
Received May 4, 2020, accepted May 29, 2020, date of publication June 2, 2020, date of current version July 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999351

Detecting Memory Life-Cycle Bugs With Extended
Define-Use Chain Analysis
GEN ZHANG
College of Computer, National University of Defense Technology, Changsha 410073, China

e-mail: zhang.gen@foxmail.com

This work was supported in part by the the National Key Research and Development Program of China under Grant 2016YFB0200401, in
part by program for New Century Excellent Talents in University, in part by the National Science Foundation (NSF) China, under Grant
61402492, Grant 61402486, Grant 61379146, and in part by the Laboratory Pre-research fund under Grant 9140C810106150C81001.

ABSTRACT OS kernels leverage various memory allocation functions to carry out memory allocation,
and memory data in kernel space of OS should be cautiously handled, e.g., allocating with kmalloc() and
freeing with kfree(). However, real cases do exist where memory data is incorrectly allocated/freed, not
checked before dereferenced, or left unfreed when out of use. We define these cases as Memory Life-
cycle (MLC) bugs, and according to what we know, this new type of software bugs has not been deeply
researched yet. In this paper, we go deep into the life-cycle of kernel memory space, including allocation,
dereference and free, and propose the first systematical study of MLC bugs and build an automated and
scalable detection framework, MLC bug sanitizer (MLCSan). MLCSan is capable of revealing memory
allocation and free functions OS kernels. Besides, the occurrences of allocating, dereferencing and freeing
sites can be automatically detected by MLCSan, leading to cases where MLC bugs may appear. Moreover,
experiment result of analyzing the latest mainline OS kernels withMLCSan is a strong proof that MLCSan is
effective in detecting MLC bugs and can scale to different platforms, in which 41 new bugs are identified in
Linux and FreeBSD. And undoubtedly, we will open source MLCSan prototype to contribute to the security
research in this area.

INDEX TERMS Systems security, software and application security.

I. INTRODUCTION
Vulnerabilities in OS can be intentionally exploited and thus
the entire system may suffer from various attacks. Recent
works [1]–[16] in security community also highlight the
necessity to focus on OS kernel security. Memory in kernel
space is allocated either by stack allocation or heap allocation.
Stack memory is allocated and deallocated automatically
by compilers, which can scarcely malfunction [17], while
heap memory is dynamically allocated by programmers with
allocation functions. Consequently, manually allocating heap
memory tends to error-prone [17], [18], resulting in severe
security issues such asmemory leaks, privilege escalation and
system crash, which should be attached more importance.

Memory allocation exits both in user and kernel
space, and typically, Linux kernels carry out kmalloc(),
kmem_cache_alloc(), etc. to conduct heap allocations. And a
MAR is the pointer variable returned by a memory allocation
function, pointing to the allocated memory space. Addition-
ally, when the allocation fails, th function will return a null

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

pointer as is often the case. Consequently, this MAR can
no longer be dereferenced and some error handling code
should be executed. Generally speaking, a MAR is initially
allocated by an allocation source function, then dereferenced
and finally freed by a sink function. We can summarize
the life-cycle of kernel memory space as 3 steps, including
(1) allocation, (2) dereference and (2) free finally. By thor-
oughly considering such 3 significant steps, we introduce a
new bug classification, MLC bug.

FIGURE 1. Part of an applied patch file. In this patch, MAR widget_name
is allocated by a correct source kmemdup_nul(), instead of kstrndup().

Figure 1 is an applied patch detected by MLCSan, where
MAR widget_name is improperly allocated by kstrndup(),
which should be kmemdup_nul(). This is an issue in

114968 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7709-0751
https://orcid.org/0000-0001-7300-9215


G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

FIGURE 2. Part of an applied patch file, detected by MLCSan. In this
patch, MAR node_info→vdev_port.name is checked when source
kstrdup_const() fails.

FIGURE 3. Part of an applied patch file, detected by MLCSan. In this
patch, MAR val is checked and mnt_opts is freed when source
kmemdup_nul() fails.

step (1), that an allocation function is incorrectly used. And
in Figure 2P, a check for MAR node_info→vdev_port.name
is enforced after allocated by source kstrdup_const(), which
is related to step (2). Moreover, as shown in Figure 3, MAR
val is allocated by source kmemdup_nul(), and it should be
checked before dereferenced in selinux_add_opt(). Further-
more, the related MAR mnt_opts should be freed to prevent
potential memory leaks in kernel. By considering the life-
cycle of memory space, we can figure out that step (3) mal-
functions in this case, where a free operation is absent.

In conclusion, we define bugs illustrated above as MLC
bugs, which can be classified into three different scenarios:
incorrect source-sink (ISS),missing check (MC) and lack-
ing sink (LS). Generally speaking, a bug can fall into a MLC
bug when any of the 3 steps is violated. If memory allocation
and free functions are improperly used, an incorrect source-
sink case is hit. Meanwhile, a missing check happens when
a MAR is dereferenced without verification. And if certain
memory space is left unfreed when out of use, we may come
across a lacking sink case.

As we can figure out from the above examples, MLC
bugs are distinct from common memory vulnerabilities, such
as out-of-bound (OOB) and use-after-free (UAF). Generally
speaking, MLC bugs are distinguishable from kernel memory
errors [11], [19]–[23], API misuse bugs [24]–[27] and miss-
ing check bugs [15], [28], [29]. Exposing bugs such as OOB
and UAF is focusing on the result of accessing memory by
error. On the contrary, MLCSan targets the causes of memory
errors and recognizes which step in the life-cycle of memory

space is error-prone. Furthermore, previous works on API
usage checking only consider single APIs, and contrarily we
concentrate on coexisting source-sink pairs and incorporate
detecting function absence in kernel memory to reason about
potential memory leaks, which is different from API mis-
use bugs. And MLC bugs cannot be classified into missing
check bugs for the reason the initial intention of MLCSan is
detecting the violations to allocate, dereference, and free of
memory space, which is farmore different from concentrating
on missing check of critical variables.

MLC bugs can be common in commodity OS kernels and
they are capable of bringing out trouble in the system. Gener-
ally speaking, memory operations such as allocation or free
widely exists in OS kernels. For instance, according to
our evaluation, there are 13,422 allocation operations in
Linux 4.12. Moreover, MLC bugs exist widely in kernels
since all memory space accords with the 3 steps in a life-
cycle as mentioned above, and any violation to the steps will
result in potential MLC bugs. For example, the number of
LLVM instructions operating on a certain MAR can reach
1,930 as demonstrated in Section V and programmers can
hardly guarantee that there is no mis-operation in such a large
scale.

Detecting MLC bugs in OS kernels can be laborious and
challenging. Conducting static analysis on kernels can be
non-trivial and demands customized techniques to efficiently
analyze such a huge code base and handle exceptional cir-
cumstances. Second, a MLC bug is a new type of bugs,
we need a clear and specific bug definition, but we can rarely
find typically related works. Moreover, it is difficult to imple-
ment the MAR related rules, e.g., the identification of source
functions, because there is no readily available approaches to
determine whether a function is a source in numerous func-
tion definitions in kernels. At last, since MLCSan depends
on data-flow and control-flow analysis traversing multiple
functions, accurate inter-procedural analysis is necessary in
the detection of MLC bugs.

In this paper, to overcome the above mentioned challenges
to discover MLC bugs, we first summarize the life-cycle of
allocated memory space, which includes allocation, derefer-
ence, and free. More importantly, we give a formal definition
of source, sink, MAR, and MLC bugs. Moreover, by uti-
lizing context-, flow- and field-sensitive program analysis
techniques, we propose an automated and scalable detection
framework, MLCSan, to expose MLC bugs. By leveraging
classical call graph construction and pointer analysis in an
inter-procedure manner, iterative and propagative detection
techniques are adopted to locate all the sources, sinks and
MARs in the huge code base of OS kernels. After the iden-
tification of them, MLCSan constructs define-use chains of
MARs and performs bidirectional source-sink analysis, tak-
ing both the source and sink of a certain memory into consid-
eration. And MLC bugs are detected by the above procedures
in MLCSan.

Based on the new feature of LLVM [35], we implement
MLCSan framework and analyze the latest mainline Linux

VOLUME 8, 2020 114969



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

and FreeBSD kernels with it. The experiment results indicate
that the entire analysis process of the kernels is finished in
two hours and 41 new MLC bugs are identified. Specifically,
we submitted 41 patches of all the bugs to the maintainers,
most of which are confirmed or applied to the Linux and
FreeBSD kernel. This is strong proof that MLC bugs do
exist commonly in OS kernels, on which we need to focus to
prevent potential security issues. Furthermore, the results also
demonstrate that MLCSan can automatically and scalably
detect MLC bugs in an effective way.

In conclusion, this paper makes the following
contributions:

• A new type of software bugs. We come to a defini-
tion of a new type of software bugs, which is MLC
bug. By examining the violations to allocate, derefer-
ence and free of memory space, we conclude incorrect
source-sink, missing check and lacking sink as three
sub-classes.

• Automated and scalable analysis of MLC bugs.
In this paper, we propose MLCSan, an automated and
scalable detection framework of MLC bugs. To start
with, MLCSan performs inter-procedure global call
graph and pointer analysis, followed by iteratively
detecting both source functions and MARs. Moreover,
we incorporate extended define-use chain analysis to
detect the three cases in MLC bugs, and evaluation
demonstrates that these techniques are effective and
can be scaled to different platforms such as Linux and
FreeBSD.

• Identification of 41MLC bugs.We evaluated the latest
mainline Linux kernels and FreeBSD, and submitted
41 patches for MLC bugs to maintainers, which are
capable of compromising the entire system and causing
security problems.

• MLCSan static analysis prototype. To make contribu-
tions to the security community and foster more work in
this field, we will open source MLCSan.1

II. MLC BUGS
In this section we will discuss what is source function, sink
function andMAR, and then give a formal definition of incor-
rect source-sink, missing check, lacking sink and MLC bugs.

A. A GLIMPSE AT MLC BUGS
As discussed above, memory space in kernel is mostly allo-
cated by sources, dereferenced and freed by sinks. In sum-
mary, the life-cycle of a MAR can be concluded as following:

• Allocation. A MAR is allocated by a source function.
At the very beginning, the usage of this source must be
appropriate.

• Dereference. Then, before using this MAR, it should
be verified to prevent potential null pointer dereference.
After that, it is dereferenced.

1https://github.com/zhanggenex/MARC

FIGURE 4. 3 steps of the life-cycle of memory space.

FIGURE 5. Part of an applied patch file. In this patch, MAR ce→ce_path is
freed correctly, rather than kfree().

TABLE 1. Preliminaries.

• Free. Finally, we need to free this memory space in a
right way if it is out of use.

In brief, Figure 4 shows a simplified life-cycle of MAR str,
which is allocated by a correct source kstrdup(), dereferenced
after checked and freed properly by kfree().

Generally speaking, a MLC bug may arise if any of
the above three steps goes wrong. When a MAR is allo-
cated or freed incorrectly, as shown in Figure 1 and 5
accordingly, an incorrect source-sink scenario will happen.
Furthermore, Figure 2 indicates a missing check subclass of
MLC bugs, where a MAR is not verified when dereferenced.
Similarly, when the free operation of a certain MAR is not
performed, a lacking sink case is hit in Figure 3.

B. DEFINITION DETAIL
By referring to the above simplified examples, we come to the
detailed formal definition of source function, sink function,
MAR and MLC bugs.

• Definition 1. Preliminaries in Table 1.
• Definition 2-1. {SC} is the set of all source func-
tions. At the beginning, it is equal to {SCo}, which
is the original source function set, containing memory

114970 VOLUME 8, 2020



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

TABLE 2. Original source functions.

TABLE 3. Original sink functions.

allocation functions of Linux and FreeBSD kernels,2

such as kmalloc() and vmalloc(). Table 2 demonstrates
original source functions leveraged in this paper.

• Definition 2-2. (1) When a function F calls a source F ′

(F ′∈{SC}) in its function body, (2) and the return-value
of F is a pointer variable, then we claim that F∈{SC}.

• Definition 3-1. Similar to Definition 2-1, {SK } is the
set of sink functions. {SKo} denotes the original sinks,
which are described in Table 3.

• Definition 3-2. If a function F calls F ′ (F ′ ∈ {SK }) in
its function body, then we claim that F ∈ {SK }.

• Definition 4. The set of MARs is {MAR}. If a pointer
variable V is the return-value of a source function, then
V ∈ {MAR}.

• Definition 5. If a MAR is incorrectly allocated or freed
with an improper source or sink, then this case falls into
incorrect source-sink. If a MAR is dereferenced without
verification, then it is a missing check situation. Lacking
sink happens if a MAR is not freed when out of use.
These 3 subclasses are collectively called MLC bug.

III. DESIGN OF MLCSAN
As the definition detail of source function, sink function,
MAR and MLC bugs is discussed above, we will propose the
design of MLCSan in this section.

A. OVERVIEW OF MLCSAN
Figure 6 shows the basic work flow of MLCSan, consisting
three key stages: preprocessing, extended define-use chain
analysis and bug reporting.

2The implementation of these functions is different in Linux and
FreeBSD.

FIGURE 6. A demonstration of the primary work flow of MLCSan,
containing 3 main procedures: preprocessing, extended define-use chain
analysis and bug reporting in the end.

MLCSan treats LLVM IR as its inputs, rather than kernel
source code, which is an intermediate representation com-
piled by clang [36]. To perform inter-procedure analysis,
MLCSan then builds a global call graph of functions in
kernel. Besides, further pointer analysis is utilized to aid other
memory related analysis in the following steps, e.g., alias
analysis.

Stage II is the most significant component of the entire
structure. This stage contains, extended define-use chain
(ExDU) analysis: iterative source-sink identification, prop-
agative MAR identification, define-use chain construction
and bidirectional source-sink analysis. In this phase, sources,
sinks and MARs will all be detected by ExDU, then it con-
structs a frequently used define-use chain and analyzes both
sources and sinks.

In stage III, MLC bugs will be reported as output. By track-
ing the life-cycle of memory space, MLCSan can tell which
part of the process is mistaken. Specifically, the content
of these three stages will be proposed in the following
subsections.

B. STAGE I - PREPROCESSING
LLVM compiler clang can compile kernel source code to
LLVM IR, of which the file name always has a .bc suffix.
After receiving LLVM IR as input, MLCSan then builds
a global call graph of functions in source code to con-
duct inter-procedure analysis. As defined above, MLCSan
iteratively tracks sources and sinks, which needs to reason
about direct calls and indirect calls between functions, e.g.,
function efi_call_phys_prolog() in Figure 7 iteratively calls
kmalloc_array() and kmalloc(), and it can be detected as a
source function through the following stages.

VOLUME 8, 2020 114971



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

FIGURE 7. Part of an applied patch file. In this patch, MAR save_pgd is
allocated by source efi_call_phys_prolog(), and a check before
dereferenced is enforced.

Likewise, pointer analysis is also conducted in this stage
to help detect alias of MARs in the next stage. As shown
in Figure 3, MAR val is allocated by kmemdup_nul(), and
is used in function selinux_add_opt(). Further analysis into
this function is required to verify whether there val is derefer-
enced, and pointer analysis can assist revealing this problem.

C. STAGE II - EXDU ANALYSIS
ExDU contains four basic parts: iterative source-sink iden-
tification, propagative MAR identification, define-use chain
construction and bidirectional source-sink analysis.

To start with, iterative source-sink identification needs to
traverse the global call graph to detect callers of functions in
{SCo} and {SKo}. And if a function F calls directly or indi-
rectly another function in source set {SC} and the return-value
of F is a pointer variable, then we will add this function to
{SC} and iteratively handle all the functions in kernel in the
same way.

Moreover, MARs are identified through a propagative
MAR identification technique, which is accomplishedmainly
by alias analysis. For example, in Figure 3, MAR val
is allocated by kmemdup_nul(). Furthermore, val is used
later in function selinux_add_opt(), whose implementation
is showed in Figure 8, and we need to figure out whether
val is dereferenced. Apparently, s is the alias of val and it
is dereferenced, thus val and s should both be checked before
dereferenced. In this propagativemanner,MLCSan can detect
potential MARs hard to identify and eliminate false negatives
as much as possible. Specifically, there should be a suspend
condition to stop the alias propagation, otherwise tracking
numerous alias will cause significant performance overhead
and may report unnecessary false positives. InMLCSan, alias
analysis is designed to suspend when a user-space variable,
a global variable, etc. is met, which is difficult to perform
deeper analysis.

FIGURE 8. Code of selinux_add_opt(), in which s is the alias of val.

Constructing define-use chain [37] of a variable is
widely used in data-flow analysis. By combining it with

a bidirectional source-sink analysis, MLCSan can reason
about incorrect source-sink, missing check and lacking
sink cases. Along the define-use chain, it will gener-
ate a series of marks related to the LLVM instructions
operating on a MAR, e.g., there is a store instruction
store i32 %1, i32* %ptr, align 4, a Storemark is recorded in
MLCSan for the define-use chain of ptr. And other instruc-
tions, such as Load, GEP and Call, work in the same way.
Figure 10 illustrates a C code scratch and the relative LLVM
IR, in which ptr is allocated by kmalloc(), checked, derefer-
enced in printf() and finally freed, thus the define-use chain
is Alloc→Cmp→GEP→Free.

Additionally, in oder to detect incorrect use of both
sources and sinks or cases where sink functions are missing,
we leverage a bidirectional source-sink analysis. When a
pair of source and sink does not match previously defined
rules, an incorrect source-sink case is hit, e.g., in Figure 5,
ce→ce_path is allocated by kstrdup_const(), with an annota-
tion ‘‘Strings allocated by kstrdup_const should be freed by
kfree_const’’ in kernel source code. Therefore, ce→ce_path
should be freed by kfree_const(), rather than kfree(). As for
lacking sink scenarios, MLCSan traverses the global call
graph of the function where an allocated MAR resides in,
and if there is no sink for the MAR in all the direct or indi-
rect callers of this function, a lacking sink case will
be detected. As mnt_opts in Figure 3, a sink function
selinux_free_mnt_opts() is enforced to handle this lacking
sink case.

As illustrated in Algorithm 1, the above discussed iterative
source-sink identification, propagative MAR identification,
define-use chain construction and bidirectional source-sink
analysis take initial set of source functions {SCo}and sink
functions {SKo} as inputs, and output incorrect source-sink,
missing check and lacking sink cases respectively.

D. STAGE III - MLC BUG REPORTING
According to the life-cycle of memory space depicted
in Figure 4, any violation of this life-cycle will be reported
by MLCSan. Incorrect sources and sinks will be detected
as incorrect source-sink, such as kstrndup() and kfree()
in Figure 1 and 5, which should be kmemdup_nul() and
kfree_const() instead to match their respective source and
sink functions. A missing check case happens when a
MAR is dereferenced without verification, and null pointer
dereference will commonly cause system crash or denial-
of-service. As shown in Figure 2 and 7, checks for
node_info→vdev_port.name and save_pgd are enforced
before dereferencing MARs to prevent missing check cases.
Moreover, Figure 3 demonstrates that MLCSan is capable
of discovering lacking sink cases, in which the sink for
mnt_opts, selinux_free_mnt_opts(), is executed. And by free-
ing this allocated memory space, potential memory leaks are
prevented.

Figure 11 in Appendix is the output of MLCSan on
a missing check case. As illustrated, most of the signifi-
cant information is given in the output, such as the LLVM

114972 VOLUME 8, 2020



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

Algorithm 1 ExDU Analysis
function iterative_source_sink_identification
{SC} = {SCo}
{SK } = {SKo}
for F in CallGraph do

if F calls F ′ & F ′∈{SC} & F returns pointer
then

{SC} = F∪{SC}
end if
if F calls F ′ & F ′∈{SK } then
{SK } = F∪{SK }

end if
end for

end function
function propagative_marv_identification
{MARV } = ∅
for F in {SC} do

if F returns V then
{MARV } = V∪Alias(V )∪{MARV }

end if
end for

end function
function constuct_define_use_tree

Output: DUT
end function
function bidirectional_source_sink_analysis

Output: P1, P2
end function
function bug_reporting(DUC, P1, P2)
{ISS} = {MC} = {LS} = ∅
if iss ∈ (P1, P2) then
{ISS} = iss ∪ {ISS}

end if
if mc∈DUC then
{MC} = mc ∪ {MC}

end if
if ls∈DUC then
{LS} = ls ∪ {LS}

end if
end function
Output: {ISS}, {MC}, {LS}

instruction, source, sink, MAR, define-use chain, etc.
Moreover, source code around the bug site is presented to ease
further debugging. We can identify from the output that the
MAR is not checked before dereferencing in strncmp() and
a check should be enforced to prevent potential null pointer
dereference.

IV. IMPLEMENTATION DETAILS
This section will present implementation details of MLCSan,
as well as several engineering issues related to static analysis
with LLVM infrastructure and the solutions.MLCSan utilizes
LLVM and clang version 7.0.0 as static analysis and compiler

engine. OS kernel source code is firstly compiled to LLVM
IR with clang, and then static analysis is performed upon
it to expose MLC bugs. In total, MLCSan includes about
12K lines of code and 6 individual LLVM passes to conduct
the 3-stage operation described in Section III.These passes
construct global call graph and perform pointer analysis in
advance, to aid the ExDU analysis in the following stage. And
more detailed information will be given below.

A. STAGE I - PREPROCESSING
1) COMPILING LLVM IR
To start with, kernel source code needs to be compiled to
LLVM IR, acting as inputs of the LLVM analysis passes.
Older versions of Linux kernel can be directly compiled to
LLVM IR using clang. However, asm-goto is enforced as a
compiler prerequisite to guarantee the absence of dynamic
branches in later Linux versions [38], and to the time of
conducting experiment of this paper, clang does not support
asm-goto yet [39]. In this paper, we leverage the compiling
steps in [40] to successfully generate LLVM IR. In general,
it bypasses asm-goto and produces LLVM bitcode files with
clang, of which we will not further discuss since it is not
related to our research topic. Besides, MLCSan accepts this
input and continues to perform following analysis steps.

2) GLOBAL CALL GRAPH
The iterative source-sink identification inMLCSan requires a
global call graph to conduct inter-procedure analysis between
functions. Starting from {SCo} and {SKo}, we can figure out
all the sources and sinks in the kernel with such global
call graph. For example, efi_call_phys_prolog() in Figure 7,
as a matter of fact, it iteratively calls kmalloc_array() and
kmalloc() in its implementation, which we need a global call
graph to reveal the relationship between them, and indirect
calls in some difficult cases. In MLCSan, we implement this
part by following previous works, such as [12], [41], [42].

3) POINTER AND ALIAS ANALYSIS
InMLCSan, we need to identifyMARs in a propagative man-
ner, thus pointer and alias analysis is required. For example,
in Figure 3, val is allocated by kmemdup_nul(), which is used
later in function selinux_add_opt(), whose implementation
is showed in Figure 8. s is the alias of val and it is derefer-
enced, therefore they should be checked before dereferenced.
We leverage off-the-self alias analysis pass in LLVM and to
balance between false negative rate and performance over-
head, we study the usage in [12], [15] and finally consider
‘‘PartialAlias’’ and ‘‘MustAlias’’ as alias.

B. STAGE II - EXDU ANALYSIS
1) DEFINE-USE CHAIN AND GEP INSTRUCTION
After identifying MARs, we need to track all the operations
on them by a define-use chain [37], e.g., the define-use
chain of ptr in Figure 10 is Alloc→Cmp→GEP→Free. And
since we discover that in our evaluation that there is always

VOLUME 8, 2020 114973



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

a Load instruction coupling with significant operations on a
MAR, for example, Line 10 in front of Line 11 in Figure 10,
therefore we eliminate the Load in our define-use chain
representation for simplicity.

GEP is a fundamental pointer calculation instruction in
LLVM. In our implementation, we consider GEP instructions
as memory dereferencing operations for the following rea-
sons. GEP calculates the offset of the target memory and
Load it, which is the same as dereferencing a pointer in C
code, e.g., in Figure 10, ptr is dereferenced in printf() in
Line 5 with C code and the same in Line 20 with LLVMGEP
instruction.

2) BIDIRECTIONAL SOURCE-SINK ANALYSIS
We leverage bidirectional source-sink analysis to detect
incorrect source-sink and lacking sink cases. We predefine
several source-sink matches after examining the kernel, such
as kstrdup_const() and kfree_const() in Figure 5. If any vio-
lation to the matches happens, MLCSan will report an incor-
rect source-sink case. Moreover, by traversing the define-use
chain of a MAR, MLCSan can tell whether a sink function
is operated. When a MAR is left unfreed after use, a lacking
sink case is reported.

C. STAGE III - BUG REPORTING
1) REDUCING FALSE POSITIVES
In this step, we adopt several methods to eliminate false
positives. Firstly, we add a terminate condition to stop
the alias propagation, otherwise it will cause consider-
able performance overhead and may cause false positives.
In MLCSan, the propagation is designed to suspend when
a user-space variable, a global variable, etc. is hit, which is
difficult to perform deeper analysis. Furthermore, we exclude
some functions that iteratively call a source function but not
sources themselves, e.g., function F1 calls kmalloc(), allo-
cates memory for p1 and frees it finally. However, the return-
value of F1 is p2, which is allocated by F2 and F2 is already
added to the source set. In this case, we exclude F1 to increase
the detection accuracy. Moreover, we consider some practical
problems. One of them is that some functions in kernels have
a __init attribute, and according to themaintainers, if memory
allocation in this kind of function fails, the whole system
will reboot as a result, therefore we exclude them from our
reported bugs at last. We also handle other cases such as
kmalloc() with GFP_NOFAIL, etc.

V. EVALUATION
We will discuss the experiment results in the following
aspects.

• Analysis statistics, including analysis time and statistics
(Section V-A and V-B).

• Effectiveness of bug finding. MLCSan should be
effective in exposing MLC bugs (Section V-C).

• Portability and scalability. Evaluation should confirm
MLCSan can scale to different targets (Section V-E).

We conduct extensive experiments on MLCSan with
three different version of Linux kernels and one version
of FreeBSD, to evaluate both scalability and effectiveness
of our framework. Moreover, our evaluation is performed
on a laptop with 4 cores (Intel(R) Core(TM) i7-7500 CPU
@ 2.70GHz), 8.0 GB RAM, and the distribution is ubuntu
16.04 LTS with kernel 4.4. Specifically, all the three versions
are configured with default configuration defconfig and com-
plied with LLVM/clang 7.0.0.

A. ANALYSIS TIME
Table 4 is the analysis time and related information on each
version of kernels. Linux 5.1 and FreeBSD 11.3 are the
newest versions at the time of our experiments. As we can see
from the table, Linux kernel 3.19, 4.12 and 5.1 are released
between at about a two-year interval, therefore we choose
them as our targets. MLCSan succeeds in analyzing all of the
four kernels, which is a solid proof that MLCSan is scalable
on different targets.

TABLE 4. A list of analysis time on the four kernels, where Date is the
release date of the kernel, LOC indicates lines of code, IR Size represents
the size of the bitcode files compiled by clang, and Time implies the
analysis time in seconds.

More information is provided in the table, and the lines of
code are proportional to the size of bitcode files compiled by
clang. Besides, MLCSan accomplishes the bug detection task
between 3,400 and 5,200 seconds for different kernels, which
is approximately between 1 hour and 2 hours. This is also
under the intuition that the more code in kernel, the longer it
takes to thoroughly analyze it.

B. ANALYSIS STATISTICS
Analysis statistics of the three kernels are given in Table 5.
In this table, the important statistics in our ExDU analysis
such as source and sinks are presented. By examining the
table, we can find that the number of sources, sinks and
MARs is also generally in proportion to the code size of each
kernel. Taking Linux kernel 4.12 as an example, the number
of source functions is 2,880, which is the same order of
magnitude with the number of sink functions.

The last column in Table 5 is quite interesting, and we will
have further discussion on it. This column records the average
length of define-use chain of MARs in each kernel, which
indicates the number of LLVM instructions operating on a
certain MAR from allocation to free. Additionally, as showed
in Figure 9, we present the define-use chain occurrences
distribution graph of MARs in kernel 4.12. The x axis is
the length of define-use chain and the y axis is the number

114974 VOLUME 8, 2020



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

TABLE 5. A list of analysis statistics analyzing the 4 kernels. SC, SK and
MAR is the total number of them detected in kernels, and Avg. DU is the
average length of define-use chain in each kernel.

FIGURE 9. A graph of define-use chain length occurrences in Linux 4.12,
where the x axis is the length of define-use chain, and y axis is the
number of occurrence of the respective length.

of occurrences of this length, e.g., (10, 21) in this graph
means there are 21 define-use chains of length 10 in ker-
nel 4.12. More interestingly, the maximum define-use chain
length reaches 1,930 in 4.12, which indicates that about two
thousand LLVM instructions are operating on thisMAR. And
when we focusing on the maximum of y axis (4, 4088),
which means that define-use chain of length 4 appears most
frequently in this kernel. By considering the common define-
use chain of a MAR, this would be more easy to understand.
According to the life-cycle of memory space, allocation,
checked dereference and free can be measured by define-use
chain in MLCSan, which is Alloc→Cmp→GEP→Free. So a
define-use chain of length 4 is a typical operation on a MAR,
therefore it makes the maximum occurrences in the graph.

C. EXPOSED BUGS
Table 6 illustrates an example of bugs discovered by
MLCSan. In the detailed Table 7 and Table 8 in Appendix,
among the 41 identified MLC bugs, we have 17 of them
applied, 3 confirmed by maintainers and the rest bugs are
submitted but not accepted. The reason for the rejection is
mainly kernel-related, e.g., item 21 in Table 7 is a missing

TABLE 6. An example of bugs exposed by MLCSan. SC/SK represents the
sources and sinks. And Type indicates types of MLC bugs. Status
demonstrates the status of corresponding patch, where A is already
applied.

check case discovered by MLCSan, in which s is allocated
by kmem_cache_zalloc() and a check is absent before deref-
erencing it. We patched this bug with a check for s and an
ENOMEM return-value. However, the maintainer argued that
because the function where this allocation happens has a
__init attribute, an allocation failure will result in a system
reboot, so it cannot cause harmful results. Typically, this kind
of consideration is closely related to the kernel low-level
implementation, which is actually out of our research scope in
this paper. MLCSan accomplishes detecting these MLC bugs
as what is designed for.

In total, there are 5 incorrect source-sink, 14 missing check
and 11 lacking sink cases of MLC bugs in the detailed table.
It is worth noting that incorrect source-sink is less than miss-
ing check and lacking sink cases, because it rarely happens
when programmers write a incorrect function in code, such as
kfree_const(), in most cases kernel developers use it correctly
to free a const variable.

When considering the second column of Table 7, we can
find that 13 bugs are in the driver code, which is a widely
accepted conclusion that codes in drivers tend to be more
buggy [1], [3], [10], [13] since they are maintained by dif-
ferent vendors and the quality of code cannot be easily guar-
anteed. However,MLCSan still succeeds in discoveringMLC
bugs in some key components of Linux kernel, such as item 1
in net subsystem, item 10 in arch subsystem, item 14 in
security subsystem, etc.

Crix [15] is a static analyzer targeting at missing-check
bugs in OS kernels. The last column indicates whether it can
detect the same bug by MLCSan. As we can see from the
table, Crix can expose missing-check bugs, but fails to detect
incorrect source-sink and lacking-sink bugs. The reason is
that MLCSan takes allocation, dereference, free and their
relations into consideration. Crix only accounts for one stage
of the memory life-cycle and it can only detect missing-check
in MLC bugs.

D. CASE STUDY
In total, among the exposed 41 bugs, there are 7 incorrect
source-sink cases and 19 missing check with 15 lacking sink
cases. For example, Figure 5 and 1 (item 12 and 7 in Table 7)
belong to incorrect source-sink, where the source or sink
function is improperly used for a MAR. Apparently,
kfree_const() matches kstrdup_const() and kmemdup_nul()
matches kfree(), and mis-matched sources and sinks will be
detected by MLCSan. By applying bidirectional source-sink
analysis, incorrect use of both source and sink functions is
identified as breaking the predefined source-sink pairs.

VOLUME 8, 2020 114975



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

TABLE 7. A list of bugs exposed by MLCSan in Linux. SC/SK represents the sources and sinks. And Type indicates types of MLC bugs, including ISS, MC
and LS. Status demonstrates the status of corresponding patch, where A is already applied, C is confirmed and accepted by Linux maintainers but not
applied to the time of writing this paper and N is submitted. Crix indicates whether this bug can be detected by Crix.

Moreover, as for missing check cases, Figure 2 and 7
(item 11 and 4 in Table 7) demonstrates that MLCSan is capa-
ble of discovering dereference of MARs without check for
validity. Aswe construct define-use chain of aMAR and track
all the operations on it, the life-cycle of theMAR is examined:
where the allocation is, and when the check or dereference
happens.

When considering lacking sink cases, Figure 3 and 12
(item 15 and 20 in Table 7) are among the detected lacking
sink bugs by MLCSan. By examining the absence of sink
functions, we can reason about what should be enforced. For
example, selinux_free_mnt_opts() and kfree() are enforced
and in addition, console_unlock() is added to the error han-
dling code to unlock the console.

Besides, the SC/SK column demonstrates the respective
source function and sink functions, among which 8 are in
the original source set {SCo} or the original sink set {SKo},
such as kmalloc() and kzalloc(). The iterative source-sink
identification analysis we leverage in MLCSan can detect
other functions outside the original sets as designed to, e.g.,
item 3 in the table has efi_call_phys_prolog() as the source,
and the function call order is efi_call_phys_prolog(), kmal-
loc_array(), and finally kmalloc().

E. PORTABILITY AND SCALABILITY
Generally speaking, the analysis techniques adopted in
MLCSan, such as call graph construction, ExDU analysis,
etc. are not only suitable to Linux or FreeBSD. The life-cycle

114976 VOLUME 8, 2020



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

TABLE 8. A list of bugs exposed by MLCSan in FreeBSD. SC/SK represents the sources and sinks. And Type indicates types of MLC bugs, including ISS, MC
and LS. Status demonstrates the status of corresponding patch, where A is already applied, C is confirmed and accepted by maintainers but not applied to
the time of writing this paper and N is submitted. Crix indicates whether this bug can be detected by Crix.

of memory space also exits in other programs, e.g., malloc()
and free() in C programs. By replacing the original source
function and sink function set, MLCSan can detect sources
and sinks in other programs. And the define-use chain con-
struction and bidirectional source-sink analysis can also be
applied to other cases with slight modification.

Besides, owing to the well-designed modularization of
LLVM and clang, we can compile programs into bitcode files
in other mainstream platforms, such asWindows andMacOS.
Since MLCSan only takes bitcode files of the target program
as input, theoretically we are able to analyze other platforms
as well.

VI. DISCUSSION
As demonstrated in evaluation, by leveraging global call
graph, ExDU analysis, etc. MLCSan is effective in automat-
ically and scalably detecting MLC bugs. However, in this
section, we will present intrinsic limitations of MLCSan and
the possible improving methods as well.

A. LIMITATIONS AND POSSIBLE IMPROVEMENTS
1) FALSE POSITIVES
Similar to most static analysis tools, MLCSan bears an
acceptable percentage of false positives. According to the
evaluation result on Linux and FreeBSD, MLCSan can
detect 41 MLC bugs in total, which is the examined result
of 73 reports. With a false positive rate of 56.1%, we believe
that this is acceptable in static analysis tools, especially
designed for analyzing OS kernels. For instance, LRSan [12]
reports over two thousand lacking-recheck cases, and 19 bugs
are identified after manual verification. Compared to it, false
positive rate is much lower in MLCSan.

(1) Incomplete call graph and pointer analysis. Honestly
speaking, the accuracy of call graph construction and pointer
analysis is always a challenge for static analysis tools, such
as indirect calls between functions and alias analysis of vari-
ables. MLCSan tries to handle this problem and more than
half of the false positives are caused by this. For example, for
a lacking sink case, we have 3 functions f1, f2 and f3. f1 calls
f2 and then f3, where variable ptr is allocated in f2 and freed
in f3. This situation is challenging to cope with since relation
between f2 and f3 can hardly be measured. This problem
may be handled by more accurate call graph construction and
thorough reasoning about allocation and free sites of a certain
variable.

(2) Kernel implementation related issues. Some cases are
hard to identify simply by defining MLC bug patterns as
discussed above, e.g., some null pointer dereferences are
allowed in Linux kernel to check whether the system is
functioning properly. Therefore similar patches are not sub-
mitted to Linux community and excluded from our identified
bugs. Furthermore, there is a managed memory allocation
function named devm_kmalloc() and the Linux documents
introduce that, memory allocated by it is automatically freed
on driver detach. Since these implementation and semantic
related issues are out of our research scope, we also consider
these reports as false positives in this paper. (However, there
are over 50 cases where memory allocated by it is manually
freed by the relative free function in Linux kernels, which is
contrary to the documents.) By utilizing light weight semantic
analysis, we may be able to avoid the above issues and make
some improvements.

(3) Others. There are other causes of false positives as well,
e.g., complicated programing logic, unreachable call graphs,

VOLUME 8, 2020 114977



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

imprecise static analysis methods, etc. In total, these causes
form about 10% of all the false positives.

2) FALSE NEGATIVES
ThoughMLCSan leverages several well-designed static anal-
ysis approaches, there are still potential false negatives. First,
our kernel is configured with defconfig, in which some sub-
components may be absent compared to allyesconfig. Those
missing parts are mainly codes of other architectures, and
MLCSan only examines default configuration, which is the
most widely used one in our desktops and laptops. What’s
more, there may be somememory allocation functions cannot
be detected by our iterative source-sink identification for
the reason that not all assemblies are manually modeled
in MLCSan. And finally, it is still the challenging pointer
analysis and alias analysis. The determining conditions of
must-alias or may-alias and the terminating conditions of
our propagative MAR identification would cause potential
false negatives. The first problem can be easily solved by
compiling the kernel with allyesconfig and the possible false
negatives can be eliminated. And we could manually model
assemblies in kernels to address the second issue. Moreover,
more precise alias analysis approaches are required to handle
the last but challenging problem.

VII. RELATED WORK
A. KERNEL MEMORY PROTECTION
In MLCSan, we focus on the life-cycle of kernel memory
space and introduce 3 memory-related cases of MLC bugs.
Previous works on kernel memory protection and sanita-
tion are various. The well-known and widely-used kernel
address sanitizer (KASan) [19] can expose OOB and UAF
bugs by instrumenting the kernel in compile time. KASan
dynamically verifies kernel memory accesses in run time
and may cause performance overhead. Other memory pro-
tection techniques such as K-miner [11], Watchdoglite [20],
SoftBound [21] and CETS [22] also target memory errors
such as OOB, UAF, etc. They are distinguishable from
MLCSan since we concentrate on the life-cycle of memory
space and propose analysis more than detecting traditional
memory errors. Generally speaking, exposing bugs such as
OOB and UAF is focusing on the result of accessing memory
by error. On the contrary, MLCSan targets the causes of
memory errors and reasons about which step in the life-
cycle of memory space is error-prone. By revealing incor-
rect use of source-sink, unchecked dereference and lacked
sink, we can tell the causes of memory misuse and expose
MLC bugs.

B. API USAGE VERIFICATION
We check the source and sink functions of a MAR in
MLCSan, which are APIs in kernel, and there are several
other works in this filed. SSLint [24] statically detects incor-
rect use of APIs in SSL and TLS protocols. By modeling
the SSL/TLS libraries, SSLint analyzes the target programs

with API signatures. Yamaguchi et al. introduce Joern [25]
and code property graph to represent a program. Code prop-
erty graph incorporates syntax tree, control flow graph, etc.
to comprehensively traverse a target program. Furthermore,
APISAN [27] sanitizes API usages by a semantic cross-
checking, which extracts API usage patterns in source code
automatically. It uses semantic attributes of code and suc-
cessfully found numerous bugs in kernel and other programs.
MLCSan differs from these API checking tools because we
consider the life-cycle of memory space and adopt bidirec-
tional source-sink analysis to figure out whether they are
incorrectly used or absent. In other words, we concentrate not
only on single APIs, but we analyze coexisting source-sink
pairs to expose situations where source or sink functions are
not matched and where sinks are absent, not accompanying
previous sources.

C. MISSING CHECK BUGS
MLCSan verifies a MAR before dereferenced to prevent
possible null pointer dereference in kernel memory. Recently
some works on missing check bugs are presented, such
as [15], [28], [29], [43]–[48]. Moreover, Wang et al. formally
define a LRC bug [12], in which a security recheck is miss-
ing after modification to a critical variable happens. LRSan
detects LRC bugs by static analysis of kernel source code
and identifies several bugs in Linux. However, the bugs are
result of manually investigating over two thousands reports,
which is a relatively high false positive rate. A more recent
work, Crix [15] claims missing check as a dependent bug
type and identifies over two hundred bugs via semantic-
and context-aware inferences. However, MLCSan concen-
trates on unchecked dereferencing of memory, and MLC
bugs contain not only missing check cases, but also incorrect
source-sink and lacking sink cases as discussed in our paper.
Moreover, the initial intention of MLCSan is detecting the
violations to allocate, dereference, and free of memory space,
which is far more different from concentrating on missing
check of critical variables.

D. MEMORY BUG DETECTION
Sigmund et al. proposes value-flow analysis to detect mem-
ory leak in general software [49]. Since memory life-cycle
contains 3 three steps, allocation, dereference and free,
and we check the relations between them. Memory leak is
the error in dereference-free, where memory is not freed
after dereferenced. Compared to value-flow analysis in [49],
MLCSan has 2 new features. (1) We take the error in
allocation-free into consideration, which will cause incorrect
source-sink bugs. (2)We also account for the relation between
allocation-dereference, and it results in missing-check bugs.
In conclusion, we take the relations between allocation,
dereference and free into consideration, which are insepa-
rable steps in memory life-cycle. And [49] fails to do so,
and it cannot detect incorrect source-sink and missing-check
bugs.

114978 VOLUME 8, 2020



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

FIGURE 10. Comparison between C code and LLVM IR.

FIGURE 11. A demonstration of MLCSan output of an example missing
check case. The relative LLVM instruction, source, sink, MAR, define-use
chain and source code are presented.

FIGURE 12. Part of a confirmed patch file, detected by MLCSan. In this
patch, MAR vc→vc_screenbuf is checked and vc is freed when source
kzalloc() fails, and console_unlock() is enforced to unlock the console.

VIII. CONCLUSION
As we all know, OS kernels leverage various source func-
tions to perform heap memory allocation. More significantly,
the return-value from allocation can only be dereferenced
when not null and we should free it when out of use to pre-
vent potential memory leaks. However, there are cases where
memory data is improperly allocated or freed, dereferenced
without verification, or unfreed at last. As discussed above,

we define these cases as MLC bugs, including incorrect
source-sink, missing check and lacking sink.

This paper studies the life-cycle of memory space in kernel
and proposes the first systematical study of MLC bugs. And
we build an automated and scalable detection framework,
MLCSan. Furthermore, the occurrences of source functions,
sink functions and MARs can be automatically detected by
MLCSan, where MLC bugs may exist. Moreover, evaluation
of the Linux and FreeBSD kernels with MLCSan is strong
evidence that MLCSan can effectively detect MLC bugs,
and we identify 41 new bugs. Additionally, the prototype of
MLCSan will be open-source to boost related research in this
field.

APPENDIX
See Figs. 10–12.

REFERENCES
[1] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and

G. Vigna, ‘‘DIFUZE: Interface aware fuzzing for kernel drivers,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 2123–2138.

[2] H. Han and S. K. Cha, ‘‘IMF: Inferred model-based fuzzer,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 2345–2358.

[3] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vigna,
‘‘Dr. Checker: A soundy analysis for Linux kernel drivers,’’ in Proc. 26th
USENIX Secur. Symp. (USENIX Secur.), 2017, pp. 1007–1024.

[4] S. Pailoor, A. Aday, and S. Jana, ‘‘Moonshine: Optimizing OS fuzzer
seed selection with trace distillation,’’ in Proc. 27th USENIX Secur. Symp.
(USENIX Secur.), 2018, pp. 729–743.

[5] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim, ‘‘Precise and scalable
detection of double-fetch bugs in OS kernels,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2018, pp. 661–678.

[6] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
‘‘kAFL: Hardware-assisted feedback fuzzing for OS kernels,’’ in Proc.
26th USENIX Secur. Symp. (USENIX Secur.), 2017, pp. 167–182.

[7] J. Pan, G. Yan, and X. Fan, ‘‘Digtool: A virtualization-based framework
for detecting kernel vulnerabilities,’’ in Proc. 26th USENIX Secur. Symp.
(USENIX Secur.), 2017, pp. 149–165.

[8] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, ‘‘Razzer:
Finding kernel race bugs through fuzzing,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 279–293.

[9] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh, and
S. Mangard, ‘‘Automated detection, exploitation, and elimination of
double-fetch bugs using modern CPU features,’’ in Proc. Asia Conf. Com-
put. Commun. Secur. (ASIACCS), 2018, pp. 587–600.

[10] P.Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro, ‘‘How double-fetch
situations turn into double-fetch vulnerabilities: A study of double fetches
in the Linux kernel,’’ in Proc. 26th USENIX Secur. Symp. (USENIX Secur.),
2017, pp. 1–16.

[11] D. Gens, S. Schmitt, L. Davi, and A.-R. Sadeghi, ‘‘K-miner: Uncover-
ing memory corruption in Linux,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp. (NDSS), 2018, pp. 1–15.

[12] W. Wang, K. Lu, and P.-C. Yew, ‘‘Check it again: Detecting lacking-
recheck bugs in OS kernels,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Jan. 2018, pp. 1899–1913.

[13] Z. Tong, S. Wenbo, L. Dongyoon, J. Changhee, M. A. Ahmed, and
W. Ruowen, ‘‘Pex: A permission check analysis framework for Linux
kernel,’’ in Proc. 28th USENIX Secur. Symp. (USENIX Secur.) Santa Clara,
CA, USA: USENIX Association, 2019, pp. 1205–1220.

[14] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna,
C. Kruegel, J.-P. Seifert, and M. Franz, ‘‘PeriScope: An effective probing
and fuzzing framework for the hardware-OS boundary,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[15] L. Kangjie, P. Aditya, and W. Qiushi, ‘‘Detecting missing-check bugs via
semantic-and context-aware criticalness and constraints inferences,’’ in
Proc. 28th USENIX Secur. Symp. (USENIX Secur.), Santa Clara, CA, USA:
USENIX Association, 2019, pp. 1769–1786.

VOLUME 8, 2020 114979



G. Zhang: Detecting Memory Life-Cycle Bugs With Extended Define-Use Chain Analysis

[16] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, ‘‘PTfuzz: Guided fuzzing
with processor trace feedback,’’ IEEE Access, vol. 6, pp. 37302–37313,
2018.

[17] Wikipedia. (2019). Stack (Abstract Data Type). [Online]. Available:
https://en.wikipedia.org/wiki/Stack_abstract_data_type

[18] Wikipedia. (2019). Stack-Based Memory Allocation. [Online]. Available:
https://en.wikipedia.org/wiki/Stack-based-memory-allocation

[19] The Kernel Development Community. (2019). The Kernel Address
Sanitizer. [Online]. Available: https://www.kernel.org/doc/html/latest/dev-
tools/kasan.html

[20] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, ‘‘WatchdogLite:
hardware-accelerated compiler-based pointer checking,’’ in Proc. Annu.
IEEE/ACM Int. Symp. Code Gener. Optim., Feb. 2014, p. 175.

[21] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, ‘‘SoftBound:
Highly compatible and complete spatial memory safety for C,’’ ACM
SIGPLAN Notices, vol. 44, no. 6, pp. 245–258, May 2009.

[22] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, ‘‘CETS:
Compiler enforced temporal safety for C,’’ ACM SIGPLAN Notices,
vol. 45, no. 8, pp. 31–40, 2010.

[23] K. Lu, C. Song, T. Kim, and W. Lee, ‘‘UniSan: Proactive kernel memory
initialization to eliminate data leakages,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2016, pp. 920–932.

[24] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R. Yang, and
Z. Zhang, ‘‘Vetting SSL usage in applications with SSLINT,’’ in Proc.
IEEE Symp. Secur. Privacy, May 2015, pp. 519–534.

[25] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, ‘‘Modeling and discovering
vulnerabilities with code property graphs,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2014, pp. 590–604.

[26] H. Chen and D. Wagner, ‘‘MOPS: An infrastructure for examining secu-
rity properties of software,’’ in Proc. 9th ACM Conf. Comput. Commun.
Secur. (CCS), 2002, pp. 235–244.

[27] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, ‘‘APISan: Sanitizing
api usages through semantic cross-checking,’’ inProc. 25th USENIX Secur.
Symp. (USENIX Secur.), 2016, pp. 363–378.

[28] S. Son, K. S. McKinley, and V. Shmatikov, ‘‘RoleCast: Finding missing
security checks when you do not know what checks are,’’ ACM SIGPLAN
Notices, vol. 46, no. 10, pp. 1069–1084, Oct. 2011.

[29] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, ‘‘Chucky:
Exposing missing checks in source code for vulnerability discovery,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2013,
pp. 499–510.

[30] Linux Foundation. (2018). 2017 Linux Kernel Report. [Online]. Available:
https://linuxfoundation.cn/2017-linux-kernel-report-landing-page

[31] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, ‘‘Prevent-
ing memory error exploits with WIT,’’ in Proc. IEEE Symp. Secur. Pri-
vacy (SP), May 2008, pp. 263–277.

[32] B. Lee, C. Song, T. Kim, and W. Lee, ‘‘Type casting verification: Stopping
an emerging attack vector,’’ in Proc. 24th USENIX Secur. Symp. (USENIX
Secur.), 2015, pp. 81–96.

[33] L. Szekeres, M. Payer, T. Wei, and D. Song, ‘‘SoK: Eternal war in mem-
ory,’’ in Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 48–62.

[34] J. Xu, D. Mu, P. Chen, X. Xing, P. Wang, and P. Liu, ‘‘CREDAL: Towards
locating a memory corruption vulnerability with your core dump,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 529–540.

[35] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim. (CGO), Palo Alto, CA, USA, 2004, pp. 75–86.

[36] LLVM. (2019). Clang: A C Language Family Frontend for LLVM.
[Online]. Available: http://clang.llvm.org/

[37] Wikipedia. (2019). Use-Define Chain. [Online]. Available: https://en.
wikipedia.org/wiki/Use-define_chain

[38] T. Gleixner. (2018). Force ASM-Goto. [Online]. Available: https://lore.
kernel.org/patchwork/patch/935085/

[39] Linux Kernel Mailing List. (2019). Clang ASM-Goto Support. [Online].
Available: https://lkml.org/lkml/2018/2/13/1049

[40] SSLAB Gatech. (2019). Precise and Scalable Detection of Double-
Fetch Bugs in OS Kernels. [Online]. Available: https://github.com/sslab-
gatech/deadline

[41] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek, ‘‘Improving
integer security for systems with KINT,’’ presented at the 10th USENIX
Symp. Oper. Syst. Design Implement. (OSDI), 2012, pp. 163–177.

[42] B. Niu and G. Tan, ‘‘Modular control-flow integrity,’’ in Proc. 35th ACM
SIGPLAN Conf. Program. Lang. Design Implement. (PLDI), vol. 49, 2013,
pp. 577–587.

[43] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, ‘‘Bugs as deviant
behavior: A general approach to inferring errors in systems code,’’ in Proc.
ACM SIGOPS Oper. Syst. Rev., vol. 35, 2001, pp. 57–72.

[44] H. Vijayakumar, X. Ge, M. Payer, and T. Jaeger, ‘‘JIGSAW: Protecting
resource access by inferring programmer expectations,’’ in Proc. 23rd
USENIX Secur. Symp. (USENIX Secur.), 2014, pp. 973–988.

[45] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim, ‘‘Cross-checking
semantic correctness: The case of finding file system bugs,’’ in Proc. 25th
Symp. Oper. Syst. Princ. (SOSP), 2015, pp. 361–377.

[46] M.Monshizadeh, P. Naldurg, and V. N. Venkatakrishnan, ‘‘MACE: Detect-
ing privilege escalation vulnerabilities inWeb applications,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2014, pp. 690–701.

[47] L. Situ, L. Wang, Y. Liu, B. Mao, and X. Li, ‘‘Vanguard: Detecting missing
checks for prognosing potential vulnerabilities,’’ inProc. 10th Asia–Pacific
Symp. Internetware, 2018, p. 5.

[48] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou, ‘‘AutoISES: Automat-
ically inferring security specification and detecting violations,’’ in Proc.
USENIX Secur. Symp., 2008, pp. 379–394.

[49] S. Cherem, L. Princehouse, and R. Rugina, ‘‘Practical memory leak
detection using guarded value-flow analysis,’’ in Proc. ACM SIGPLAN
Conf. Program. Lang. Design Implement. (PLDI), San Diego, CA, USA,
Jun. 2007, pp. 480–491.

GEN ZHANG was born in China, in Decem-
ber 1993. He received the master’s degree in com-
puter science and software analysis, in 2018. He is
currently pursuing the Ph.D. degree with the Col-
lege of Computer, National University of Defense
Technology, Changsha, Hunan, China.

He has published three articles. His current
research interests are fuzzing, software analysis,
and binary analysis. He received Extraordinary
Student Awards in 2015 in College of Computer
for his good performance.

114980 VOLUME 8, 2020


	INTRODUCTION
	MLC BUGS
	A GLIMPSE AT MLC BUGS
	DEFINITION DETAIL

	DESIGN OF MLCSAN
	OVERVIEW OF MLCSAN
	STAGE I - PREPROCESSING
	STAGE II - EXDU ANALYSIS
	STAGE III - MLC BUG REPORTING

	IMPLEMENTATION DETAILS
	STAGE I - PREPROCESSING
	COMPILING LLVM IR
	GLOBAL CALL GRAPH
	POINTER AND ALIAS ANALYSIS

	STAGE II - EXDU ANALYSIS
	DEFINE-USE CHAIN AND GEP INSTRUCTION
	BIDIRECTIONAL SOURCE-SINK ANALYSIS

	STAGE III - BUG REPORTING
	REDUCING FALSE POSITIVES


	EVALUATION
	ANALYSIS TIME
	ANALYSIS STATISTICS
	EXPOSED BUGS
	CASE STUDY
	PORTABILITY AND SCALABILITY

	DISCUSSION
	LIMITATIONS AND POSSIBLE IMPROVEMENTS
	FALSE POSITIVES
	FALSE NEGATIVES


	RELATED WORK
	KERNEL MEMORY PROTECTION
	API USAGE VERIFICATION
	MISSING CHECK BUGS
	MEMORY BUG DETECTION

	CONCLUSION
	REFERENCES
	Biographies
	GEN ZHANG


