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ABSTRACT Motor Current Signal Analysis (MCSA) is widely used in the monitoring of electric motors,
but few researchers applied it in the transmission system because of the fault information loss and aliasing
of current signals. The purpose of the research is to analyze the influence of the gear backlash under
different size effect on the current signal from the permanent magnet synchronous motor (PMSM). And
it supplies a convenient route to detect the gear backlash more economy. In most cases, the current of
PMSM is usually changed with the operating states, which may relate with rotor speed, load and gear
backlash. So, it is important to extract the sensitive features under different states. Here, the stable speed
and variable speed states are considered at first. At the steady stage, multiple features are extracted from
current signals under variable backlash. And fisher discriminant analysis (FDA) is introduced to evaluate
and select the most sensitivity features for backlash are selected. Then, features at variable speed states are
extracted. Because the transient change of the current frequency and phase adjustable, it is very difficult to
obtain the steady state response characteristic. In this paper, the inverse of the time difference between the
positive peaks of the signal at this phase is utilized as the characteristic index describing phase. Furthermore,
the polynomial principle is combined to enhance the characteristics of the extracted features. Therefore, the
mapping relationship between the backlash and the current signal of the servo motor is established under
different speed stages. The results show that by monitoring the motor current, it is feasible and effective to

distinguish the different backlash of the meshing gear.

INDEX TERMS MCSA, gear backlash, servo motor, current signal, feature extraction.

I. INTRODUCTION

The dynamic performance of gears has an important impact
on the entire machine [1]. Gears are one of the core compo-
nents of mechanical equipment, and its state directly affects
the performance of the entire mechanical equipment. There-
fore, many scholars have carried out research and achieved
some achievements. With the rapid development of mechan-
ical automation, with the increase in power and speed, fric-
tion [2], [3], scratches [4], [5], pitting, broken teeth [6] and
misalignment [7], [8] of gears have become major concerns
of scholars [9]. Research of gear fault diagnosis is of extreme
significance to industrial production and social life.
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More and more studies show that the existence of the
backlash will seriously affect the stability and accuracy of
the gear system, and it is extremely important to research and
diagnose the gear backlash. Reference [10] proposed a multi-
degree-of-freedom dynamic model of the gear system. This
model considers the time-varying behavior of the backlash,
the conclusion is that the initial backlash has a significant
effect on the dynamic characteristics of the gear system.
Reference [11] is shown that with the change of the backlash
of the gear, there are always tooth meshing and separation on
the back of the gear, and the backlash will significantly affect
the gear’s vibration and shock characteristics. Reference [12]
is based on the fractal theory, by changing the backlash of
gears to change the dynamic behavior of gears. It effec-
tively reflects the dynamic characteristics of gears affected
by changes in recoil. Reference [13] extended the incremental
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harmonic balance method (IHBM) to the nonlinear dynamic
analysis of a spur gear pair with backlash, and studied the
effect of multi-order harmonics on the periodic solution. The
above research has promoted the research on backlash, but
the research is only based on model simulation, and the
experimental conditions are too ideal.

Reliable gear fault diagnosis can not only reduce eco-
nomic losses, but also reduce the risk of employee injury
and death [14]-[16]. Research on gear fault monitoring has
always been a hot topic, and research methods and signal
media are also diverse. Generally speaking, fault detection
and diagnosis methods can generally be divided into two
categories, namely model-based methods and data-driven
methods [17], [18]. Based on these two different approaches,
scholars in gear research are also constantly innovating
to detect and monitor the health of gears from various
angles [19], [20].

Based on the actual requirements, this paper analyzes the
effect of the backlash of the gear on the system based on the
current signal analysis of the servo motor. Gear failure based
on MCSA has been favored more and more in recent years
due to their advantages such as low cost, easy acquisition of
signals, and convenient implementation of field applications.
The essence of MCSA is to analyze the current change caused
by the output torque feedback to the motor stator [21]. Com-
pared with traditional dynamic gear failure analysis, MCSA
can not only reflect the fault information of the motor itself,
but also detect the health status of the external equipment of
the motor [22]. At present, scholars have studied the effect of
gear, motor coupling and bearing on the motor current signal
when there is a fault. For example, Reference [23] collected
the motor stator current signal, determined the instantaneous
amplitude and frequency based on the Local Mean Decom-
position (LMD) method, and extracted the instantaneous
amplitude sample entropy and the instantaneous frequency
peak-to-peak value as the instantaneous performance indi-
cators, then evaluate the performance of the servo motor.
Reference [24] is based on the current signal of the feed motor
of the CNC milling machine to monitor the tool groove break
during end milling. Reference [25] based on three-phase
current analysis, extracted characteristic indicators for gear
fault detection and diagnosis. Reference [26] built a planetary
gear fault feature extraction model based on deep neural net-
works, and verified the effectiveness of planetary gear fault
identification. Reference [27] used dual-spectrum analysis of
motor current signals to detect wear faults on spur gear tooth
surfaces. Reference [28] analyzed the sideband spectrum of
the current signal to realize the detection of shaft misalign-
ment and imbalance faults. Reference [29] detected the plan-
etary gearbox failure based on the resonance residue of the
motor current signal. Reference [30] based on the statistical
index of current spectrum realized the bearing fault detection
of air-conditioning fan. Reference [31] used the frequency
component of the stator current to estimate the torque, and
identified a misalignment faults between the motor and the
load. Although there are many studies on the detection of
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bearing and gear faults based on electrical signals, there are
not many studies on gear backlash.

This paper analyzes and studies the effect of gear backlash
on the system. Mainly for the identification and evaluation
of spurring gears backlash failure in meshing teeth. For
designing and building an experimental bench, collecting the
current signals of the servo drive motor, extracting the time
and frequency domain features reflecting the changes in the
current signal [25], and establishing the mapping relationship
between the backlash and the current signal. In the steady
speed phase, multiple features are extracted from different
backlash current signals, and the sensitivity is evaluated based
on the FDA [32], [33] method to find the most sensitive state
quantity for backlash. FDA is used to reduce the dimension of
high-dimensional feature sets and retain significant features,
providing the best low-dimensional representation. In many
cases, the FDA solves the data dimensionality reduction prob-
lem better than the Principal Component Analysis (PCA)
method. Although they all show nonlinearity, the FDA-based
algorithm concept has been applied [34]-[36]. In the shifting
phase, the reciprocal of the time difference between the pos-
itive peaks of the signals in the shifting phase is extracted as
a characteristic index describing this phase. Combined with
the polynomial principle, the extracted features are enhanced.
The effect of the backlash on the shifting state is more clearly
expressed.

The remainder of the paper is structured as follows.
Section 2 describes the extraction of backlash fault fea-
tures with electrical parameters. Section 3 conducts experi-
ments by designing and building a test bench. The collected
motor current signals are analyzed in Section 4. Finally,
Section 5 presents the conclusions and perspectives of this
work.

Gear with

[otor backlash
=t 1 0DIE,
Tsi - Magnetic powder
(a) T brake
Backlash

(b)

FIGURE 1. Variable tooth backlash test model.

Il. FEATURE EXTRACTION OF BACKLASH FAULT BASED
ON ELECTRICAL PARAMETERS

A. ELECTRICAL PARAMETER OF SERVO SYSTEM

Fig. 1 shows a schematic diagram of the test bench drive used.
The driver consists of two spur gears mounted on a shaft,
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each spur gear being supported by two ball bearings mounted
on a bearing block. Specifically, it can divide into three
parts. The power part is composed of a servo motor and
its supporting driver and transformer. The main function of
the motor shown in Fig. 1,(a) is to provide a power source
for the system and drive the load to run. Connected to the
motor output is a gear transmission system. The purpose of
this experiment is to detect gear transmissions with backlash,
as shown in part (b) of Fig. 1, gears with backlash. Fitted
gears with backlash. The main components of this part A pair
of meshing gears are connected by four bearing blocks and
four couplings as a transmission part of the entire system.
The output end of the gear transmission system is a load
device. The load uses a magnetic powder brake. During the
test, the magnetic powder brake can be adjusted in real time
to change the load on the system. To collect current signals
under different loads, more comprehensive information is
used to evaluate the health status of the gear.

The PMSM is mainly composed of a fixed stator with
three-phase windings and a rotor with permanent magnet
poles. When three-phase alternating current is supplied to the
stator windings, a rotating magnetic field is generated. The
rotating magnetic field interacts with the permanent magnet
poles on the rotor to generate electromagnetic torque and
cause the synchronous rotation of the rotor. The three-phase
windings of the stator is symmetrically distributed, the wind-
ing currents are recorded as iy, ip and i, stator currents, and
the phase difference is 27 /3. To simplify the mathematical
analysis of PMSM, a synchronous axis reference system
defined by d and q axes is usually used. The d-axis is the
axis of the permanent magnet poles, and the g-axis is per-
pendicular to the d-axis. In the d-q plane, the stator current
is converted into an exciting current component to generate
a magnetic flux and a torque current component to generate
an electromagnetic torque. The conversion function is as

follows:
0 62T o+ 2"
[ id :| B \/g Ccos Ccos ? Ccos ?
i, | 2 2
'a 3| Zsino —sin(6-"") —sin(0+Z
3 3
la
X | ip ey
e
Here 6 is the angular position of the rotor. Due to the

orthogonality of ig and iy, the excitation magnetic field and
electromagnetic torque can be adjusted separately.

Va = Lgia + Yy
Vg = Lyl

Ly and L, are the inductances of the d and g axes, respec-

tively, and are the flux linkages generated by the permanent

magnet poles on the rotor. The electromagnetic torque is
calculated using the following formula:

T, = p (Vaiqg — Yqia) = p [Vrig + (La — L) iaiq] (3)

(@)
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p is the number of pole pairs. If PMSM is used to drive
mechanical load 7; with reaction torque, the PMSM motion
equation is:

dw
Te—leJa—i-Bw 4)

J is the moment of inertia of the entire rotor, w is the
rotational speed, and B is the viscous friction coefficient.

Setting iy = 0 is the most widely used closed-loop control
strategy for PMSM [37]. By setting iy = 0, the demag-
netization of the permanent magnet caused by the armature
reaction is avoided. According to equation(3), the electro-
magnetic torque is proportional to iy. Therefore, it is easy
to control the electromagnetic torque by changing the stator
current. For example, if the known electromagnetic torque
is T), the current iz can be determined using equation(3),
and the three-phase reference stator currents #;, iy and i\ are
calculated as follows:

cos 6 —sinf
i 2 27
a 21 cos{0—— ) —sin|O— —
lb = - 3 3 l*
i 3 2 . 2 q
¢ cos (9 + ?> —sin <9 + ?>

B. SIGNAL ANALYSIS AT STEADY SPEED

1) FEATURE EXTRACTION AND ANALYSIS OF SIGNALS
When the gear fails, the amplitude and probability distribu-
tion of the time domain signal of the servo motor current will
change, and the energy of different frequency components
will change; therefore, the analysis of the current signal can
detect the health status of the gear.

In order to obtain the effect of gear backlash on the motor
current signal in a comprehensive manner, feature extraction
is performed on the data set samples from the time domain
and frequency domain, respectively. This paper uses the time
domain and frequency domain features comprehensively, and
extracts 14 time domain features (sl to s14) and 15 frequency
domain features (pl to p15) from the collected servo motor
current signals. As shown in Table 1, x (i) is a time-domain
sequence signal, i = 1,2,...,N, N are the number of
sample points, X} is the spectrum of signal x (i), and k =
1,2,...,N/2.56 is the number of spectral lines. The param-
eters involved in the table, PS[0] = |Xo|? /N2, PS[k] =
21X > /N2 f = 256fs x k/N.M = 1 4+ NJ2,
s0 = min{|x([, [xa], -+, [xn |}

Table 1, the time domain characteristics sl to s4, sll1,
s13, and s14 reflect the amplitude and energy of the time
domain vibration, s5, s8 to s10, and s12 reflect the time series
distribution of the time domain signal, and s6 is the standard
of the time domain signal poor, s7 reflects the crest factor
of the signal. The frequency domain characteristics pl to
p3 reflect the magnitude of the frequency-domain fluctuation
energy, p4 to p6, p8, and p9 reflect the changes in the position
of the main frequency band, p10 to p13 represent the degree
of dispersion or concentration of the spectrum; p7 represents
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TABLE 1. Time and frequency domain feature.

)

s1=max{fx,[,---,

A
256

1 & x —s3 4
s =ﬁZ[x'S65 j S PS[klf (/- p3)' Pstr)
= =S 11=42
p3 7l p 6% * N
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log2(2 -1
og (2 )
s7= ma"{f } pI:PS[0]+§PS[k] 7( 12 * PS[k])
13, k=1 i
N X. p9: ~
i=1 256
pI*y (" *PS[k])
k=0
Sg:ﬁ 2:pfl pl()ZPf6
s4 M p3

the rms frequency of the signal, pl4 represents the signal
frequency variance, and p15 is the amplitude spectral entropy
of the signal.

In addition, we also use empirical mode decomposi-
tion (EMD) to process the signal. After the signal is decom-
posed by EMD, a series of stable time-domain signals can be
obtained. The decomposed IMF mode components represent
the characteristic signals of different time scales contained
in the original signal. Each IMF component can be regarded
as a single frequency signal or an approximate narrow-band
signal, reflecting the modes from high frequency to low
frequency respectively. Here, we use EMD to process the
current signal and retain the first to third layers of IMF, and
then square the sum of the retained IMF and then average,
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so that we can obtain 3 characteristic values used to describe
the signal, emd]1 to emd3.

Finally, we also analyzed the signal from the perspective
of energy classification to obtain the eigenvalues. Wavelet
packet decomposition can decompose different frequency
bands of signals, and wavelet packet decomposition can
adaptively select corresponding frequency bands according
to signal characteristics, which are a finer decomposition
method. Here, the signal is decomposed in 3 layers of wavelet
packets, so that 8 different energy bands can be obtained.
Taking the energy ratio of each energy band as an indicator for
the signal description, to obtain 8 eigenvalues from wpdl to
wpd8. A total of 40 various types of features are used to
describe the state of the system.
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Because these characteristics are different in sensitivity to
backlash failure. Therefore, it is necessary to select sensitive
features that are closely related to the fault and eliminate
redundant or irrelevant features to improve the performance
of discrimination.

2) FEATURE EVALUATION AND SELECTION BASED ON FDA
The principle of the Fisher criterion for determining feature
correlations is derived from the FDA method. The FDA
method is a classified linear model. The basic idea of this
method is to project the sample points onto a straight line
or a hyperplane, so that the variance of the samples of the
same type of samples is minimized after projection, and the
difference of the sample mean between samples of different
categories is as large as possible.

For a multi-classification problem, the FAD method will
obtain the between-class divergence matrix Sp and the
within-class divergence matrix Sy projected onto the vec-
tor w, and then solve the following objective function to
obtain w, that is,

wlSpw

(6)

mvile(w) T wTSyw

This means that after all samples are projected to w,
the variance of similar samples is made as small as possible,
and the difference between the mean values of the samples
of different types is as large as possible. The inter-class
divergence matrix Sp and the intra-class divergence matrix
Sw are calculated based on the sample data. Suppose the
training sample set X = [x1, x2, - - -, x,] has K classes, and
the i — th sample x; is projected onto the straight line w to
obtain y;, that is y; = wlx;,i = 1, - - -, n. The inter-class
distance after projection to w can be obtained by subtracting
the entire sample average after projection from the samples
after each class projection, and then adding these differences,
that is,

K
> (= ) (= )"
k=1

K
= w! (Z ng (ke — ) (Mg — M)T) w (7

k=1

In the formula, 1 and ju;’ represent the mean values
of the samples of the k — th sample before and after the
projection, that is, pu} = % Yoy o= wTi Sxi =

ieCy, ieCy

wT jux; o and " represent the average values of all samples
K

before and after projection, that is, u" = % > nkuy =
k=1

K
T (1 T .
w (E > ngpx | = w'p, Cy represents the subscript set

of the l]é_i th sample, and n; represents the number of the
k — th sample.

The intra-class distance after projection to w can be
obtained by subtracting the average value of the projected
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samples from each projected sample and then adding these
differences, that is,

S i) Gi— )"

k=1 i=Cy
K
=w (Y Y im0 W (®)
k=1ieCy

For equations (7) and (8) above, if

K

Sw= ) Y xi— ) (i — )" ©)
k=1ieCy
K

Sp= ) mk (e — 1) (i — )" (10)
k=1

This gives the objective function of the FDA method.

If the objective function is required to be solved, it can
be converted into the following problem and then solved,
that is,

Spw = ASyw (11)

Equation (11) is a generalized eigenvalue problem, where A
is a generalized eigenvalue and w is a generalized eigenvector.
If S,, is invertible, there is SVT/ISBW = Aw, and the problem
becomes to find the eigenvalues of matrix SV}IS B.

Since the FDA method is a classification algorithm, it can-
not be used to evaluate the relevance of features. The
Fisher criterion is a method for evaluating the correlation
of features. It borrows the idea of the FDA method, that
is, the Fisher criterion also uses the idea that the vari-
ance of the same sample is as small as possible, and the
difference between the sample mean between the similar
samples is as large as possible to calculate the feature
correlation.

Fisher criterion For the i — th feature f;, its values belong
to K classes. For the value of f;, the Sp and Sy are calculated
separately as in the FDA method. The calculation process is
as follows. First calculate Sy, that is

K
Sw=)_ S (12)
k=1

2 1
In the formula, Sy = > (fj — k)" e = 7 2 fii
J€Ck jeCk
Cy, represents the index set of the k — th sample, and ny repre-

sents the number of the k — th sample. Second, calculate Sp,
that is

K

Sp= ) m(ux — 1) (13)

k=1
where uy = % Y fi o= %nkuk, for multiple features,
C

JECk
Sp and Sy are calculated as matrices. Finally calculate the
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correlation Sensitivity; of the features, that is,

S
Sensitivity; = % (14)
sum (Sw

If Sensitivity is large, it means that the variance of similar
samples may be small, while the mean of samples between
non-similar samples may be large, which means that the
discriminability of the samples is better.

C. SIGNAL ANALYSIS DURING SHIFTING PHASE

The speed change phase of the signal is a very impor-
tant part of the system operation. This phase contains a
lot of information. Various information can be seen in the
time-domain signal, and changes in speed and load can be
reflected in the signal. According to the working condi-
tions, the A-phase signals of the three-phase current signals
of the motor with variable backlash of 0.25mm, 0.50mm,
and 0.75mm in the variable-speed stage were extracted. The
signal intercepted during the descent phase is the process
of the motor’s operating state from steady speed to zero
speed, and the signal intercepted during the ascent phase
is the process of the motor’s operating state from speed to
zero speed. The first wave peak when the motor is started
is selected as the reference point, and the signals of three
different backlash operating conditions are referenced as the
reference point for time-domain overlap, and the amplitude
and frequency change is analyzed from the angle of speed.
In order to reflect this difference more clearly and intuitively,
each one takes the peak point of the time-domain waveform
of the current signal during the variable-speed phase as a
reference, and takes one-time interval between the positive
peak points of the variable-speed signal as a description of
how fast this waveform changes. Finally, polynomial fit-
ting is used to enhance the effectiveness of the extracted
indicators.

For polynomial fitting, given a set of data {(x;, y;) , i = 0, 1,
2,---, N}, a polynomial model is used to describe the data
set, and the fitting goal is for a polynomial model of order n
of the form y(x) = f(a,x) = a1x" + axx" ' + - - + a,x +
an+1, find the parameter ay, az, - - - , a,, dy+1 to minimize the
following x> amount.

N 2
2 _ Vi _f (ay xi)
X = Z ( Ay;

=1

n—1 2
i Yi— (a1X,-" + axx; +~-+anxz~+an+1>
i=1 Ayi

(15)

Under the assumption that Ay; = A, is constant, the solu-
tion that minimizes (15) is

a=V/y (16)
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Xy xy 1 x1 1
xf xg_l 1| _
Among them, V = 5 . ]a =
—1
) Xy Xy xy 1
aj Yo
i Yo . .
Yy = , V is the Vandermonde matrix,
&n-H YN
and the uncertainty (dispersion) of @ is o(a) =
Ay
Ay

diag ((VTV)fl)% .

A,

The characteristics ex%racted from the time-domain signal
during the gear shift phase are curve-fitted using the above
polynomial theory. Finally, three curves under different back-
lash are obtained, and the coefficients of the curves are used as
the criterion for different gear backlash discrimination during
the gear shift phase.

D. DATA PROCESSING FLOW BASED ON CURRENT SIGNAL
The motor operation process includes a variety of opera-
tion modes, which can be simply described as three types,
the acceleration operation process, the stable operation pro-
cess, and the deceleration operation process. For different
running states, this article adopts different analysis methods.
The analysis process is showed in Fig.2. For the collected
current signals under different operating conditions, the cur-
rent signal is first divided into a steady-time signal and a
variable-speed signal, and the signal is divided according to
the amplitude change of the current time-domain signal. The
features extracted at steady and variable speed were evaluated
using the FDA. Specific theoretical analysis methods are
detailed in Sections B and C.

IIl. MOTOR CURRENT TEST OF GEAR

TRANSMISSION SYSTEM

Based on the principle of gear meshing, analyze the cause
of the backlash of the meshing teeth, and build a test bench,
as showed in Fig. 3. It consists of a servo motor and its
supporting driver, transformer, etc. The main function of the
motor is to provide a power source for the system and drive
the load to rotate. Connected to the motor output is a gear
transmission system. The main part of the transmission part
is a pair of meshing gears connected by four bearing blocks
and four couplings. The load device is a magnetic powder
brake. The magnetic powder brake can be adjusted to change
the load in order to collect signals under different loads
and obtain more comprehensive working condition data. The
data acquisition system includes sensors, acquisition cards,
signal conversion devices and computer systems. The signal
collected this time is a three-phase current signal output from
the driver to the servo motor. The main technical parameters
of the test bench are shown in Table 2.
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FIGURE 2. The left side is the data processing for the steady speed state
by the FDA method, and the right side is the polynomial fitting method to
enhance the characteristics of the speed change state. In order to realize
the identification of tooth backlash in two states of steady speed and
variable speed.

M agnetic powder Coupling Sewo control and

brake power supply system

Bearing blck

FIGURE 3. Backlash and servo system test bench.

TABLE 2. Test bench technical parameters.

AC Drive Power 1.8Kw Speed 1000rpm

Transfer method Gear drive
. Meshing coefficient /

Gear drive Thread angle /(°) 0
Speed frequency 16.67
/Hz
Meshing frequency 1250
/Hz

load(DC) load 0~18.75N.m

For each test, the backlash is set quantitatively before

data collection. After analyzing the actual working conditions
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FIGURE 4. Backlash gear.
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FIGURE 5. Test speed curve.

in this test, the feeler gauge method was selected as the
side measurement method for measuring the gear backlash.
Fig. 4 shows the meshing gear, (a) is within the standard
backlash range, and (b) is the backlash is greater than the
standard range, and the measured size is 0.5mm. The test
simulates the backlash conditions caused by gear wear or
mounting errors.

There are two operating variables in the test: © Change the
tooth backlash; @ Change load.

Table 3 shows the test conditions. For different backlash
and different loads, the motor speed is constant at 1000 rpm,
and the backlash starts at 0.25mm. There are 3 kinds of back-
lash working conditions: 0.25mm, 0.50mm, 0.75mm. For
each backlash operating condition, there are four load con-
ditions: ON.m (no load), 6.25N.m, 12.5N.m, and 18.75N.m.

TABLE 3. Test condition information table.

Backla  Speed load 1 load 2 load 3 load 4
sh(mm)  (rpm) (N.m) (N.m) (N.m) (N.m)
0.25 1000 18.75 12.50 6.25 0
0.50 1000 18.75 12.50 6.25 0
0.75 1000 18.75 12.50 6.25 0

A total of 12 sets of data were collected throughout the test
process, three backlash conditions, and four loads for each
backlash. Each set of data contains the current signal of the
gear system’s stable forward and reverse and variable speed
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operation. In the next section, In Section IV, the collected
current signals will be analyzed, feature quantity will be
extracted, and the effect of backlash on the system will be
described.

The test acquisition software is NI SignalExpress2015 from
NI Corporation of the United States. LabVIEW_SE is mainly
used for waveform acquisition, generation, analysis, com-
parison, recording, import and export of data. The motor is
a Yaskawa permanent magnet synchronous motor, and the
current sensor is a ZHTK25 open-close current transformer
produced by Nanjing Zhenhengtong Electronics Co., Ltd.
The data acquisition card is NI 9215, and the acquisition box
is an NI CompactDAQ_8-slot Ethernet chassis.

IV. TEST SIGNAL ANALYSIS

A. TEST SIGNAL

In order to verify the relationship between load and a
backlash, a test with a backlash of 0.25mm, the speed of
al000rpm, load of 18.75Nm, 12.5Nm, 6.25Nm, and no-load
(ON.m) conditions were performed first; then, the load and
speed were fixed, change the backlash between the gears,
and collect the current signal. When the motor is running,
because the three-phase electric power is symmetrically
distributed, a single-phase current signal can be selected
for analysis. Each test motor has undergone the process
of “‘starting-acceleration-steady speed-down stop-reverse
acceleration-steady speed-down stop”. Here, the phase A
current of each backlash is selected as the counter signals
analyzed by the system.

s g
é 20 E 20
220 £-20
0 0.1 270 0.1
s Samples = Samples
g 4
% 20 & 20
& :
-20 £-20
i 0 0.1 27 0.1
Samples Samples

FIGURE 6. Backlash of 0.25mm-4 loads.

B. EFFECT OF LOAD AND BACKLASH ON THE SYSTEM

1) CASET1: SAME BACKLASH——DIFFERENT LOADS

In the test, there are 4 kinds of load conditions. Under the
same backlash, the current time domain signals of different
loads are given in Fig. 6, Fig. 8, Fig. 10. From the given
current time domain signal, the load has a great influence
on the current waveform amplitude. From the given current
time domain signal, the load has a significant influence on the
current waveform amplitude. As the load increases, the time
domain signal amplitude changes from small to large, and
the current waveform changes from intermittent to periodic
harmonics. Fig. 7, Fig. 9, Fig. 11 shown the corresponding
frequency distribution.
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FIGURE 7. Backlash of 0.25mm-4 loads.
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FIGURE 8. Backlash of 0.50mm-4 loads.
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FIGURE 9. Backlash of 0.50mm-4 loads.
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FIGURE 10. Backlash of 0.75mm-4 loads.

The signal given above is the effect of the gear on the
current signal of the servo system with the gear as the single
variable under the same backlash of the gear. It can be seen
in the figure that the change of the load is mainly reflected
on the amplitude of the current signal. With the continuous
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FIGURE 11. Backlash of 0.75mm-4 loads.
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FIGURE 12. ON.m load-different backlash.

increase of the load, the time domain waveform of the current
signal changes from small amplitude and irregular waveform
to large waveform amplitude, and tend to stabilize the stan-
dard sine wave. In the frequency domain, when the load is
relatively small, many small harmonics are flooded around
the main frequency, and the main peak amplitude is very
small. When the load gradually increases, the harmonics near
the main peak gradually decrease and the amplitude gradually
increases. When the load is increased to 18.75N.m, there are
basically no harmonics near the main peak. Comparing Fig. 7,
Fig. 9 and Fig. 11, the backlash of the tooth increases, and the
amplitude of the main peak of the current signal decreases.
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FIGURE 13. 6.25N.m load-different backlash.

2) CASE2:SAME LOAD——DIFFERENT BACKLASHES

In the illustrated current signal, under the condition that the
test bench runs at a stable speed, the load is constant, and
the gear tooth backlash is changed. Signal discrimination is
very inconspicuous, and only a small gap can be seen in the
amplitude of the time domain signal. Fig. 12-15, (a) is the
time domain overlap of the three backlash current signals,
(b) is the spatial display of (a), and (c) is the spectrum of
the three signals. Under a small load, the waveform of the
current signal appears as an exponentially decaying con-
tinuation signal of a sine wave. Fig. 12 and Fig. 13 show
the time domain signal of the current signal under a small
load. The difference between the waveform and amplitude of
the current signal and the signal under a large load is very
obvious. Especially when the system is running at no load, the
current amplitude becomes very small. As the load increases,
the current waveforms showed in Fig. 14 and Fig. 15 shown
that each peak has a large amplitude.

To the right of the time domain signal is the spectrum of the
current signal, with the load as a single variable. Looking at
several figures, as the load becomes smaller, the current signal
in the frequency spectrum appears more and more obvious
around the main frequency, and the amplitude is decreasing.
From the analysis of each spectrogram alone, the backlash is
regarded as a single variable, and it can be seen that there is
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FIGURE 14. 12.5N.m load-different backlash.

a large amplitude at the frequency of 83Hz, and the different
backlash shows the amplitude difference in signal strength.
There are some tiny protrusions beside the main peak. It can
be seen that the backlash does have an effect on the current
signal.

Aiming at the motor current signals collected under various
working conditions, this paper selects the current signals
under steady-state operation and with a load of 18.75N.m
for extracting features. The obtained signal is divided into
segments of length N, as showed in Fig. 16. In this paper,
the time-domain signal with a total length of 2.5s is divided
into 25 segments with a length of 0.1s. The data set of
different backlash under the same load is composed of 3 x 25
samples. That is, 25 samples are taken from three different
backlash. The waveform of the current signal during the
steady-speed operation of each backlash is shown in the right
figure of Fig. 16. The signals are processed by using the
method of processing signals in Table 1. Then use the Fisher
discrimination criterion introduced in II.B.2 to screen and
discriminate signal features.

As shown in Fig. 17, the sensitivity ranking of different
feature classes, Table 4 is a ranking table of the sensitivity of
all 40 features to the backlash. Among the extracted features,
the first four features have higher sensitivity to the backlash
of gears, and the fifth to tenth features gradually decrease
in sensitivity. The characteristic sensitivity curve is shown in

107170

20 (@)
[
s
3
= 0
= w
<
-20 : : : :
0 0.01 0.02 0.03 0.04
Samples
—G— 0.25 backlash
3 20 b) /\/\ 0.50 backlash
£ 5 VA |- 0.75 backlash
o
5 -20
S 0.05
. 1 0
Slgnal type Samples
10 (C) — = — 0.25 backlash

.50 backlash
— =57 — .75 backlash

2000

Signal type Frequency

FIGURE 15. 18.75N.m load-different backlash.

the figure. The sensitivity of the time domain signal s4 rms
and s6 standard deviation to the gear backlash is better,
and the frequency domain characteristic pl spectrum total
value and p2 mean frequency have better sensitivity to the
gear backlash. These features had better recognition ability
of backlash. However, the average sensitivity of s3, wpd2,
and p3 in several experiments was lower, and the performance
was the worst. 1 to 4th characteristics effectively describe the
state of the system and can be used as a characteristic quantity
to describe the effect of backlash on gears.

For the analysis of three types of backlash under 12.5Nm
load, three types of backlash under 6.25Nm and three types of
backlash under no-load conditions, the analysis methods are
the same as those under the above conditions, so they are not
one by one Narrative, the analysis results of different backlash
conditions for these three load conditions are given below.

3) CASE3: VARIABLE SPEED STAGE

In this paper, the current signal collected by the servo motor
with a load of 18.75N.m and speed of 1000rmp is selected
to analyze the variable speed stage. As shown in Fig.20 and
Fig. 22, when the backlash is equal to 0.25mm, 0.50mm, and
0.75mm, the A-phase signal of the three-phase current of the
motor in the variable speed phase is extracted. In the phase of
signal deceleration and descent, the signals under three dif-
ferent backlash operating conditions are processed according
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FIGURE 17. Ranking of different feature sensitivities.

to the method in II.C, and the time domain overlap of decel-
eration and descent in Fig. 23 is obtained. In the time domain
signal diagram, observe the changes from the current signals
overlapping in time. The frequency of the current changes is
different. The signal of the red line obviously reaches the next
peak point in a shorter time than the other two-phase signals.
That is, when the gear backlash is 0.25mm, the frequency
changes the fastest, the gear backlash is 0.50mm second, and
the gear backlash is 0.75mm, the slowest change. This paper
takes the reciprocal of the time interval between the peaks
of the signal during the shift phase as an index to describe
the speed of this waveform transformation. In Fig. 25, it can
be observed that under different tooth backlash, the three
curves are different, and the speed of frequency changes is
different.
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TABLE 4. 18.75N.m feature sensitivity ranking.

Ranking  Feature Sensitivity  Ranking  Feature Sensitivity
1 s6 1.00000 21 pll 0.00516
2 pl 0.96995 22 emdl 0.00509
3 p2 0.96566 23 emd?2 0.00507
4 s4 0.95572 24 wpd8 0.00506
5 s2 0.40763 25 emd3 0.00495
6 sl4 0.20102 26 s5 0.00454
7 pl4 0.10733 27 wpd5 0.00446
8 s12 0.08404 28 p7 0.00442
9 s7 0.08031 29 wpd3 0.00441
10 s8 0.06014 30 wpd7 0.00438
11 pl0 0.02257 31 wpd6 0.00437
12 sl 0.01855 32 wpdl 0.00437
13 s13 0.01855 33 s10 0.00437
14 sl 0.01748 34 p5 0.00436
15 wpd4 0.00592 35 p4 0.00435
16 pl3 0.00563 36 P9 0.00435
17 p8 0.00548 37 pl5 0.00435
18 p6 0.00546 38 s3 0.00435
19 pl2 0.00520 39 wpd2 0.00434
20 s9 0.00518 40 p3 0.00434

In the acceleration rising phase of the signal, the processing
method is the same as that of the deceleration falling signal.
The results are shown in Fig. 24 and Fig. 26. The reciprocal
of the time interval between the time domain signal and the
peak point is used as an index, and the result opposite to the
change rule of the signal during the deceleration and descent
phase is obtained.
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FIGURE 18. Feature sensitivity ranking.

TABLE 5. 12.5N.m feature sensitivity ranking.

Ranking  Feature Sensitivity  Ranking  Feature Sensitivity
1 sl 1 21 emd3 0.048403
2 s13 1 22 emdl 0.048371
3 wpd7 0.143635 23 emd2 0.048363
4 wpd8 0.119997 24 p7 0.048340
5 sl 0.067974 25 plo 0.048283
6 p4 0.062555 26 wpd6 0.048167
7 ps 0.062089 27 p8 0.047576
8 s5 0.061587 28 pl13 0.047507
9 s8 0.058584 29 po 0.047475
10 sl4 0.057564 30 P9 0.047435
11 pl4 0.056947 31 pl2 0.047295
12 s12 0.052163 32 wpd4 0.047292
13 s2 0.051779 33 wpdS 0.047285
14 s9 0.050506 34 pll 0.047247
15 s10 0.049532 35 p3 0.047190
16 s7 0.048966 36 pls 0.047179
17 s6 0.048911 37 wpdl 0.047166
18 s4 0.048898 38 wpd2 0.047070
19 p2 0.048881 39 wpd3 0.047066
20 pl 0.048880 40 s3 0.047060
1 |
2
£ 05 1
£
2]
0
0 10 20 30 40
Features

FIGURE 19. Feature sensitivity ranking.

Among the extracted new indicators, the effect of backlash
on the variable-speed current signal can be observed, but it
can also be seen in the figure that at some points, the indi-
cators have crossovers, not very clear. According to the
polynomial fitting theory, the reciprocal of the time interval
between the shifting peak points under each type of backlash
condition is taken as the ordinate y; and the number of peaks
is taken as x;,a set of known data {(x;, y;) ,i =0,1,2,--- , N}
is established. Corresponding polynomial functions were fit-
ted in the rising phase and the falling phase, respectively.
Polynomial fitting can eliminate some singular points in the
new index curve. The fitted curve is used as a more obvious
index to describe different backlash.
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TABLE 6. 6.25N.m feature sensitivity ranking.

Ranking  Feature Sensitivity  Ranking  Feature Sensitivity
1 wpd7 1 21 emd2 0.409516
2 wpd8 0.797737 22 p7 0.409026
3 s5 0.477288 23 s10 0.408043
4 s8 0.461332 24 p8 0.407724
5 sl4 0.461133 25 p9 0.407670
6 sl 0.449820 6 p3 0.407329
7 s13 0.449820 27 wpd2 0.407050
8 s2 0.442119 28 wpdl 0.407004
9 pl 0.439083 29 wpd3 0.406560
10 p2 0.439056 30 p4 0.406368
11 s4 0.437932 31 p5 0.406225
12 s6 0.437727 32 pl3 0.406095
13 s12 0.435030 33 wpd5 0.405953
14 s9 0.424527 34 wpd4 0.405837
15 wpd6 0.423553 35 pl5 0.405121
16 sl 0.423458 36 emd2 0.404999
17 pl0 0.420138 37 pl2 0.404945
18 s7 0.417917 38 pll 0.40479
19 pl4 0.417585 39 p6 0.404357
20 emdl 0.411059 40 s3 0.4043
1 ' ' ' '.
0.8

g 06

Z 04

w2

0.2

0 10 20 30 40

Features

FIGURE 20. Feature sensitivity ranking.

TABLE 7. ON.m feature sensitivity ranking.

Ranking  Feature Sensitivity  Ranking  Feature Sensitivity
1 wpd8 1 21 pl 0.409516
2 wpd7 0.862913 22 p3 0.409026
3 pS 0.830774 23 wpdl 0.408043
4 wpd6 0.825799 24 s10 0.784996
5 wpd3 0.818286 25 emdl 0.784825
6 s5 0.816952 26 p7 0.784567
7 pl2 0.814683 27 p9 0.784190
8 p4 0.813497 28 emd2 0.783967
9 pll 0.806904 29 sl4 0.782266
10 pl4 0.806138 30 sl 0.782215
11 po 0.797683 31 wpd5 0.782018
12 s8 0.796250 32 pl0 0.781901
13 s12 0.795504 33 sl 0.781751
14 P8 0.792532 34 s13 0.781549
15 wpd4 0.791224 35 pl3 0.781186
16 s9 0.789819 36 s6 0.781153
17 emd3 0.789262 37 s4 0.781153
18 wpd2 0.788847 38 s2 0.780646
19 pls 0.785778 39 s7 0.780011
20 p2 0.785020 40 s3 0.780010

According to the principle of polynomial fitting, x2 is the
smallest after fitting. During the deceleration and declining
stage, x 2 is the smallest under 4-term polynomial fitting.
In the accelerated rising phase, the corresponding x?2 is
the smallest under 6-term polyphase fitting. Table 8 is the
4-term polynomial coefficients fitted by the motor during
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deceleration and descent under different backlash conditions. different backlash conditions during acceleration and ascent.

Table 9 is the 6-phase polyphase coefficients fitted under Fig. 27 and Fig. 28 are the fitted curves. It can be seen that
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TABLE 8. Polynomial fitting coefficient.

Backlash a4 a3 a2 al a0
0.25mm -3.51E-06 0.000497 -0.0257 -0.12478 79.92952
0.50mm -2.72E-06 0.000303 -0.01423 -0.33436 80.06727
0.75mm -3.40E-06 0.000377 -0.0173 -0.29802 78.12143
TABLE 9. Polynomial fitting coefficient.
Backlash a6 a5 a4 a3 a2 al a0
0.25mm -2.67E-09 7.52E-07 -8.27E-05 0.004525 -0.13606 3.083498 9.079022
0.50mm -1.91E-09 5.15E-07 -5.50E-05 0.003025 -0.09705 2.606016 12.25401
0.75mm -1.67E-09 4.49E-07 -4.82E-05 0.00268 -0.08711 2.436013 14.18497
100 most sensitive to the backlash of the gear, which can effec-
0.25 backlash tively distinguish the effect of different backlash on the motor
o 90 current.
E / In the system variable speed phase, the first is to over-
'T;:- 0 0.50 backlash lap the collected current signals in the time domain, and
< 0.75 backlash the second is to take the reciprocal of the time interval
50 ' — between the peaks of the time domain signals and make a
0 20 40 60 80 100 graph and fit a polynomial to its variation curve. From the

Samples

FIGURE 27. Four-term polynomial fitting.
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FIGURE 28. Six-term polynomial fitting.

comparing with Fig. 25 and Fig. 26, Fig. 27 and Fig. 28 has
removed some dead pixels, and the curves are smoother and
can clearly reflect the state of the system. Can be used as an
effective feature to distinguish between different backlash.

V. CONCLUSION

Aiming at the problem of backlash of gears, this paper designs
and builds a test bench. Simulate the working conditions
of the gears in different backlash, and synchronously col-
lect the three-phase current of the servo motor through the
current sensor. The influence of the backlash on the stator
current signal of the servo permanent magnet synchronous
motor is analyzed from the collected current signal. During
the stable operation of the system, the collected signals are
segmented, and then multiple features are extracted in the
time and frequency domains. Using the FDA to perform
sensitivity ranking on the extracted features, find the features
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fitted curves, different states of the system can be clearly
distinguished. The fitted polynomial coefficient is used as
an index of the effect of different backlash on the speed
of the motor. The analysis of experimental data shows that
this index is highly sensitive to the backlash of gears, and
it can distinguish the conditions of different backlash. It can
be used as an effective index to characterize the effect of
different backlash on the variable speed operation of the
motor.

The existence of gear meshing backlash has a great impact
on the system. This article explores the impact of different
gear backlash on the drive system and stator current through
experiments. The current state of the gear is used as a research
object to monitor the health of the gear drive system. Provide
practical references.
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