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ABSTRACT Rail weld defects are major threats to railroad transportation. Enormous resources have been
required for related maintenance. This paper presents a creative solution to predict weld defects and to
classify railroads into different conditions based on the predictions. The results are based on features
extracted from manufacturing technologies of welds, from related materials and from influential factors in
the environments. Features such as marks for welding engineers are defined. Maintenance can be selectively
implemented based on the predicted conditions. Safety is the foundation of the railroad business, and a very
strict safety requirement is utilized as one of the main constraints in this research. Additionally, 11 key
risk factors leading to rail defects and their risk levels are identified. Extreme learning machine (ELM),
random forest, logistic regression, principal component analysis (PCA), support vector machine (SVM) and
other data science approaches are utilized. The evaluation results show that the related rail maintenance
workload can decrease significantly under high safety standards. Labor costs of weld inspection will be
reduced substantially because of the decreased workload for the sections predicted to not have any defects
with a 100% recall rate (approximately 30% of the total sections), contributing to a massive cost reduction.
Consequently, rail companies are expected to achieve enhanced management and operation.

INDEX TERMS Condition-based maintenance, extreme learning machine, logistic regression, rail weld

defect prediction, random forests, support vector machine.

I. INTRODUCTION

Rail defect research is pivotal for railway companies [1].
Therefore, they have put plenty of effort into rail defect
detection and related maintenance [2]-[11]. This research
presents a new type of data-driven method for rail defects.
It entails the prediction of rail defects and related implications
for railroad management.

Currently, time-based maintenance is widely used in the
railroad industry. However, this type of work causes tremen-
dous waste because it requires a heavy maintenance work-
load at the same level for each section of a railroad line
(a railroad line can be divided into multiple sections), but it
is commonly accepted that some sections of a railroad line
could be significantly better or worse than the others. New
research has also shown that predictive maintenance is the
most promising maintenance strategy for railroads [12]-[18].
At the end of 2019, China had more than 139,000 kilometers
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of railroads. The tracks are connected by welding, and at least
one weld is needed for every 25 meters to 100 meters of track.
In China, it is estimated that more than 120,000 labor days per
month (equal to hiring 4,000 workers to work 30 days) are
needed to finish related weld inspection work. Thus, a quan-
titative analysis to classify railroad sections by weld condi-
tions and to implement predictive inspection/maintenance is
desirable.

Track is one of the most critical components for railroads,
and track defects may lead to severe issues, including derail-
ments. According to our calculations, approximately 52.6%
of rail defects occurred on welding joints, which are consid-
ered the weakest parts of tracks [19]-[24]. However, time-
based maintenance is widely applied in the related work. The
work is scheduled based on highly conservative estimates for
all sections of railroad lines. If we can reallocate resources
based on the predicted conditions of the sections (e.g., divide
sections into sections in better condition and sections in worse
condition based on weld conditions), costs and work time
may be saved significantly for the sections in better condition.
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FIGURE 1. Rail weld defects.

However, such condition classification for welds before
the start of inspection/maintenance has not been completed.
Currently, there is no published research on predicting the
conditions based on all the major features extracted from
manufacturing technologies of welds, from materials and
from influential factors in the environments. In addition,
the mechanisms between the defects and their indicative fac-
tors are so complicated that people do not understand them
clearly. Multiple data analysis methods have been applied to
these areas [19]-[23]. However, these methods have limita-
tions. One of the most recent studies presented a Pareto-based
maintenance decision system using the Hilbert spectrum, but
the result was mainly dependent on the dynamic response
from axle box acceleration measurements [24]. The accel-
eration data on which their model was built correspond to
vibrations caused by track irregularities, so they are not suf-
ficient to show the internal conditions and production quality
of welds and to predict the occurrence of weld defects [25].
Instead, we utilize features extracted from a wide range
of easily accessible data and machine learning methods to
solve weld problems. In another study, squat defects and
ballast defects were treated using optimization methods and
condition-based maintenance [12], [26]. Squats occur on the
surface of tracks, and ballast is a substance below tracks.
Thus, these two types of defects are different from weld
defects. Another researcher also proposed a framework for
rail surface defect prediction using machine learning algo-
rithms. The research is limited to the surface defects, and
it is not related to manufacturing technologies of welds and
the materials of welds [27]. Other researchers have also
not claimed any success or viable solutions to the problems
we are working on [2]-[11], [21]-[22], [28]-[30]. We first
extract all the key features related to the problems and first
utilize data mining approaches for weld defect prediction
problems. In addition, manufacturing technologies of welds
have been creatively analyzed, and 11 key risk factors leading
to rail defects and their risk levels are identified. Using the
predictive models presented in this research, railroad mainte-
nance can be decreased significantly under very high safety
standards. In addition, during special periods such as the
Covid-19 period, the number of engineers inspecting welds
may have to decrease to satisfy health concerns.

All the prediction results are under 100% recall rate which
means an extremely low probability for defect occurrence.
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In addition, according to our newest database, more than 95%
of the defects are minor defects that do not require any repair.
Therefore, the risk for the rail sections predicted to not have
any defects is very low. Traditionally, inspection workloads
for all the sections are equally heavy because time-based
maintenance. Compare to this, the inspection workload will
be reduced significantly for the low-risk sections based on
the models proposed in the research. The workload decrease
for these sections is around 50% at the Ningbo maintenance
department involved in this research. The low-risk sections
account for approximately 29.82%-31.58% of the total sec-
tions. This suggests a massive cost reduction for the intense
weld inspection work (more than 120,000 labor days per
month in China) conducted in the railroad world.

Our related research was presented at the World Congress
on Railway Research in Tokyo, Japan [31]. However,
the work submitted was only an analysis focusing on the cor-
relation between track geometry and rail defects. The model-
ing and evaluation in the current paper are also significantly
different.

Il. METHODS

The main output is the predicted condition (a better condi-
tion or a worse condition) of a rail section. The inputs are
introduced in Table 1. The recall rate should be high enough
to satisfy safety requirements. Logistic regression, random
forests, extreme learning machine (ELM) and support vector
machine (SVM) are the main modeling methods.

A. DATA ACQUISITION AND PREPARATION

Data are collected from railroad companies that manage
regular-speed railroads and high-speed railroads. A relational
database is developed to manage the data. According to our
business understanding and experience from railroad experts,
each variable is defined below. Based on the definitions,
the data are processed.

The target variable is defects, and the remaining variables
are the predictors.

The rows with missing values are deleted. The descrip-
tive statistics are also determined, and all the predictors are
normalized. A total of 974 rail sections are included in the
training dataset, including validation data. Data from all the
related major lines were recently updated significantly, and
they are used as the testing dataset. All the data are processed
by using R software version 3.6.1.

B. COLLINEARITY

Collinearity is a problem caused by correlations among pre-
dictors. The correlations may lead to inaccurate models devel-
oped by these predictors.

Therefore, the collinearity may influence the modeling.
The logistic regression, SVM and ELM models cannot elim-
inate this influence directly [35]. For logistic regression,
backward stepwise selection is used to solve the problem. For
the SVM and ELM models, principal component analysis is
utilized to eliminate the collinearity. The selected principal
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FIGURE 2. Overall view for proposed approach.

components serve as new variables. Along with the predictors
that are not in the principal components, they will be the
inputs for the SVM and ELM models. However, predictions
made by the random forest model are not sensitive to the
collinearity [36].

C. LOGISTIC REGRESSION

Logistic regression is a generalized linear regression model.
Itis easy to apply and explain. In logistic regression, the target
variable is a probability: how likely a successful prediction is
to occur. The relationship between the target variable and the
predictors is shown in formula [37]:

Pr(y = 1]X)
_ exp(Bo + B1X1 + BoXo + ... BpXp)
1+exp(Bo + B1X1 + f2Xo + ... BpXp)

q

ey

In this formula, g(0 < ¢ < 1) is the target vari-
able. X1, X2, --- , X, are the predictors. By employing the
maximum likelihood estimation, Bo, B1, B2,--- , By can be
decided. However, it is necessary to analyze the impacts
caused by multiple collinearity.

AIC values are calculated to evaluate the logistic-regression
model before/after the backward stepwise selection. More-
over, for the best logistic-regression model, the importance
of each predictors can be evaluated exactly. The detailed
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TABLE 1. Definitions of variables [31]-[34].

Variable Terminology Explanation in this Research
Direction Direction of Up track: 1; down track: 2; single
Traffic track: 3.
Start mile  Starting Point ofa  Location information can be
Rail Section represented to show geographical
End mile  Ending Pointofa  features and other general
Rail Section information in the section.
Pave date  Date of Pavement  The exact month when the track in
the section was paved
L temp Stress-free Average stress-free temperature of
Temperature of left track in centigrade in the section.
Left Track
R_temp Stress-free Average stress-free temperature of
Temperature of right track in centigrade in the
Right Track section.
Load Gross Tonnage For the section, accumulated gross
per Kilometer  tonnage per kilometer in million
tons.
TQI Track Quality Track Quality Index is the sum of
Index standard deviations of seven items:
irregularity of longitudinal level of
left track, irregularity of longitudinal
level of right track, irregularity of
the cross level, irregularity of
alignment of left track, irregularity
of alignment of right track, track
gauge, track twist. Calculated Track
Quality Index for each rail section.
Then, calculate the average value of
the Track Quality Index.
Curve nu  Number of Curves  The number of curves in the section.
mber
Curve rad  Weighted Radius In the section, the sum of the length
ius of Curves of each curve divided by its radius.
Slope_nu Number of Slopes ~ The number of slopes in the section.
mber
Slope_val ~ Weighted Value In the section, calculate the sum of
ue of Grade of the length of a slope times the grade
Slopes of the slope; then, divide that sum by
the total length of the slopes.
Grind nu  Number of The number of grinding times in the
mber Grinding section
YDH_nu Number of Flash- ~ The amount of flash-butt mobile
mber butt Mobile welding in the section.
Welding
YDH rain  Rain Number The amount of rain in the section
_number during Flash-butt when flash-butt mobile welding.
Mobile Welding
YDH tem  Track The average track temperature
p Temperature during flash-butt mobile welding in
during Flash-butt  the section, in centigrade.
Mobile Welding
YDH DD  Displacement in Average displacement in a certain
L Upset of Flash- step of flash-butt mobile welding in
butt Mobile the section.
Welding
LRH_num  Number of The amount of alumino thermit
ber Alumino Thermit  welding in the section.
Welding
LRH rain  Rain Number The amount of rain in the section
_number during Alumino when alumino thermit welding.
Thermit Welding
LRH_date  The Date when The earliest date that alumino
Alumino Thermit  thermit welding was completed in
Welding was the section.
completed
LRH_left Materials in front ~ If the material type in the section
_model of Alumino belongs to U75V, the type is 1;
Thermit Welds otherwise, it is 0.

evaluation will be presented in the Results and Evaluation

part.
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TABLE 1. (Continued.) Definitions of variables [31]-[34].

Variable Terminology Explanation in this Research
LRH_righ  Materials behind If the material type in the section
t_model Alumino Thermit  belongs to U75V, the type is 1;
Welds otherwise, it is 0.
LRH_wea  Weather during Rainy and snowy: 4; Snowy: 3;
ther Alumino Thermit Rainy: 2; Other: 1
Welding
LRH_befo  Track The minimal track temperature
re_temp Temperature before alumino thermit welding in
before Alumino the section, in centigrade.
Thermit Welding
LRH afte  Track The minimal track temperature after
r_temp Temperature after  alumino thermit welding in the
Alumino Thermit section, in centigrade.
Welding
LRH_abs Track Average absolute value of
_temp Temperature (LRH_after_temp-
Difference during ~ LRH_before_temp) in the section, in
Alumino Thermit  centigrade
Welding
LRH up  Width of Weld Width of Weld Top after alumino
width Top after Alumino  thermit welding
Thermit Welding
LRH low  Width of Weld Width of Weld Bottom after alumino
_width Bottom after thermit welding
Alumino Thermit
Welding
LRH QG  Camber Control Camber Control level for alumino
L for Alumino thermit welding
Thermit Welding
LRH_reac  Reaction Time for ~ Reaction time for alumino thermit
tion_time Alumino Thermit welding
Welding
LRH_quie  Quiet Time for Quiet time for alumino thermit
t_time Alumino Thermit  welding
Welding
LRH Use  Marks for Grading based on the Stars
r_fraction  Engineers (performance evaluation results
(implementing reflecting skill levels) and
alumino thermit experience of the engineers. For a
welding; the other  single weld, the mark=the mark of
type of welding is  rail alignment engineer*0.3+the
conducted by mark of molding and sanding
machines engineer*0.3-+the mark of pre-
automatically) heating engineer*0.3+the mark of
grinding engineer *0.1
The mark for a section=Total marks
of the whole section/amount of
welds in the section
Line Typ Line Types Regular-speed rail is 2, and high-
e speed rail is 1.
Speed_Gr  Speed Levels The highest design speed of railroad
ade lines
Defect Rail Defect Status  If any defects occurred and are

verified by railroad engineers in a
section, it is coded as 1; if no defects
are verified in the section, it is coded
as 0.

Note: The locations and the lengths of the sections are defined based on
maintenance requirements from rail companies.

D. RANDOM FOREST

Random forest [38] is a machine learning approach combin-
ing theories of bagging ensemble learning with random sub-
space methods [36], [39]. Thus, it may improve the learning
system. Random forest is not sensitive to multiple collinear-
ity. The results are robust to various types of datasets [40].
Random forest in this paper are formed as follows [41]:
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Let N = the number of samples in the training dataset and
M = the number of varieties in the training dataset.

1. Conduct sampling with replacement N times from the
training dataset, forming a new training dataset. The
unselected samples will be deployed in initial predic-
tions, evaluating errors of the model;

2. For each node, select m features randomly. The selected

features will lead to decisions on each node. The opti-

mal split of the trees will be calculated based on the
different features;

Each decision tree is fully developed without trimming;

4. Repeat the above steps to construct other decision trees
until the number of required trees is reached. The num-
ber of decision trees is adjusted based on optimization
goals;

5. Each decision tree is utilized as a basic classifier to
process ensemble learning, generating an integrated
classifier. Predictors are input into the model to be
classified. The output is decided by voting in which
each decision tree gives its vote on the classification.

et

To achieve business objectives, it is important to find the
optimal number of trees and the most suitable quantity of
nodes.

E. EXTREME LEARNING MACHINE NEURAL NETWORK
Extreme learning machine (ELM) is an easy-to-use but effec-
tive single-hidden-layer feedforward network (SLFN) algo-
rithm [42]. ELM is also applied to find the relationship
between the predictors and the categorical results.

Compared with traditional neural networks, ELM can pro-
vide a faster learning speed and a more favorable generaliza-
tion. Formidable advantages have been manifested in various
industries [35]. However, for the model, it is also necessary
to consider the impacts caused by multiple collinearity [37].

The fundamental principles of ELM are described
briefly [43]. This is an algorithm with three steps. For a given
training dataset TrainData = {(x;, t;))|x; € Ry, ti € Ry,
1,2,---,N}, the hidden node output function is
G(a, b, x), and the number of hidden nodes is L. The three
steps are summarized as follows:

Step 1: Assign values to the hidden node parameters ran-
domly: (a;, b)), i=1,2,--- , L.

Step 2: Calculate the hidden layer output matrix, which is
named H,

l =

L .
Zi:l BiG (a,’, b,’,x]') =t, J= L,---,N. 2)

This is equal to HB = T. The ith column in H is the output
from the ith hidden node, and the corresponding inputs are
X1, X2, 0, XN-

h(x1) G(ai, b1, x1)---Glar, br, x1)
o |- _ - :

h(xn) G(ai, by, xy)---Glar, br, xn) |y
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Bl
B=": , T=|: . 3)
ﬁLT Lxm tf{/‘ N xm
Step 3: Calculate the output weights 8:

B=HIT. (4)

Hj is the Moore-Penrose generalized inverse of hidden
layer output matrix H.

Additionally, the number of nodes will be adjusted based
on optimization objectives, which are defined based on busi-
ness goals.

G (a, b, x) is an activation function selected from the
following:

TABLE 2. Alternatives for the activation function in ELM.

Function
Formula
Type
1

Sigmoid G(a,b,x) = TT o (—Gax B exp(—(ax ¥ b))
Sin G(a,b,x) = sin(ax + b)
Radial _ 3
Basis G(a,b,x) = g(|lax+b—c||)

- _ (0, ax+b<0O
Hard Limit  G(a,b,x) = {1, ax+bh>0
Symmetric _ {—1, ax+b <0
Hard Limit  C @D =11 ax4b>0
Symmetric 0 , ax+b< -1
Saturating G(a,b,x) ={ax+b, —-1<ax+b<1
Linear 1 , ax+b=>1
Hyperbolic exp(ax + b) — exp(—(ax + b))
Tangent G(a,b,x) = @t T — 5
Sigmoid exp(ax exp(—(ax + b))
Triangular _ {1 —abs(ax+b),-1<ax+bh<1
Basis G(a,b,x) = 0 , otherwise
Rectifier _
Linear Unit G(a,b,x) = max(0,ax + b)
Linear G(a,b,x) =ax+b
Gauss G(a,b,x) = exp(—bllx — all)

F. SUPPORT VECTOR MACHINE [44]

Support vector machine (SVM) is another machine learning
approach. It is applied to classification tasks. Using SVM,
the optimal hyperplane dividing two categories can be found
by maximizing the distance between the closest points in both

categories.
If there is a hyperplane that linearly separates samples,
then define that x; is a vector and that y; = 1 or — 1

serves as a classification mark. Then, the optimal hyperplane
represented as w x x + b = 0 can be found. Therefore, SVM
solves the following programming problem:

l
1 2
min = | + C _X}ja
=
st.yiw-xi+b)>=1-§&, i=1---,1,
E>0,i=1,---,1. &)
w = Zl'-‘zl o;yix; is a linear combination of all the sup-
port vectors. o; (i= 1, --- ,n) is a Lagrange multiplier, and
C is a penalty term. &;(i= 1, --- ,I) is a relaxation variable,
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and b is a constant. If there are no hyperplanes that linearly
separate samples, generally the samples will be mapped to a
higher-dimensional space by a kernel function. In this space,
the samples can be linearly separated effectively. Then:

n
D ayie),
i=1

W) Hb=Y g () ¢ @) +b
= K x) +b. (©)

A widely used Gaussian kernel function is the radial basis
function:

w

J )

K (x,y) =exp (= % Ieyl?). )

||x-y||2 is the square of the Euclidean distance between
observation x and observation y. y is the bandwidth of the
kernel function. When the radial basis function is utilized as
a kernel function, the adjusted parameters are the bandwidth
of the kernel function and the penalty term C. The optimal
parameters are determined by grid searches.

G. CROSS VALIDATION AND TESTS
Five-fold cross validation is applied in this research. The
major steps are as follows:
1. Split the sections in the training dataset into 5 parti-
tions. Each partition is a fold;
2. Iterate training and testing 5 times. In each iteration,
a different fold is chosen as test data for this iteration.
The other four folds are combined to form training data
for this iteration;
3. Evaluate performances resulted from the iterations.
Next, use a new testing dataset to implement another test.
In the test, the data are newer data from which all the above
data used in the cross validation are excluded. The optimal
model can be justified through all the training, cross valida-
tion and tests. Data in the testing dataset are updated before
writing this paper.

H. FRAMEWORK FOR PRESENTED TECHNOLOGIES
Models are built by inputting the prepared data, and results
are acquired from the different models. Assuming the clas-
sification threshold is Py, a section will be predicted to be
in worse condition if the probability that defects occur in
the section is Py or larger. Additionally, a section will be
predicted to be in better condition if the probability that
defects occur in the section is smaller than Pg. Under different
thresholds, recall rates and the number of worse sections can
be calculated. The workload in this research is defined as the
number of sections that are predicted to be in worse condition
and will need the arranged labor force and equipment as usual
(i.e., heavy maintenance). A threshold that maximizes the
recall rate (100% in the final tests is the goal) and minimizes
the workload is the best choice (the computational speed is
also tested). The following shows a summary of the frame-
work for technologies presented.
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Feature Extraction based on
Business Understanding
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Statistics and Normalization

Data Cleaning, Descriptive ’

Y

[ Modeling |
[ Principal Components Analysis J
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Logistic Regression I ‘ Random Forest } ‘ Extreme Learning Machine ] ‘ Support Vector Machine I
e Y A 4 Y A 4
Backward Stepwise Adjustment of the Selection of the activation Selection of the kernel
Selection number of trees and function and the number of function and adjustment
nodes hidden layer nodes the parameters

‘ Cross-Validation and Delete Low-Performance Models ]
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Importance of Predictors | Tests on New Data Provided by Railroad Company
[ Recall Rate = 100% Recall Rate < 100% J
Y A 4
‘ The model with the minimal workload ’ [ Drop ]

A 4

{ Maintenance Optimization ]

FIGURE 3. Framework for presented technologies.

Ill. RESULTS AND EVALUATION between them is a critical point. For safety reasons, it is neces-
A. EVALUATION METRICS AND PROCESS sary to find the rail sections in worse condition. Most railway

Because it is impossible to find a model that works perfectly managers require a 100% recall rate for the rail defects.
for both the recall rate and the workload, an optimal balance =~ However, as introduced previously, minimizing maintenance
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work is also one of our priorities. Therefore, the models are
adjusted so that the results can embody an extremely high
recall rate and an optimized workload. In addition, the models
may be implemented efficiently.

To estimate the parameters of logistic regression, P-values
are the key to determining whether the estimates can pass
hypothesis tests. Then, the constructed model is optimized
through backward stepwise selection, and hypothesis tests
are also applied to the optimized model. The model with the
smallest AIC value is chosen as the best logistic regression
model [45]. The value of the workload expected to be min-
imized is decided by prediction precision at a given recall
rate. The final model is further adjusted by finding the optimal
threshold to balance the recall rate and the precision. For the
random forest model, an optimal threshold is also found to
satisfy the required balance between the recall rate and the
precision. Additionally, the number of nodes in the hidden
layer in ELM is adjusted based on the desired recall rate
and precision to acquire the optimal model. For the SVM
model with the radical basis function as its kernel function,
the bandwidth of the kernel function and the penalty term
are adjusted based on the desired recall rate and precision to
acquire the optimal SVM model.

The parameters of the models are iteratively tuned to reach
the best performance. The highest recall rate is a top priority
in these adjustments. In the transportation industry, passenger
safety is so important that all work should provide sufficient
considerations to ensure safety. False negative predictions
may lead to unexpected rail defects, which are threats to
passengers and goods. As a result, the recall rate should be as
high as possible. In addition, railroad companies would like
to predict rail defects quickly. Thus, calculation efficiency is
also taken into consideration.

Cross-validation is applied. All the data are real data from
railroad companies. The training data and the validation data
are generated and validated no later than September 2018.
The testing data are generated and validated after Septem-
ber 2018. Again, the testing data are newer data not used in
the modeling.

The final classification thresholds are determined by the
recall rate and the workload from the testing dataset. Then,
the optimal model is selected and confirmed.

B. DESCRIPTIVE ANALYSIS
1) DESCRIPTIVE STATISTICS

According to descriptive statistics, the centralization, dis-
creteness and distribution are determined as follows:

2) COLLINEARITY ANALYSIS

A correlation analysis is conducted on all the potentially
correlated variables. It is found that there are correlations
among the predictors. The number of conditions of the
correlation matrix of the predictors is 520889.8, which is
larger than 1000, suggesting the existence of severe collinear-
ity [46], [47]. As mentioned in the previous parts, for logis-
tic regression, backward stepwise selection is used to solve
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TABLE 3. Descriptive statistics.

Variables Mean S.D. Median Trimmed Min Max Skew Kurtosis

Direction 151 054 100 149 100 3.00 032 -L15
eLi“e—typ 129 045 100 124 100 200 092 -1.16
f;"f:d—G 24266 6832 25000 24124 80.00 350.00 0.09 -0.70
Start_mil

. 32243 20040 319.17 32099 2.00 662.60 0.03 -1.32

End_mile 321.60 201.73 316.66 319.97 0.32 664.59 0.04 -1.32

Pave_dat
e

L temp 3060 3.07 31.60 30.84 9.70 4250 -1.63 8.17

10432 33.09 115.00 105.26 13.00 201.00 -0.30 0.93

R_temp 30.61 3.09 31.70 30.85 9.70 4250 -1.61 7.90

Load 14894 69.77 119.09 14140 2.65 47691 1.80 599

TQI 479 227 404 450 000 1464 125 134
Cuven 51 050 000 0.0 000 400 279 9.50
umber

gi‘l’fsve—m 005 019 000 001 000 281 7.00 72.09
Slope nu 50 597 000 032 000 600 211 485
mber

ﬁl'gpe—""‘ 004 147 000 000 -597 600 066 7.99
Grindnu 607 040 000 000 000 400 679 51.82
mber

YDH nu 643 977 000 000 000 800 639 43.98
mber

YDH_rai

n_numbe 0.01 020  0.00 0.00 0.00 6.00 27.54 792.19
r
YDH te
mp N
YDH_D
DL
LRH_nu
mber
LRH_rai
n numbe 0.07 048  0.00 0.00 000 6.00 7.98 74.05
r

0.69 4.14  0.00 0.00 0.00 3230 6.27 3925

1.18 6.52  0.00 0.00 0.00 4150 542 27.73

0.70 221 0.00 0.10  0.00 21.00 435 2338

LRH_Ieft 615 36 000 005 000 200 226 392
_model

LRH.xig =615 039 000 005 000 200 245 541
ht_model

LRH_we 103 018 100 100 100 200 533 2639
ather

LRH.bef ) 43 684 000 037 -340 4030 291 7.72
ore_temp

LRH aft 3 666 000 033 -3.70 4030 298 820
er_temp

LRH.abs 610 117 000 000 000 27.00 1890 377.60
_temp

LRH_up 17 1188 000 404 000 3000 140 -0.02
_width

LRH_loc15 1179 000 401 000 3000 140 -0.02
w_width

éiH—Q 041 080 000 027 000 220 141 0.00
LRH_rea

ction_tim 2.19 425  0.00 134 0.00 1350 145 0.19
€

LRH_use

r_fractio  9.66 0.74  10.00 9.86  6.00 10.00 -2.07 3.12
n
LRH_qui
et_time
Defect 0.08 0.28  0.00 0.00 0.00 1.00 3.01 7.09

2.67 519 0.00 1.61 0.00 17.00 148 029

the problem. For the SVM and ELM models, principal com-
ponent analysis is utilized to eliminate the collinearity.
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C. MODELING RESULTS

1) LOGISTIC REGRESSION

First, logistic regression is carried out with regard to all the
predictors. The results are as follows:

TABLE 4. Logistic regression results with regard to all the predictors.

Variables Estimate  Pr(>|z|) Variables Estimate  Pr(>|z|)

(Intercept) ~ 8.0770  0.16927 YDH temp -1.3500 044768

Direction ~ -03892  0.13711 YDH DDL 12590  0.18651

Line type  -4.1850  0.00128 eLrRH—““mb 0.0069 093437

Speed_Grad -~ 518 0.00316 RHIAIND 3005 28759

€ umber

Start mile  -3.1060  0.51885 LRH datc  0.0000  0.89475

End mile  2.0660  0.66921 E(fl{fleftfm 7.8160  0.85589

Pave date 02965 034223 LRILright 5 5006 602150 *
— model

L temp 0.1684  0.84992 eLfH—Weath 02135  0.85615

R_temp 03621 0.68504 RELbefore 555 0500 0.9888

_temp

Load 202399 046483 ;ﬁ::—aﬁer—t -199.1000  0.98876

TQI 00942 074151 ;ﬁH—abs—te 357500 0.98852

Curve num ) 5151 10984 LRHUP_WI 4300 040351

ber dth

Curve radiu ) h515 7397 LRILIoW_ 55000 076643

S width

Srl"pefn“mb 203259  0.11026 LRH-QGL -2.4630  0.34508

Slope_value 02469 003139 LRELreacti —g1400 ¢ 04841 *
- on_time

Grind_numb ) hsg3  gsgan LRILUSCf 518 (82034

er raction

YDH_numb ;0460 066241 RE_Quiet g950 (25848

er time

YDH rain_ 4 1660 0.99325

number

Table 4 presents the parameter estimations for the predic-
tors. Certain P values are less than 0.05. This means that
the corresponding coefficients can pass hypothesis tests at
a confidence level of 95%. However, the coefficients of the
other predictors cannot pass the tests because the correspond-
ing P values are larger than 0.05.

Next, backward stepwise selection is added. After this
selection, the model with the minimal AIC value is chosen.

After the backward stepwise selection, only 16 predictors
are still in the model (see Table 5 ). Five of the P values of the
predictors are larger than 0.1, and the remaining 11 are less
than 0.1. This means that the coefficients of the 11 predictors
(see Table 6) can pass hypothesis tests at a confidence level of
90%. Thus, they can be considered risk factors for rail defects.
Experienced railroad engineers also confirmed that these 11
predictors may be critical for defect occurrence.
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TABLE 5. Logistic regression results after backward stepwise selection.

Variable Estimate Pr(>|z])  Variable Estimate  Pr(>|z|)
(Intercept) ~ 9.8732  0.000398 YDH_temp -2.2099  0.320594
Direction ~ -0.3712  0.137879 YDH.DDL 10168  0.208723
Line type 49231  57le06 RHIaN- 0 4100 0.034797
number
Speed_Gra 1247 6.65¢-05 LRELIf 5 0915 0065184
de model
Start mile  -1.0451  0.000538 REHight 5 5051 0005185
model
R_temp 02113 0147641 LRHAfter 4 5300 6 020868
temp
Curve nu o se09 0022802 LRHUP-WI 5 1603 012407
mber dth
Slope- 02861 0116865 LRHreacti -y 5505 0070582 .
number on-time
Sk’p”al“ 02376 0.034194
TABLE 6. Importance of the predictors.
. . Absolute Value
Variable Estimate of the Estimate Pr(>|z|)
1 Line_type 492306681 492306681  5.71¢-06
2 ;RHfr‘ghtfm"d 229507107  2.29507107  0.025185
3 LRH up width  2.16829058  2.16829058  0.012407
4 LRH left model -2.09118894  2.09118894  0.065184
5 II;IIZHJ%C“"“J‘ 4155053519 155053519 0.070582
6 Start_mile -1.04513724  1.04513724  0.000538
7 Curve number  0.58088803  0.58088803  0.022802
8 LRH after temp -0.53870521  0.53870521  0.020868
9 ;RH—ra‘n—““mb 041019538 0.41019538  0.034797
10 Slope-value 0.23764531 0.23764531 0.034194
11 Speed_Grade -0.02467043  0.02467043 6.65¢-05

Let p = the probability of defect occurrence in a section;
the term Odds is defined as [48]:

OddS = 1L — eﬂo+ﬂ1X1 +/32X2+...+ﬁpxp

®)

For each predictor, a change of 0.1 units leads to a change
in Odds of (2.72%"*# — 1). We call this the odds rate.

TABLE 7. Odds rates.

Variable Odds Rate  Variable Odds Rate

Line_type -0.388785111 Curve_number 0.059809106
LRH_right_model 0.257979807 LRH_after_temp -0.052445213
LRH_up_ width 0242131752 LRH_rain_number  0.041872462
LRH_left model -0.188701229 Slope_value 0.024049157

LRH_reaction_time

-0.143630656 Speed Grade

-0.002464003

Start_mile -0.099237565

According to Figure 4, here is an approximately linear
relationship between the odds rate and the coefficients of the
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FIGURE 4. Odds rate analysis.

variables. The odds rate increases as the absolute values of
the coefficients increase. Therefore, the larger the absolute
values of the coefficients are, the greater the influence on the
odds of the occurrence of defects.

In addition, AIC values were calculated. Table 8 shows
that after the backward stepwise selection, the AIC value
decreased to 510.94 from 539.19. This is a positive change
that suggests that the model improved.

TABLE 8. Comparison between different logistic regression models.

Model AIC
Regular Logistic Regression 539.19
Logistic Regression (BSS) 510.94

Note: BSS: Backward stepwise selection.

2) RANDOM FOREST

After iterative adjustments based on the training dataset,
the number of trees is set to 320, and the number of nodes
is chosen as 5.

3) EXTREME LEARNING MACHINE

First, principal component analysis is conducted on all the
continuous predictors. The results are shown in Table 9.
C.1, ..., C.28 are 28 principal components.

According to Table 9, the cumulative proportion of the
first 10 principal components is 87.8%. The next 18 principle
components contribute little to the variance. Therefore, the
first 10 principal components are selected for further analysis.
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TABLE 9. Initial results of principal component analysis.

S.D. P.V. C.P. S.D. P.V. C.P.
C.1 3.0871 03404 0.3404 C.15 0.5806  0.0120 0.9711
C.2 1.8968 0.1285 0.4689 C.16 0.5193  0.0096 0.9807
C3 1.6565 0.0980 0.5669 C.17 04263  0.0065 0.9872
C4 15668 0.0877 0.6545 C.18 03273  0.0038 0.9911
C.5 1.1063 0.0437 0.6982 C.19 0.3225  0.0037 0.9948
C.6 1.0605 0.0402 0.7384 C.20 0.2875  0.0030 0.9977
C.7 1.0385 0.0385 0.7769 C.21 0.1451  0.0008 0.9985
C.8 1.0006 0.0358 0.8127 C.22 0.1334  0.0006 0.9991
C9 09712 0.0337 0.8464 C23 0.0974  0.0003 0.9994
C.10 0.9408 0.0316 0.8780 C.24 0.0894  0.0003 0.9997
C.I1 0.9006 0.0290 0.9069 C.25 0.0801 0.0002294 0.9999625
C.12 0.7718 0.0213 0.9282 C.26 0.0312 0.0000347 0.9999972
C.13 0.6752 0.0163 0.9445 C.27 0.0078 0.0000022 0.9999993
C.14 0.6387 0.0146 0.9591 C.28 0.0043 0.0000007 1.0000000

Notes: S.D.: Standard deviation; P.V.: Proportion of variance; C.P.:
Cumulative proportion.

The 10 principal components (in Table 10 and Table 11)
replaced the corresponding variables with collinearity effects.
The number of nodes in the ELM model is adjusted between 1
and 500. This adjustment is applied to ELM models with all
the different activation functions presented in Table 2.

Then, the ELM models are tuned with the activation
functions. The results show that 4 activation functions per-
form significantly better than the others. They are the sym-
metric saturation linear (satlins), rectifier linear unit (relu),
triangular basin (tribas) and linear (purelin) functions.
Table 12 shows the related parameters.

4) SUPPORT VECTOR MACHINE

To address the collinearity problem, the above PCA selection
is also applied to the SVM model. After iterative adjustments
based on the training dataset, the penalty item is set to 1, and
the bandwidth of the kernel function is chosen as 8.

D. CROSS-VALIDATION, TEST AND MODEL SELECTION
Five-fold cross validation is applied. The average workload
presented below is the average validated workload, and the
average recall rate is the average validated recall rate.

All the models we created show very high recall rates and
favorable workloads. Therefore, these models may perform
well on the testing dataset which leads to the final model
selection, and they have passed the cross-validation.

Then, the testing dataset is used to test the above models.
The security rate term is defined as the number of predicted
defect-free sections divided by the total number of testing
sections.

For regular-speed rail, the recall rates are all 100% in the
test, and ELM (satlins) shows the optimal workload. The
performance of the ELM (satlins) is visualized.

For high-speed rail, ELM (relu) is dropped because its
recall rate is under 100%. Then, the random forest model
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TABLE 10. Parameters of selected principal components.

Cl1 C2 C3 C4 Cs5 C.6

Start_mile 0.157 0.16 0384  0.142 0.319 0.158
End_mile 0.154 0.159 0.381 0.141 0.32 0.159

Pave date / 0323 /0301 015 0336
L temp / / 0169 055 -0.155  -0.123
R_temp / / 0.168 0559 -0.149  -0.133

Load / 022 035  /  -0333 0286
TQI 20215 0181 -0.126  0.175 -0.181  -0.155

C“‘f&“"m 20.128 / 0234 0241 0279 /

C“rvlfs—rad‘ 0.117 / 20284 0174 0387  -0.105

Sl"p;&n“m 0.175 / 025 0217 0.158

Sl"pee—valu / / / / / 0.439

Grind_num / 2028 0155 0399 /

ber

YDH_num / 2048 / / / 0.226

ber

YDH rain / -0.158 / / / 0.508
number

YDH_temp / -0.467 / / / /

YDH DDL  / -0.49 / / / 0.115

LRHé‘umb 0.235 / / 20103 0.162 /

LRH rain_ )5 / / -0123 033  -0.108
number

LRH date  -0.287 / / / / /

LRH_befor —_, 563 / / / / 0.108
e_temp

LRH after_; 559 / / / / /

temp

LRH abs t / / /0189 0321

emp

LRH_up_w

b 03 / 0163/ / /

LRH low

N 03 / 0163/ / /

LRH QGL  -0.298 / 0166  / / /

LRH reacti 59, / 0162/ / /
on_time

LRH user_ ) 5¢4 / o111 / /
fraction

LRH_quiet 596 / 0165  / / /

_time

shows the optimal workload. The performance of the random
forest model is visualized.

The calculation speeds are fast enough for all the mod-
els. The models’ performance on the testing dataset for
regular-speed railways is shown in Table 14, Figure 6 and
Figure 7. We can observe that ELM (satlins) significantly
decreases the workload with a 100% recall rate. For this recall
rate, ELM (satlins) shows the highest security rate and the
smallest workload. Therefore, the ELM (satlins) model is the
best selection for regular-speed rail under the business goals.

The models’ performance on the testing dataset for
high-speed railways is presented in Table 15, Figure 8 and
Figure 9. We can observe that the random forest model signif-
icantly decreases the workload with a 100% recall rate. For
this recall rate, the random forest model shows the highest
security rate and the smallest workload. Therefore, the ran-
dom forest model is the best selection for high-speed rail
under the business goals.
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TABLE 11. Parameters of selected principal components (Continued).

C.7 Cs8 C.9 C.10
Start_mile / / 0.103 0.184
End_mile / / 0.105 0.187
Pave date / / 0.126 0.373
L_temp -0.179 / / /
R_temp -0.181 / / /
Load 0.153 / 0.104 0.277
TQI / / / /
Curve_number 0.167 / / /
Curve_radius 0.147 / 0.148 /
Slope_number / / / 0.118
Slope_value / -0.694 -0.529 -0.136
Grind_number 0.15 -0.193 0.103 -0.178
YDH_number / / / 0.124
YDH_rain_number  -0.291 / 0.578 -0.472
YDH_temp 0.14 / -0.1 0.311
YDH_DDL / / / 0.245
LRH number -0.257 / / 0.109
LRH_rain_number  -0.413  -0.142 / 0.159
LRH_date -0.216 / / /
LRH_before temp -0.289 0.171 -0.136 /
LRH_after temp -0.322 / / 0.162

LRH_abs_temp 0.147 0.628 -0.457 -0.369
LRH_up_ width 0.191 / / /
LRH_low_width 0.194 / / /
LRH _QGL 0.2 / / /
LRH_reaction_time  0.205 / / /
LRH user_fraction / / / /
LRH_quiet time 0.209 / / /
TABLE 12. ELM model parameters.
Model  ELM (satlins)  ELM (relu) ELM(tribas) ELM (purelin)
Nodes 8 16 213 5
TABLE 13. Cross-validation results.
Model Average Workload Average Recall Rate
LR with BSS 158.2 98.2%
RF 111 100%
ELM (satlins) 159 100%
ELM (relu) 163 100%
ELM (tribas) 160 100%
ELM (purelin) 176 100%
SVM 170 100%

Notes: LR: Logistic Regression, BSS: Backward Stepwise Selection,
RF: Random Forest.

Performance of Cross-Validation
250
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150
100
50
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Average WorkLoads
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& T & S '—}‘@
N 2 N & &
,\\’bb @t, S @\ \§
> S S
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FIGURE 5. Performance evaluation based on cross-validation.

Moreover, the threshold of the optimal model for high-
speed rail is significantly stricter than the threshold of
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TABLE 14. Prediction performance on regular-speed rail.

Models Workload  Recall  Threshold Security Compytanonal

Rate Time
ELM (satlins) 182 100% 8.43% 31.58% <0.01s
ELM (tribas) 191 100% 3.692% 28.2% <0.01s
ELM (relu) 209 100% 1.82% 21.43% <0.01s
RF 228 100% 1.875% 14.29% <0.01s
LR with BSS 239 100% 1% 10.15% 0.01s
ELM(purelin) 246 100% 3.81% 7.52% <0.01s
SVM 257 100% 7.969% 3.38% <0.01s

Notes: LR: Logistic Regression, BSS: Backward Stepwise Selection,
RF: Random Forest.

Workload Comparison (Regular-Speed Rail)
300

WorkLoads

Methods

FIGURE 6. Performance evaluation based on the testing dataset
(Regular-speed Rail).

Performance Optimization

100% 182, 100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Recall Rate

Workload

FIGURE 7. ELM (satlins) workload optimization.

TABLE 15. Prediction performance on high-speed rails.

. Computat
Models Workload Recall Threshold Security ional
Rate Time
RF 346 100% 4.063% 29.82% 0.01s
LRB;VSlth 372 100% 5.81% 24.54% 0.01s
(Eilfol;/ls) 418 100% 3.446% 15.21% <0.01s
ELM 463 100%  5.64% 609%  <00ls
(satlins)
SVM 476 100% 7.453% 3.45% 0.01s
(p]ii‘el\l/iln) 487 100% 4.604% 1.22% <0.01s
ELM 337 87.5% 4.32% 31.64% <0.01s
(relu)

Notes: LR: Logistic Regression, BSS: Backward Stepwise Selection,
RF: Random Forest.

the optimal model for regular-speed rail. This is good
because of the higher safety requirements for high-speed rail.
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Workload Comparison (High-Speed Rail)
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FIGURE 8. Performance evaluation based on the testing dataset
(High-speed Rail).
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FIGURE 9. Random forest workload optimization.

Again, the above research also addresses the foundation of
the railroad business: safety.

IV. DISCUSSION & CONCLUSIONS

The prediction methods and evaluation have been completed.
The condition of a section can be predicted by the optimal
models as follows: a better track condition in which no defects
are predicted or a worse track condition in which defects are
predicted to occur.

The findings in this paper provide important references
for decision makers to design predictive maintenance. The
models developed in this paper will assist engineers in
terms of railway inspection, safety management, cost control,
schedule optimization, etc.

Historically, the schedule for rail inspection was based on
the assumption that all sections require frequent inspection
to ensure safety. Through the new models proposed above,
workloads will be rearranged, and lower workloads will be
required for sections in better condition. Currently, welds
from these better sections are inspected regularly by thou-
sands of engineers, but the rail departments will be able
to decrease the workloads by half based on our models.
In China, it is estimated that more than 120,000 labor days
per month (equal to hiring 4,000 workers to work 30 days)
are needed to conduct related inspection work. According to
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the above tests, for regular-speed rail, the welds predicted
to not have any defects for about a year (the period of the
testing dataset) are 31.58% of the total welds, and this value
is 29.82% for high-speed rail. The 100% recall rate means
an extremely low probability for defect occurrence. Accord-
ing to our newest database, more than 95% of the defects
are minor defects that do not require any repair. Therefore,
the risk for the rail sections predicted to not have any defects
is very low. Inspection work for the low-risk sections should
be reduced significantly. These sections account for approxi-
mately 30% of the total sections. This suggests a massive cost
reduction for weld inspection.

Additionally, 11 risk factors contributing to rail defects and
their risk levels are identified. It is recommended that railroad
companies pay more attention to these factors.

The inputs for the whole data mining process are data that
are widely available in the daily operations of railroad compa-
nies. Additionally, the models have been integrated into one
of our newest information systems for implementation. Data
are updated, validated and prepared based on strict processes
in accordance with business requirements.

Consequently, railway companies are expected to achieve
enhanced management and operation with cost savings.
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