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ABSTRACT Fast and high-precision attitude control for the rigid spacecraft is important for its broad
applications in astronautics. In this paper, we address this problem via continuous nonsingular fixed-time
sliding mode control approach. At first, by improving the adding power integral technique, a nonsingular
nominal attitude controller is presented to achieve fixed-time convergence of the unperturbed attitude system,
which underpins the basics for design of the sliding mode motion and surfaces for the subsequent proposed
main results. Then, a fixed-time full-order sliding mode controller with an explicit bound of settling time is
proposed to track the desire attitude even in the presence of external disturbances. However, this controller
requires the angular acceleration signals which is usually unmeasurable. To this end, an integral sliding
mode controller is further presented to achieve fixed-time attitude tracking without using any acceleration
information. This proposed integral sliding mode controller can realize second-order sliding mode with
rigorous proof of fixed-time convergence. Both the proposed fixed time full-order and integral sliding mode
controller are inherent nonsingular and chattering-free. Numerical examples are illustrated to demonstrate
the effectiveness of the results given herein in practical scenarios.

INDEX TERMS Attitude control, sliding mode control, fixed-time convergence.

I. INTRODUCTION
In the past decades, the attitude control of spacecraft has
been paid attention widely from the control community for its
broad applications in astronautics, such as deep space explo-
ration, space-based interferometry and surveillance, etc. [1],
[2]. However, high-precision rapid attitude controller design
is still one of themost complicated and challenging problems.
It is not only due to the inherent nonlinear and coupling
characteristics in the attitude dynamics and kinematics, but
also because there are the severe external disturbances which
arise from gravity gradient, atmospheric drag, and magnetic
effects, etc [3]–[5]. To this end, a great many researches
on spacecraft attitude control have been done under various
assumptions and scenarios [4]–[9].

Sliding mode control (SMC) is one of the most popular
methods in attitude controller design for its strong robustness
and computational simplicity in handling nonlinear control
systems with disturbances [3], [10]–[12]. Particularly, finite-
time stabilization is popular since it can provide faster conver-
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gence, higher control precision, and better anti-disturbance
performance. To name a few, by resorting to terminal SMC
(TSMC) method, the authors in [13]–[15] present the robust
attitude controllers to achieve finite-time convergence at the
cost of singularity in control signals. To eliminate this sin-
gularity, nonsingular TSMC (NTSMC) technique is further
adopted in [16]–[18] to design finite-time attitude controllers
without causing singularity. At the same time, the authors in
[1], [19]–[21] present another class of nonsingular finite-time
TSMC by switching from the terminal sliding manifold to a
differential general sliding manifold. Nevertheless, it is worth
mentioning that the settling time of finite-time stabilization is
still dependent on the initial states, which means the conver-
gence time is difficult to estimate when the initial states are
unknown in prior.

Recently, fixed-time control method, in which the upper
bound of settling time is independent of the initial states [22],
is studied for the attitude control of rigid spacecraft under
various assumptions and scenarios [23]–[30]. For instance,
the NTSMC is extended in [28], [29] to the fixed-time atti-
tude controller design of rigid spacecraft, and the authors in
[30] further introduce a sinusoid function into the fixed-time
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NTSMC design and guarantee a fixed settling time.
In [23]–[25], by using switching fixed-time sliding mode sur-
face, robust fixed-time attitude controllers for rigid spacecraft
is proposed based on quaternion or rotation matrix. Distur-
bance observer method and homogeneity theorem are utilized
to design fixed-time attitude controllers for rigid spacecraft
with actuator faults in [27] and flexible spacecraft in [26].
Reference [31] proposes a discontinuous controller via add a
power integral technique to stabilize the attitude in fixed time.

Although fruitful results have been achieved in fixed-
time attitude control problem in the above-mentioned liter-
atures, there still remain some issues that need to be noticed.
Note that the singularity is eliminated in the controllers
[23]–[25] by switching fixed-time sliding mode surface,
while the attitude tracking error can only converge to a region
in fixed time. As for the NTSMC-based attitude controllers in
[28]–[30], the convergence time in reaching phase is com-
plicated to estimated. Another problem is the discontinu-
ity in control action. Specifically, the discontinuous control
torques required in [24], [30], [31]may lead to chattering phe-
nomenon, which can damage the actuators and excite unmod-
eled high-frequency dynamics. In general, this problem could
be eliminated through the saturation function (boundary layer
method), which is suggested in [24], [29]. However, the cost
is the degradation of the steady control accuracy, since the
sliding mode function can only converge to the boundary
layer in finite or fixed time. Although high-order sliding
mode control and full-order sliding mode control are applied
in [32], [33] to design finite-time continuous nonsingular
attitude controller, to the best of authors’ knowledge, there
are still few works which can ensure fixed-time convergence
and provide continuous control torques for the disturbed rigid
spacecraft without using disturbance observers. Furthermore,
feedback linearization or state transformation used in the
controllers [24]–[27] brings heavy computation burden, since
these controllers need real-time calculation of the compli-
cated accurate compensation terms and the inverse of the
Jacobian matrix. Therefore, it is interesting and necessary to
design robust high-precision fixed-time attitude controllers
without causing singularity or chattering.

In this paper, we study the fixed-time attitude tracking
problem for the rigid-body spacecraft with unknown external
disturbance. First, by improving traditional adding power
integral technique (APIT), we first present a novel nominal
attitude controller to construct the sliding mode motion for
the main results. As full-order sliding mode control and super
twisting algorithm (STA) can both generate continuous con-
trol action, we further propose fixed-time full-order sliding
mode controller (FxFSMC) and fixed-time integral sliding
mode controller (FxISMC) to ensure zero attitude tracking
error in fixed time, where STA is chosen as the reaching
law of FxISMC. Both FxFSMC and FxISMC are inherent
nonsingular and chattering-free, since the singular term is
avoided via improved APIT, and the control action generated
by FxFSMC and FxISMC are continuous. The contributions
are summarized as follows:

(1) The design of Lyapunov function and virtual velocity in
APIT is improved in this paper to design a nonsingular fixed-
time attitude controller for the unperturbed attitude system.
Compared with the direct extension of traditional APIT to
the fixed-time attitude controller [31], our improvements sim-
plify the design procedure and reduce computational com-
plexity of the controller.

(2) Via the idea of integral sliding mode and fixed-time
STA technique, FxISMC is proposed to achieve fixed-time
convergence without using any acceleration information.
Moreover, the proposed FxISMC can realize second-order
sliding mode ṡ = s = 0 and provide rigorous proof of
fixed-time convergence for the attitude and angular velocity
tracking error. While most existing integral sliding mode
controllers, such as [27], [34], can only achieve first-order
sliding mode s = 0.

(3) The proposed FxFSMC and FxISMC are designed
based on attitude and angular velocity explicitly/directly,
which simplifies controller structure and reduces computa-
tion compared with the controllers based on feedback lin-
earization [24], [27].

Notation. I3 denotes 3 × 3 identity matrix. ‖ · ‖
denote Euclidean norm for vector or induced 2-norm for
matrix, respectively. For v = [v1, v2, v3]T ∈ R3,
v× , [0,−v3, v2; v3, 0,−v1;−v2, v1, 0], diag(v) ,
[v1, 0, 0; 0, v2, 0; 0, 0, v3]. For x ∈ R and any constant p,
the function x 7→ dxcp is defined as sign(x)|x|p, where
sign(·) is the signum function. Based on this definition,
we can obtain that for any constants p and q, ∂dxcp/∂x =
p|x|p−1 , dxcpdxcq = |x|p+q, ddxcpcq = |x|pq. For x =
[x1, · · · , xn]T ∈ Rn and p ∈ R, |x|p , [|x1|p, · · · , |xn|p]T .
dxcp , [dx1cp, · · · , dxncp]T . For a vector x, H (x) = (1 +
xT x)/4.

II. PROBLEM FORMULATION
In this paper, the orientation of the rigid spacecraft with
respect to the inertial frame is described in terms of the Mod-
ified Rodriguez Parameters (MRPs). The attitude kinematics
and dynamics of the spacecraft are given by

σ̇ = G(σ )ω, Jω̇ = −ω×Jω + u+ d (1)

where σ ∈ R3 is MRPs of the rigid spacecraft, ω ∈ R3

is the angular velocity of the spacecraft with respect to the
inertial frame expressed in the body frame, J ∈ R3×3 and
u = [u1, u2, u3]T ∈ R3 are the inertia and the control torque
of spacecraft, d = [d1, d2, d3]T ∈ R3 is the unknown external
disturbance vector satisfying Assumption 1, and G(σ ) =
(1/2)[(1 − σ Tσ )/2I3 + σ× + σσ T ]. The matrix G(σ ) has
the following properties [20],

σ TG(σ )ω = H (σ )σ Tω,

G(σ )GT (σ ) = GT (σ )G(σ ) = H2(σ )I3 (2)

where H (σ ) > 1/4.
Assumption 1 ( [32], [33]): The external disturbances sat-

isfy |ḋi| 6 L <∞, i = 1, 2, 3, where L is a known constant.
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The desired trajectory σr is constructed to avoid the kine-
matic singularity associated with the MRPs and ωr, ω̇r are
assumed to be bounded. In what follows, to solve the attitude
tracking problem, as in [31], we define e = [e1, e2, e3]T

as the relative attitude error between the actual and desired
attitudes, where

e = σ ⊗ σr−1 =
σr(σ Tσ − 1)+ σ (1− σrTσr)+ 2σ×σr

1+ σrTσrσσ T + 2σrTσ

Define v = [v1, v2, v3]T = ω − Rbdωr ∈ R3 as the as the
relative angular velocity error, whereRbd is the rotation matrix
from the desired reference frame to the body reference frame.
Rbd is an orthogonal rotationmatrix given byRbd = I3−4((1−
eT e)/(1+ eT e)2)e× + 8(e×)2/(1+ eT e)2. Then, the relative
kinematic and dynamic equations are represented as follows:{

ė = G(e)v
Jv̇ = −ω×Jω + u− JRbd ω̇r + Jv

×Rbdωr + d
(3)

The control objective of this paper is to design a fixed
time attitude tracking control law for the spacecraft in (1)
such that the desired attitude can be tracked in fixed time in
the presence of unknown disturbances. Specifically, e and v
converge to zero in fixed time, i.e. the settling time is bounded
by a value that is independent with any initial states.

The next several lemmas are provided here to streamline
the main results in the next section.
Lemma 1 ([28]): Consider the nonlinear system

ẋ = f (x, t), x = x0, f (0) = 0,

where x ∈ Rn, and f : Rn
→ Rn. Suppose that there exists a

continuous positive-definite function V : Rn
→ R such that

V̇ 6 −αV p
− βV q, where α > 0, β > 0, p ∈ (0, 1), q > 1.

Then, ∀x(0) ∈ Rn, the state x converges to zero in fixed time
T , and T satisfies T 6 1

α(1−p) +
1

β(q−1) .
Lemma 2 ([35]): Consider the following dynamic system

(4) with state x, y ∈ R and bounded disturbance |d | < L,

ẋ = −k1(dxc1/2 + µdxc3/2)+ y

ẏ = −k2(
1
2
dxc1/2 + 2µx +

3
2
µ2
dxc2)+ d . (4)

If the control parameters satisfy k1 > 2
√
L, k2 > 2L, and

µ > 0, then the states x, ywill converge to zero in fixed time.
Lemma 3 ([36]): If 0 < p < 1, ∀x, y ∈ R, we have
|dxcp − dycp| 6 21−p|x − y|p.
Lemma 4 ([36]): If c, d > 0 and γ > 0, ∀x, y ∈ R,

we have |x|c|y|d 6 c
c+d γ |x|

c+d
+

d
c+d γ

−
c
d |y|c+d , the equal-

ity holds if and only if γ (1+c/d)/(c+d)
|x| = |y|.

Lemma 5 ([2]): For any xi ∈ R, i = 1, · · · , n, and p ∈
(0, 1],

(∑n
i=1 |xi|

)p
6
∑n

i=1 |xi|
p 6 n1−p

(∑n
i=1 |xi|

)p.
Lemma 6 ([37]): For any xi ∈ R, i = 1, · · · , n, and q > 1,∑n
i=1 |xi|

q 6
(∑n

i=1 |xi|
)q

6 nq−1
∑n

i=1 |xi|
q.

III. MAIN RESULTS
A. NOMINAL ATTITUDE CONTROLLER DESIGN
In this subsection, we will present a nominal continuous non-
singular fixed-time attitude controller via improved APIT for

the nominal attitude dynamics (i.e. d = 0 in (1)). Note that
the nominal closed-loop system dynamics with this controller
underpins the sliding mode surface design of the subsequent
controllers FxFSMC and FxISMC.

The nominal fixed-time attitude controller un for the space-
craft system (1) with d = 0 is designed as

un = JRbd ω̇r − Jv
×Rbdωr + ω

×Jω

−C3H (e)Jdξc2p−1 − C4H (e)Jdξcp+q−1 (5)

where p ∈ (1/2, 1), q ∈ (1,∞),

ξ = dvc1/p + c1/p1 e+ c1/p2 dec
q/p, (6)

C j = diag([cj1, cj2, cj3]), j = 3, 4,

c1 =
21−pµ1

(1+ p)
+ 33/221−2pλ1 +

2−p32−pλ2
1+ p

c2 =
4(q−1)/(p+q)

(1+ p)3(1−q)/22p−1
µ2 +

3(q+1)/2qCp,qλ3
(p+ q)(1+ p)2p−1

c3i = 21−pµ1 + (1+ p)
21−2p31/2

λ1
+

2−p3c21m
2(ei)

λ2
+ 22−2p3m(ei)

c4i =
4(q−1)/(p+q)

2p−1
µ2 +

(
3pc2m(ei)

)q/p+1
2p−1(p+ q)λq/p3

(7)

m(ei) =
(
c1/p1 + c

1/p
2 q/p|ei|q/p−1

)
, i = 1, 2, 3, λ1, λ2, λ3

are arbitrary positive constants, µ1, µ2 are positive controller
parameters, and

Cp,q =

{
1, p+ q ≤ 2,
31−(p+q)/2, p+ q > 2.

Then, it follows that with the proposed nominal controller
(5), the nominal closed-loop attitude system becomes{

ė = G(e)v,
v̇ = −C3 H (e)dξc2p−1 − C4 H (e)dξcp+q−1.

(8)

The next lemma shows that the states e, v of the nominal
closed-loop system (8) converge to zero in fixed time.
Lemma 7: Consider the spacecraft system (1) with d = 0,

if the control torque is chosen as un in (5) with proper
parameters satisfying (7), then the desired attitude can be
tracked in fixed time, and the settling time T1 is bounded by

T1 ≤
4(1+ p)
µ1(1− p)

+
4(1+ p)
µ2(q− 1)

. (9)

Proof: First, we define the virtual angular velocity input
v∗ as

v∗ = −
⌈
c1/p1 e+ c1/p2 dec

q/p⌋p, (10)

and ξ= [ξ1, ξ2, ξ3]T represents the auxiliary velocity tracking
error

ξ = dvc1/p − dv∗c1/p. (11)
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Note that the elements of ξ in (6), v∗ in (10) and v̇ in (8) are

v̇i = −c3iHdξic2p−1 − c4iHdξicp+q−1,

v∗i = −
⌈
c1/p1 ei + c

1/p
2 deic

q/p⌋p,
ξi = dvic1/p − dv∗i c

1/p

= dvic1/p + c
1/p
1 ei + c

1/p
2 deic

q/p, i = 1, 2, 3.

where H is shortened for H (e).
Step 1 (The definition of the Lyapunov function): Choose

the following Lyapunov candidate

V = V0 +
3∑
i=1

Vi (12)

where

V0 =
(
eT e

)(1+p)/2
(13)

Vi = 2p−1
∫ vi

v∗i

dyc1/p−dv∗i c
1/pdy, i = 1, 2, 3. (14)

The functions Vi, i = 1, 2, 3 are positive definite and radially
unbounded (see the proof in the Appendix).

Step 2 (The calculation of V̇0): Taking the derivative of V0,
we have

V̇0 = (1+ p)
(
eT e

)(p−1)/2
eT ė

= (1+ p)HV (p−1)/(p+1)
0 eT v

= (1+ p)HV (p−1)/(p+1)
0

∑3

i=1
eivi (15)

Note that for i = 1, 2, 3,

eivi = eiv∗i + ei(vi − v
∗
i )

= −ei
⌈
c1/p1 ei + c

1/p
2 deic

q/p⌋p
+ ei(vi − v∗i )

= −|ei|
(
c1/p1 |ei| + c

1/p
2 |ei|

q/p)p
+ ei(vi − v∗i )

= −
(
c1/p1 |ei|

1+1/p
+ c1/p2 |ei|

(1+q)/p)p︸ ︷︷ ︸
via Lemma 5

+ei (vi − v∗i )︸ ︷︷ ︸
via Lemma 3

≤ −c12p−1|ei|1+p − c22p−1|ei|1+q + 21−p|ei||ξi|p

It then follows from (15) that

V̇0 ≤ −c1(1+ p)2p−1HV
(p−1)/(p+1)
0

3∑
i=1

|ei|1+p

− c2(1+ p)2p−1HV
(p−1)/(p+1)
0

3∑
i=1

|ei|1+q

+ (1+ p)21−pHV (p−1)/(p+1)
0

3∑
i=1

|ei||ξi|p (16)

Noting (1+ p)/2 ∈ (0, 1), then via Lemma 5,

3∑
i=1

|ei|1+p =
3∑
i=1

|ei|2∗(1+p)/2

≥

(
3∑
i=1

|ei|2
)(1+p)/2

= V0 (17)

Similarly, since (1+ q)/2 > 1, via Lemma 6,

3∑
i=1

|ei|1+q =
3∑
i=1

|ei|2∗(1+q)/2

≥ 31−(1+q)/2
(

3∑
i=1

|ei|2
)(1+q)/2

= 3(1−q)/2V (1+q)/(1+p)
0 (18)

Also, via Lemma 5, we have

|ei| ≤
3∑
i=1

|ei| ≤ 31/2
(

3∑
i=1

|ei|2
)1/2

≤ 31/2V 1/(1+p)
0

Then, it follows that

V (p−1)/(p+1)
0

3∑
i=1

|ei||ξi|p

≤ 31/2
3∑
i=1

V p/(1+p)
0 |ξi|

p

≤ 31/2
3∑
i=1

(
V 1/(1+p)
0

)p
|ξi|

p (via Lemma 5)

≤
31/2λ1

2

3∑
i=1

V 2p/(1+p)
0 +

31/2

2λ1

3∑
i=1

|ξi|
2p

=
33/2λ1

2
V 2p/(1+p)
0 +

31/2

2λ1

3∑
i=1

|ξi|
2p (19)

Substituting (17), (18), and (19) into (16), we can obtain

V̇0 ≤ −(1+ p)
(
2p−1c1 − 33/22−pλ1

)
HV 2p/(p+1)

0

− (1+ p)2p−13(1−q)/2c2HV
(p+q)/(p+1)
0

+ (1+ p)2−p
31/2

λ1
H

3∑
i=1

|ξi|
2p (20)

Step 3 (The calculation of
∑

i=1 3V̇i): Taking the derivative
of Vi, i = 1, 2, 3, we have

V̇i = 2p−1ξiv̇i − 2p−1
∫ vi

v∗i

∂

∂t

(
dv∗i c

1/p
)
dy

≤ 2p−1ξiv̇i + 2p−1
∣∣∣∣ ∂∂t (dv∗i c1/p)

∣∣∣∣ |vi − v∗i |
≤ 2p−1ξiv̇i +

∣∣∣∣ ∂∂t (dv∗i c1/p)
∣∣∣∣ |ξi|p (21)

Noting that

∂

∂t

(
dv∗i c

1/p
)
=

∂

∂ei

(
c1/p1 ei + c

1/p
2 deic

q/p
)
ėi
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=

(
c1/p1 + c

1/p
2 q/p|ei|q/p−1

)
ėi

= m(ei)ėi (22)

where m(ei) =
(
c1/p1 + c

1/p
2 q/p|ei|q/p−1

)
.

Also via Lemma 6,

||ė||2 = vTGTGv = H2
3∑
j=1

|vj|2 6 H2

 3∑
j=1

|vj|

2

.

Hence, we have

|ėi| 6 ‖ė‖ ≤ H
3∑
j=1

|vj|

≤ H
3∑
j=1

(
|v∗j | + |vj − v

∗
j |

)

≤ H
3∑
j=1

(∣∣c1/p1 ej + c
1/p
2 dejc

q/p∣∣p + 21−p|ξj|p
)

= H
3∑
j=1

((
c1/p1 |ej| + c

1/p
2 |ej|

q/p)p︸ ︷︷ ︸
via Lemma 5

+21−p|ξj|p
)

≤ H
3∑
j=1

(
c1|ej|p + c2|ej|q + 21−p|ξj|p

)
. (23)

Substituting (22) and (23) into (21) results in

V̇i ≤ 2p−1ξiv̇i +

∣∣∣∣ ∂∂t (dv∗i c1/p)
∣∣∣∣ |ξi|p

≤ 2p−1ξiv̇i + m(ei)|ėi||ξi|p

≤ 2p−1ξiv̇i + m(ei)H |ξi|p

×

3∑
j=1

(
c1|ej|p + c2|ej|q + 21−p|ξj|1/p

)
(24)

Via Lemma 4, we have

|ej|p|ξi|p ≤
λ2

2c1m(ei)
|ej|2p +

c1m(ei)
2λ2

|ξi|
2p

|ej|q|ξi|p ≤
q

p+ q
λ3

c2m(ei)
|ej|p+q

+
p

p+ q

(
c2m(ei)
λ3

)q/p
|ξi|

p+q

|ξj|
p
|ξi|

p
≤ 1/2|ξj|2p + 1/2|ξi|2p (25)

Since p ∈ (0, 1), it follows from Lemma 5 that

3∑
i=1

|ei|2p ≤ 31−p
( 3∑
i=1

|ei|2
)p
= 31−pV 2p/(1+p)

0 (26)

If p+ q ≤ 2, then by Lemma 5,

3∑
i=1

|ei|p+q ≤ 31−(p+q)/2V (q+p)/(1+p)
0 (27)

Otherwise p+ q > 2, via Lemma 6,
3∑
i=1

|ei|p+q ≤
( 3∑
i=1

|ei|2
)(p+q)/2

= V (q+p)/(1+p)
0 (28)

Hence, for both the cases of (27) and (28), we have
3∑
i=1

|ei|p+q ≤ Cp,qV
(q+p)/(1+p)
0 (29)

Then, it follows from (24), (25), (26) and (29) that
3∑
i=1

V̇i ≤ 2p−1
∑
i=1

ξiv̇i + H
3∑
i=1

3∑
j=1

(λ2
2
|ej|2p

+
c21m

2(ei)

2λ2
|ξi|

2p
+

qλ3
p+ q

|ej|p+q

+
p

p+ q

(
c2m(ei)

)q/p+1
(λ3)q/p

|ξi|
p+q

+m(ei)21−p1/2|ξj|2p + 21−p1/2m(ei)|ξi|2p
)

≤ 2p−1
∑
i=1

ξiv̇i +
3qCp,qλ3
p+ q

HV (p+q)/(1+p)
0

+
32−pλ2

2
HV 2p/(1+p)

0 + H
3∑
i=1

(3c21m2(ei)

2λ2
|ξi|

2p

+
3p
(
c2m(ei)

)q/p+1
(p+ q)(λ3)q/p

|ξi|
p+q
+ 21−p3m(ei)|ξi|2p

)
(30)

Step 4 (Proving fixed-time convergence of the nominal
system (8)): Combining (20) with (30) and substituting v̇i =
−c3iHdξic2p−1 − c4iHdξicp+q−1, i = 1, 2, 3, we can get

V̇ = V̇0 +
3∑
i=1

V̇i

≤ −a1HV
2p/(p+1)
0 − a2HV

(p+q)/(p+1)
0

−H
3∑
i=1

a3i|ξi|2p − H
3∑
i=1

a4i|ξi|q+p (31)

where

a1 = (1+ p)2p−1c1 − (1+ p)33/22−pλ1 −
32−pλ2

2

a2 = (1+ p)2p−13(1−q)/2c2 −
3qCp,qλ3
p+ q

a3i = 2p−1c3i − (1+ p)
2−p31/2

λ1
−

3c21m
2(ei)

2λ2
− 3m(ei)21−p, i = 1, 2, 3

a4i = 2p−1c4i −
3p

p+ q

(
c2m(ei)

)q/p+1
λ
q/p
3

, i = 1, 2, 3 (32)

Also, via Lemma 5 and 6, we have

V 2p/(p+1)
0 +

3∑
i=1

|ξi|
2p
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≥
(
V0 +

3∑
i=1

|ξi|
p+1)2p/(p+1)

×V (p+q)/(p+1)
0 +

3∑
i=1

|ξi|
q+p

≥ 4(1−q)/(1+p)
(
V0 +

3∑
i=1

|ξi|
p+1)(p+q)/(p+1)

Vi 6 2p−1
∣∣dvic1/p−dv∗i c1/p∣∣∣∣vi − v∗i ∣∣ 6 |ξi|1+p. (33)

Then, substituting these inequalities in (33) into (31) yields

V̇ ≤ −µ1H

(
V 2p/(p+1)
0 +

3∑
i=1

|ξi|
2p

)

− 4(q−1)/(1+p)µ2H

(
V (p+q)/(p+1)
0 +

3∑
i=1

|ξi|
q+p

)

≤ −µ1H
(
V0 +

3∑
i=1

|ξi|
p+1)2p/(p+1)

−µ2H
(
V0 +

3∑
i=1

|ξi|
p+1)(p+q)/(p+1)

≤ −µ1HV r1 − µ2HV r2 (34)

where r1 = 2p/(p+1) < 1, r2 = (p+q)/(p+1) > 1. Noting
that H = H (e) ≥ 1/4, it follows that

V̇ ≤ −
µ1

4
V r1 −

µ2

4
V r2 (35)

Via Lemma 1, we can conclude that ∀e(0), ξ (0), the states e
and ξ converge to zero in fixed time T1, and T1 satisfies

T1 ≤
4

µ1(1− r1)
+

4
µ2(r2 − 1)

=
4(1+ p)
µ1(1− p)

+
4(1+ p)
µ2(q− 1)

Noting that e = 0 implies v∗ = 0 and ξ = dvc1/p. Hence v
also converges to zero in fixed time T1.
Remark 1: Although the traditional adding a power inte-

grator technique (APIT) is already studied in attitude con-
troller designs [2], [5], [16], [31] to achieve finite-time and
fixed-time convergence, in this paper, we improve the design
of Lyapunov function V0,Vi, i = 1, 2, 3 (see (13) and (14))
in APIT and simplifies the derivation of controller, especially
the coupling term ∂/∂tVi, i = 1, 2, 3. Moreover, compared
with the direct extension of APIT to fixed-time attitude con-
trol in [31], we further improve the form of virtual angular
velocity input v∗ in (6) to reduce real-time calculation burden
of the bound of partial derivative m(ei) = |∂/∂eidv∗i c

1/p
|, i =

1, 2, 3.
Remark 2: As can be seen from (9), large µ1 and µ2 will

accelerate the convergence. Besides, decreasing p or increas-
ing q can improve the maximum settling time. To this end,
in practice, the following parameter selection procedure is
suggested: (a) choosing the parameters p ∈ (0, 1), q ∈
(1,∞),µ1 andµ2 according the desired convergence settling

FIGURE 1. Block diagram of closed-loop attitude system with FxFSMC.

time, (b) minimizing max{c1, c2, c3i, c4i, i = 1, 2, 3} in fea-
sible zone {λk > 0, k = 1, 2, 3} such that the conditions (7)
with the assumption m(ei) = c1/p1 are satisfied.

B. FULL-ORDER SLIDING MODE CONTROLLER DESIGN
In this subsection, the continuous fixed-time full-order slid-
ing mode controller (FxFSMC) is presented to address the
attitude tracking problem in the presence of disturbance d
under Assumption 1.

The block diagram of our FxFSMC is given in Fig. 1, where
the full-order sliding mode surface (FSMS) sf is designed
as the derivative of the angular momentum tracking error
between Jv and Jvn,

sf = Jv̇− Jv̇n (36)

where vn is the nominal angular velocity input defined as

v̇n = −H (e)a(e, ξ ), vn(0) = v(0)

a(e, ξ ) = −c3dξc2p−1 − c4dξcp+q−1 (37)

Note that the FSMS in (36) is designed to guarantee the
system dynamic in (first-order) sliding mode sf = 0 is equiv-
alent to the nominal closed-loop system (8). Then, the follow-
ing full-order sliding mode attitude controller uf is presented
to drive the states onto the FSMS.{

uf = un + zf ,
żf = −k1dsf cq1 − k2dsf cq2 − k3dsf c0

(38)

where un is defined in (5).
Theorem 1: For the spacecraft attitude control system in

(1) with Assumptions 1 satisfied, suppose that the controller
is designed as (38) and the FSMS is designed as (36). If the
control parameters satisfy k1 > 0, k2 > 0, k3 > L, q1 ∈
(0, 1), q2 ∈ (1,∞), then the FSMS sf converges to zero in
fixed time, and the settling time T2 is bounded by

T2 6
2

21/2+q1/2k1(1− q1)
+

2
21/2+q2/2k2(q2 − 1)

. (39)

Furthermore, and state errors e and v will converge to zero in
fixed time T1 + T2, where T1 is bounded by (9).

Proof: Let sf = [sf 1, sf 2, sf 3]T , zf = [zf 1, zf 2, zf 3]T .
Choose the following Lyapunov function candidate

Vf =
1
2
sf T sf =

3∑
i=1

sTfi sfi (40)
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Taking the derivative of Vf , we have

V̇f =
3∑
i=1

sfiṡfi (41)

Substituting (38) and (5) into (3), we can obtain

Jv̇ = −H (e)Ja(e, ξ )+ zf + d

Then the FSMS sf becomes

sf = Jv̇− Jv̇n = zf + d

Hence, it follows from (41) that

V̇f =
3∑
i=1

sfi
(
żfi + ḋi

)
=

3∑
i=1

sfi
(
−k1dsficq1 − k2dsficq2 − k3dsfic0 + ḋi

)
=

3∑
i=1

(
−k1|sfi|2r3 − k2|sfi|2r4 − k3|sfi| + ḋisfi

)
=

3∑
i=1

(
−k1|sfi|2r3 − k2|sfi|2r4 − (k3 − L)|sfi|

)
(42)

where r3 = 1/2+ q1/2 ∈ (0, 1), r4 = 1/2+ q2/2 ∈ (1,∞).
Via Lemma 5, we have

V r3
f 6

1
2r3

3∑
i=1

(
|sfi|2r3

)
V r4
f 6

3r4−1

2r4

3∑
i=1

(
|sfi|2r4

)
(43)

Also, note that k1, k2 > 0 and k3 > L, then (42) and (43)
implies that

V̇f 6 −k1
3∑
i=1

(
|sfi|2r3

)
− k2

3∑
i=1

(
|sfi|2r4

)
6 −2r3k1V

r3
f −

2r4

3r4−1
k2V

r4
f (44)

Therefore, according to Lemma 1, sf converges to zero in
fixed time, and the settling time T2 is bounded by

T2 6
1

2r3k1(1− r3)
+

3r4−1

2r4k2(r4 − 1)

=
2

21/2+q1/2k1(1− q1)
+

2× 3q2/2−1/2

21/2+q2/2k2(q2 − 1)

Hence, for t > T2, when sf = 0, the attitude dynamics in
sliding mode become v̇ = v̇n = −H (e)a(e, ξ ) via (36) and
(37), which is the same as the nominal closed-loop system (8).
Consequently, it follows from Lemma 7 that e and v converge
to zero in fixed time T1 + T2.
Remark 3: From Eqns. (42) and (39), it can be seen that

large k1 and k2 imply fast convergence rate in the reaching
phase, and large k3 means better disturbance attenuation per-
formance. However, in practice, the value of controller gains

FIGURE 2. Block diagram of closed-loop attitude system with FxISMC.

are limited by the bandwidth and magnitude of actuators.
Besides, too large k3 may cause significant chattering induced
by time delay ormeasurement noise. Therefore, compromises
should be made when selecting k1, k2 and k3.
Remark 4: The reason why the sliding mode surface (38)

is called the FSMS is because the order of the open-loop
attitude dynamics (1) is the same as that of the FSMS (36).
Note that the relative angular acceleration v̇ is needed in (36)
but usually unavailable in practice. One solution is to apply
the fixed-time differentiator [35] to estimate v̇, ẋi = −γ1(dzic

1
2 + µdzic

3
2 )+ yi

ẏi=−γ2(
1
2
dzic0+2µzi+

3
2
µ2
dzic2) (i = 1, 2, 3)

(45)

where zi = xi − vi, γ1 > 2
√
Lv, γ2 > 2Lv, Lv = maxt>0 |v̇i|.

It is shown in [35] that xi and yi converge to vi and v̇i in fixed
time, i = 1, 2, 3.

C. INTEGRAL SLIDING MODE CONTROLLER DESIGN
Although the fixed-time attitude tracking problem is solved
by the full-order sliding mode controller (38), it is worth
noting that v̇ or its estimation is required in FSMS (36), how-
ever v̇ is usually sensitive to the measurement noise. In this
subsection, the integral sliding mode technique is adopted to
design fixed-time integral sliding mode controller (FxISMC)
without using v̇.
The block diagram of our proposed FxISMC is illustrated

in Fig. 2, where the integral sliding mode surface (ISMS) sI
is designed as the the angular momentum tracking error,

sI = Jv− Jvn (46)

where vn is defined in (37), and fixed time STA technique [35]
is adopted to realize second-order sliding mode sI = ṡI = 0.
Note that vn can be rewritten as

vn = v(0)−
∫ t

τ=0
H (e)a(e, ξ )dτ

Then, the integral sliding mode surface sI is equivalent to

sI = Jv− Jv(0)+ J
∫ t

τ=0
H (e)a(e, ξ )dτ (47)

Noting that sI can be regard as the integral of full-order
sliding mode sf in (36), hence when ṡI = 0, the attitude
system is equivalent to the nominal closed-loop system (8).
Base on the STA technique, the following integral sliding
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mode controller uI is proposed to realize the second-order
sliding mode motion sI = 0 and ṡI = 0.

uI = un − k4
(
dsIc1/2 + ρdsIc3/2

)
− zI

żI = k5

(
1
2
dsIc0 + 2ρsI +

3
2
ρ2dsIc2

) (48)

where un is the same as (5).
Theorem 2: For the spacecraft attitude control system in

(1) with Assumptions 1 satisfied, suppose that the controller
is designed as (48) and the sliding mode surface is designed
as (47). If the control law parameters satisfy k4 > 2

√
L,

k2 > 2L, µ > 0, then the second-order sliding mode sf =
ṡf = 0will be established in fixed time, furthermore, attitude
tracking errors e and v will converge to zero in fixed time.

Proof: Substituting (48) and (5) into (3), we have

Jv̇ = −H (e)Ja(e, ξ )− k4
(
dsIc1/2 + ρdsIc3/2

)
− zI + d

Then, the derivative of sI becomes

ṡI = Jv̇− Jv̇n
= −k4

(
dsIc1/2 + ρdsIc3/2

)
− zI + d (49)

Define an auxiliary variable wI as wI = d − zI , then,
the closed-loop sliding mode dynamics (49) and (48) can be
transformed into

ṡI = −k4
(
dsIc1/2 + ρdsIc3/2

)
+ wI

ẇI = −k5

(
1
2
dsIc0 + 2ρsI +

3
2
ρ2dsIc2

)
+ ḋ

(50)

It follows from Lemma 2 that sI and wI converge to
zero in fixed time. Then, ṡI also converges to zero in fixed
time according to (50). Once the second order sliding mode
is established, the attitude dynamics becomes the nominal
closed-loop system (8), and e and v converge to zero in fixed
time via Lemma 7.

Remark 5: It is worthy mention that ṡI = 0 is necessary
in the proof, but most existing FxISMC results [27], [34]
can only achieve first-order sliding mode sI = 0, and ṡI
is regarded as 0. However, ṡI = 0 can not necessarily be
implied by sI = 0 directly, since ṡ is discontinuous or nonex-
istent [38]. To this end, the recently proposed fixed-time STA
[35] is adopted here to achieves second-order sliding mode
sI = 0 and ṡI = 0.
Remark 6: According to the analysis in [35], large k4, k5

would accelerate the sliding reaching phase and provide large
tolerable range of disturbance. However, the estimate of set-
tling time is very crude. Hence, as is recommended in [35],
parameters k4, k5, and ρ can be selected via simulation.
Remark 7: Notice that adding a power integrator tech-

nique is also adopted in the recent work [31] to achieve
a fixed-time attitude stabilization. Compared with the con-
troller [31], our method provide a more explicit and direct
relationship between the maximum settling time (9) and
parameter condition (7). Moreover, different from [31],

the proposed FxFSMC (38) and FxISMC (48) are both con-
tinuous, since the discontinuous term dsf c0 and dsIc0 are
integrated in control laws uf and uI . Hence the proposed
controllers are chattering-free in theory. This feature is also
suitable for practice, because the commonly used actuators,
such as control moment gyroscopes and reaction wheel can
only provide continuous control torques.
Remark 8: Different from the fixed-time sliding mode

controllers based on feedback linearization or state transfor-
mation [24]–[27], our sliding mode surfaces are designed
based on attitude and angular velocity explicitly and directly.
Therefore, the proposed sliding mode surfaces (36) and (47)
have a clearer physical meaning and reduce the computation
burden caused by the accurate compensation terms and the
inverse of the Jacobian matrix in [24]–[27].
Remark 9: Note that the bound of derivative disturbance L

is required in our FxFSMC (38) and FxISMC (48). However,
it is difficult to obtain this parameter when the flexible vibra-
tion or uncertainties inmoments of inertia is considered. If the
bound L is unknown, our recommendation is to utilize adap-
tive methods to estimate the bound of derivative disturbance.
Remark 10: Our proposed FxFSMC and FxISMC can be

extended to the Rodrigues parameter directly, and to the
quaternion and rotation matrix using feedback linearization.

IV. SIMULATION RESULTS
In this section, simulations results are presented to verify
the effectiveness of the proposed controllers FxFSMC (38)
and FxISMC (48) in various scenarios. The recent proposed
finite-time integrate sliding mode controller (denoted by
FnISMC) in [34] is used here for comparison purpose.

Consider the rigid spacecraft with the inertia matrix J =
[20, 1.2, 0.9; 1.2, 17, 1.4; 0.9, 1.4, 15]kg ·m2 [1]. The exter-
nal disturbances are d = [1 sin(0.8t + 1), 1.5 sin(0.6t +
2), 2 sin(0.4t + 3)]TN ·m satisfying Assumption 1 with L =
1. The initial MRPs of desired attitude and angular velocity
are σr(0) = 0 andωr(0) = 0, and the desired angular velocity
is set as ωr(t) = [0.2 sin(0.3 t), 0.3 sin(0.3 t), 0.4 sin(0.4 t)].

The parameters of FxFSMC and FxISMC are chosen via
our recommended processes in Remark 2, 3, and 6, which
are given as c1 = 0.81, c2 = 1.45, λ1 = 0.14, λ2 = 0.15,
λ3 = 1.0, p = 0.8, q = 1.2 (µ1 = µ2 = 0.2), k1 = 1.5,
k2 = 2, k3 = 1, k4 = k5 = 2, ρ = 1, . The parameters of
FnISMC in [34] are determined by trial and error until a good
tracking performance is achieved, and are given as k1 = 1,
k2 = 1, k3 = 1.5, α1 = 0.9. Note that the discontinuous sign
function in FxFSMC [34] is approximated by the saturation
function si/(|si| + 8) with 8 = 0.001 to reduce inevitable
chattering induced by noises. The discontinuous terms d·c0

in FxFSMC and FxISMC are directly utilized in simulation
without any approximation.

A. COMPARATIVE SIMULATION WITH EXTERNAL
DISTURBANCE
This subsection focuses on the disturbance attenuation per-
formance analysis of FnISMC, FxFSMC, and FxISMC. The
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TABLE 1. Comparation results without measurement noise and
saturation.

responses of state and control signals in the case of σ (0) =
[0.5;−0.4; 0.3]T , ω(0) = [−0.05; 0.04;−0.03]T rad/s are
presented in Figs. 3 - 5, and the performances are summarized
in Table 1, where UBe and UBv denote the ultimate bounds
(UB) on steady states of ‖e‖ and ‖v‖ respectively, ST denotes
the settling time (time after which ‖e‖ < 0.01 and ‖v‖ < 0.02
hold), and Mu = maxt≥0,i=1,2,3 |ui| denotes the maximum
amplitude of control signals.

It can be seen from Figs. 3 - 4 that all the controllers can
achieve finite-time state convergence of e, v. It follows from
the logarithm curves of the absolute value |ei|, |vi|, i = 1, 2, 3
in the figures and the values of UBe and UBv in Table 1 that
proposed FxFSMC and FxISMC have much better steady-
state precision compared with the first-order FnISMC. Also,
the chattering phenomenon is avoided for all controllers
according to the curves of u in Fig. 5. However, it can be
seen from Mu index in Table 1 that the fixed-time controllers
FxFSMC and FxISMC require larger control magnitudes. It
is also worth noting that the extremely large control in FxF-
SMC is caused by the initial estimate error of the fixed-time
differentiator (45), hence FxISMC is more recommended if
the angular acceleration is not measurable.

Moverover, the relationships between settling time and
initial conditions are discussed here. The initial states are set
as

σ (0) = 0.2n[0.5;−0.4; 0.3]T ,

ω(0) = 0.2n[−0.05; 0.04;−0.03]T , n=1, · · · , 10. (51)

The performances of the settling time with FnISMC, FxF-
SMC, and FxISMC are shown in Fig. 6, where N =

‖σ (0)‖2 + ‖ω(0)‖2. It can be seen that the settling times of
FxFSMC and FxISMC barely increase with initial conditions
when N > 1, compared with that of FnISMC, which demon-
strates the fixed-time convergence property of our proposed
controllers.

B. COMPARATIVE SIMULATION WITH DISTURBANCE,
SATURATION, UNCERTAINTY AND NOISE
In this subsection, more real scenarios are considered to test
the robustness of the controllers of FnISMC, FxFSMC, and
FxISMC in the last section. In order to take the actuator
saturation into consideration, the maximum control torque is
limited by ±30Nm as the physical constraints.
Moreover, uncertainty in inertia matrix is introduced as

1J = [2, 0.12, 0.09; 0.12, 1.7, 0.14; 0.09, 0.14, 1.5]kg ·m2.
Besides, the measured signals are also taken into consider-
ation. Define em = e + neζe and vm = v + nvζv, where

FIGURE 3. Attitude tracking errors e without measurement noise.

FIGURE 4. Angular velocities tracking errors v without measurement
noise.

ζe = [ζe1, ζe2, ζe3]T and ζv = [ζv1, ζv2, ζv3]T are random
variables with ζij ∈ [−1, 1], (i = e, v; j = 1, 2, 3), and
ne = nv = 0.01 are the noise magnitudes. The raw measured
signals em and vm are filtered by a low-pass filter 1/(1+0.1s),
where s is the Laplace variable.

The simulation results in the case of σ (0) =

[0.5;−0.4; 0.3]T , ω(0) = [−0.05; 0.04;−0.03]T rad/s are
given in Figs. 7 -9. The performance of the different controller
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FIGURE 5. Control torques u without measurement noise.

FIGURE 6. Settling time under different initial conditions without
measurement noise.

TABLE 2. Comparation results with measurement noise and saturation.

is summarized in Table 2. Also, the settling time results for
different initial conditions (51) are given in Fig. 10.

From Figs. 7 - 8 and Table 2, it can be seen that all
controllers can resist the actuator saturation, and the proposed
FxFSMC and FxISMC can achieve better steady precision
than FnISMC, implying better robustness against disturbance
and uncertainty in the presence of measurement noise.

Moreover, Fig. 10 shows that FxFSMC and FxISMC
still guarantee faster convergence performance for large ini-
tial conditions even in the presence of actuator saturation.

FIGURE 7. Attitude tracking errors e with saturation, noise, and
uncertainty.

FIGURE 8. Angular velocities tracking errors v with saturation, noise,
uncertainty.

It’s noteworthy that the chattering phenomenon is excited
by the measurement noise for the three controllers, while
their chattering levels are basically in the same magnitude.
These results coincide with theory, because the discontinuous
switching terms are applied to the derivative of control sig-
nals in FxFSMC and FxISMC, they achieve similar chatter-
ing attenuation performance with FnISMC using saturation
function.
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FIGURE 9. Control torques u with saturation, noise, and uncertainty.

FIGURE 10. Settling time under different initial conditions with
saturation, noise, and uncertainty.

V. CONCLUSION
In this paper, a fixed-time full-order sliding mode con-
troller (FxFSMC) and a fixed-time integral sliding mode
controller (FxISMC) are proposed to solve the fast and high-
precision attitude tracking problem for the rigid spacecraft
with unknown external disturbances. Firstly, via improving
adding power integral techniques, the undisturbed nonlin-
ear attitude tracking problem is addressed by the proposed
nominal nonsingular fixed-time attitude controller without
causing singularity. Based on this, a fixed-time full-order slid-
ing mode controller is then proposed to handle the unknown
external disturbances. Then, by utilizing integral sliding
mode and STA technique, an integral sliding mode attitude
controller is further proposed to eliminate the requirement of
acceleration information in the full-order sliding mode con-
troller. Compared with the existing results, the two proposed
slidingmode controllers can provide strict fixed-time stability

in both the reaching phase and the sliding phase. Moreover,
the proposed controllers are also chattering-free and singular-
free inherently. Finally, they can make the attitude tracing
error converge to zero instead of a region in fixed time.
Further work includes extending the results to the SO(3)
representation and flexible spacecraft.

APPENDIX
THE CHARACTERISTICS OF LYAPUNOV FUNCTION IN (14)
Lemma 8: Consider the function V : R × R → R with

p ∈ (0, 1)

V (b, a) =
∫ b

x=a
dxc1/p−dac1/pdx

Then, we have
(1) V (b, a) ≥ 0, the equality holds if and only if a = b.
(2) V (b, a)→+∞, as |b− a| → ∞.

Proof: (1) Since p/(1 + p)d|x|1+1/p = |x|p−1xdx =
dxc1/pdx, we have

V (b, a) =
p

1+ p
|b|1+

1
p −

p
1+ p

|a|1+
1
p + dac

1
p (b− a)

=
p

1+ p
|b|1+

1
p +

1
1+ p

|a|1+
1
p − dac

1
p b

≥
p

1+ p
|b|1+

1
p +

1
1+ p

|a|1+
1
p − |a|

1
p |b|

where the equality holds if and only if ab ≥ 0. Then, via
Lemma 4, it follows that V (b, a) ≥ |a|

1
p |b| − |a|

1
p |b| = 0,

where the equality holds if and only if |a| = |b|. Hence,
V (b, a) ≥ 0, the equality holds if and only if a = b.
(2) Let {an} and {bn} be arbitrary series that satisfy

limn→∞ |bn − an| = ∞. Define Vn = V (bn, an).
If limn→∞ bn − an = +∞, then ∀ε > 0, ∃N such that

bn − an > ε holds ∀n > N . It follows from Lemma 3 that

Vn ≥
∫ bn

x=an+ε
dxc1/p−danc1/pdx

≥

∫ bn

x=an+ε
21−1/p|x − an|1/pdx

> 21−1/pε1/p|bn − an − ε|, ∀n > N .

Hence, limn→∞ Vn = +∞.
If limn→∞ an − bn = +∞, note that

Vn =
∫ an

x=bn
danc1/p − dxc1/pdx

The rest of the proof is similar to the first case and hence is
omitted here.
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