONS WITH EXISTING METHODS
Comparisons of performances between the proposed fault
diagnosis method in this paper and other fault location meth-
ods proposed in recent publications are presented in Table 7.

TABLE 7. Performances comparisons between the proposed method and
some available methods.

F. OTHER CHALLENGES AND POSSIBLE MEASURES
The connection of distributed power sources brings great
challenges to the fault identification and restoration tasks
of modern power distribution systems. The types of dis-
tribution generators mainly fall into two categories: rotat-
ing electrical machine type power sources (e.g., diesel
engines and gas engines) and centralized inverter interfaced
renewable energy power sources (e.g., wind power or solar
panel). Decentralized inverter interfaced renewable energy
resources (e.g., residential PVs or small wind turbines) are
not addressed in this paper. Small wind turbines and PV
located on the roofs of residential customers also increase
the complexity for fault monitoring devices to identify
faults.

In addition to updating the thresholds that can trigger
BFMDs to send an alarm in real-time according to the
installation locations of specific inverters, utilizing the data
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collected with a high frequency by the D-PMUs and historical
database to make proactive decisions is a topic for future
research.

VI. CONCLUSION
A linear integer programming model for fault diagnosis
in active power distribution systems is proposed in this
paper. By utilizing the fault direction related alarms sent by
bi-directional fault monitoring devices (such as D-PMU,
FTUs, bi-directional FIs), the tasks of the estimation of fault
zones and the identification of false alarms can be addressed
together. In addition, by changing the input values of the
corresponding variables, it is easy to adapt to the changes
in the topology of the distribution system studied and the
connection state of each DG. As more fault location infor-
mation can be attained by the bi-directional fault monitor-
ing devices than the uni-directional ones, the fault diagnosis
method proposed can accommodate more false alarms. Sim-
ulations have demonstrated that the proposed approach is suf-
ficiently efficient for real-time fault diagnosis of distribution
systems.
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