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ABSTRACT With the development of big data and artificial intelligence technologies, the use of computers
to assist judgments in legal cases has become a popular topic. Traditional methods for judgment prediction
mainly depend on feature models and classification algorithms. However, feature models require consider-
able expert knowledge and manual annotation work. They have strong dependence on vocabulary and gram-
mar information in datasets, which is unconducive to improving the universality and accuracy of subsequent
prediction algorithms. Meanwhile, the outputs of classification algorithms are discrete prediction results
with coarse granularities. This paper proposes a new algorithm based on innovative tensor decomposition
and ridge regression for judgment prediction of legal cases, namely, TenRR. TenRR is mainly divided into
three steps. First, we propose a tensor representation method, namely, RTenr. RTenr expresses legal cases
as three-dimensional tensors. Second, we propose an innovative tensor decomposition algorithm, namely,
ITend. ITend decomposes original tensors representing legal cases into core tensors. Lastly, we propose
an optimized ridge algorithm, namely, ORidge, to construct a judgment prediction model for legal cases.
We further propose an optimization algorithm for ORidge to ITend; thus, core tensors obtained using ITend
carry tensor elements and tensor structure information that is most beneficial to improving the accuracy
of ORidge. Core tensors greatly reduce the dimension of original tensors. They eliminate the meaningless,
redundant, and inaccurate information in original tensors. Experiments show that our method has higher
accuracy than traditional methods for judgment prediction.

INDEX TERMS Judgment prediction, tensor decomposition, ridge regression, legal cases.

I. INTRODUCTION
With increasingmaturity of big data and artificial intelligence
technologies, the use of computers to assist judgments in
legal cases has become a prominent research area. Judg-
ment prediction algorithms mainly have the following two
functions: (1) predict judgment results, which can provide
a reference for judges, and (2) prevent the occurrence of
wrongful conviction. Judgment prediction algorithms serve
as a warning when the judge’s judgment differs greatly from
the result predicted using prediction algorithms. For example,
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in two burglary cases involving $30,000 each, the judgment
prediction algorithm sentenced 2 years, whereas the judge
sentenced 5 years.

Previous research on judgment prediction was mainly
based on feature models and classification algorithms. The
former is used to model legal cases. The latter predicts the
scope of judgments. These methods have many shortcom-
ings. From the perspective of feature models, (1) substantial
legal expertise and manual annotation are required. These
models have strong dependence on vocabulary and grammar
in datasets. (2) Dimensional explosion and data sparseness
are easy to occur. (3) Cases cannot be described in multi-
ple directions. (4) Considerable inaccurate, meaningless, and
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redundant information exists. These issues seriously affect
the accuracy and stability of subsequent prediction algo-
rithms. From the perspective of classification algorithms,
(1) the granularity is coarse. Detailed prediction results can-
not be provided. (2) These algorithms have a strong depen-
dence on training data. They cannot accurately extract useful
information in datasets.

This article proposes a new algorithm for judgment pre-
diction, namely, TenRR. TenRR combines innovative tensor
decomposition with optimized ridge regression. As shown
in Figure 1, TenRR is mainly composed of three parts,
namely, RTenr, ITend, and ORidge. First, we use RTenr to
represent legal cases as three-dimensional tensors. Second,
we decompose original tensors into core tensors by using
ITend. Core tensors greatly reduce the dimension of original
tensors. Lastly, we use core tensors to train ORidge and obtain
a prediction model for legal case judgment.

FIGURE 1. Framework of TenRR.

TenRR solves shortcomings faced by traditional judgment
prediction algorithms. RTenr automatically extracts case fea-
tures without the need for considerable expert knowledge and
manual labeling. It characterizes cases from multiple direc-
tions. ITend greatly avoids data sparseness and dimensional
explosion. It also removes substantial inaccurate, meaning-
less, and redundant information by using mapping matrices.
ORidge is based on a regression model, which can provide
fine-grained prediction results. ORidge optimizes the tensor
decomposition process in ITend through mapping matrices.
Therefore, obtained core tensors carry tensor elements and
a tensor structure that is most beneficial to improving the
accuracy of prediction methods.

The main contributions of this article are as follows:
• A method based on tensor models for representing legal
cases, namely, RTenr, is proposed. RTenr represents
cases as three-dimensional tensors. It automatically
extracts features without a large amount of legal exper-
tise and manual labeling. This characteristic avoids the
occurrence of sparse data. RTenr has a weak dependence
on lexical and grammatical information in datasets.

• An innovative tensor decomposition algorithm, namely,
ITend, is introduced. ITend decomposes original tensors
representing legal cases into core tensors. Core tensors
greatly reduce the dimension of original tensors. ITend
removes redundant, meaningless, and inaccurate infor-
mation from original tensors. It improves the accuracy
of subsequent prediction algorithms.

• An optimization algorithm for ITend to ORidge is rec-
ommended. ORidge uses this algorithm to guide the ten-
sor decomposition process in ITend; hence, core tensors
obtained using ITend carry tensor elements and structure
information that is most conducive to improving the
accuracy of ORidge.

In the remainder of this article, Section II presents research
on judgment prediction of legal cases. Section III describes
related calculations used in this article. Section IV details the
principles of our approach. Section V provides experimental
results and analysis.

II. PREVIOUS WORK
Research on judgment prediction of legal cases mainly
focuses on modeling legal cases and constructing predic-
tion methods. Previous studies mainly used feature mod-
els to describe cases and classification methods to predict
judgments. Classification methods mainly include machine
learning algorithms and neural networks. At present, few
studies exist on judgment prediction. Considering that legal
case documents are text data, this article divides previous
methods into four categories on the basis of text analysis
techniques, namely, (1) prediction methods based on fea-
ture models, (2) prediction methods based on matrix decom-
position, (3) prediction methods based on tensor models,
and (4) prediction methods based on unsupervised tensor
decomposition.

Prediction methods based on feature models refer to the
combination of feature models and prediction algorithms.
Gruginskie [1] proposed a method based on feature models
and machine learning algorithms. This method represents
cases as matrices. It uses various classification algorithms,
such as support vector machine and neural networks, to pre-
dict judgments. Manes and Downing [2] recommended a
method based on feature models and rules. Unlike the pre-
vious method, this method uses rule reasoning to complete
judgment prediction. Prediction methods based on feature
models have many deficiencies, such as follows: (1) consid-
erable expert knowledge and manual annotation are required;
(2) cases cannot be described from multiple levels; and
(3) data sparseness and dimensional explosion are prone to
occur, which affects the accuracy and stability of subsequent
prediction algorithms.

Prediction methods based on matrix decomposition refer
to the combination of matrix decomposition and prediction
algorithms. Jing [3] proposed a classification algorithm based
on singular value decomposition (SVD). This method decom-
poses original matrices derived from feature models by using
SVD. It uses obtained matrices to train neural networks.
Similarly, Li [4] solved problems of data sparseness
and dimensional explosion in feature models via matrix
decomposition, which enhanced the accuracy and stability of
prediction algorithms. Prediction methods based on matrix
decomposition have deficiencies, including (1) the natural
drawbacks of feature models and (2) poor guidance and
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matrix decomposition that may lead to loss of useful infor-
mation for prediction methods.

Prediction methods based on tensor models refer to the
combination of tensor models and prediction algorithms.
Wimalawarne [5] showed that regression and classifica-
tion algorithms based on tensor models have advantages
over matrix models. These methods represent cases as three-
dimensional tensors and then train prediction algorithms by
using such tensors. Tensor models automatically extract case
elements. However, prediction methods based on tensor mod-
els have the following deficiencies: (1) dimensional explo-
sion is easy to occur; (2) considerable redundant, useless, and
meaningless information exists, which affects the accuracy of
subsequent prediction algorithms.

Prediction methods based on unsupervised tensor decom-
position refer to the combination of unsupervised ten-
sor decomposition and prediction algorithms. Taguchi [6]
reduced the dimension of original tensors via unsupervised
tensor decomposition and used the obtained results as the
input of prediction algorithms. Similarly, Zheng [7] proposed
a method based on Tucker tensor decomposition. Prediction
methods based on unsupervised tensor decomposition have
poor guidance. They may cause loss of information useful
for judgment prediction.

III. PRELIMINARIES
In this section, we provide a number of tensor-related calcu-
lation criteria used in this article, including the calculation
rules for tensors and matrices or vectors. The identity matrix
is represented by E .
Definition 1 (Trace Norm): For amatrix or tensor, its trace

norm is the sum of elements on the main diagonal. That is,
given a matrixM , M ∈ RI×I , the trace norm ofM is

Trace(M ) =
I∑
i=1

Mii

Given a tensor χ , χ ∈ RI1×···×IN , where I1 = I2 = · · · = IN ,
the trace norm of χ is

Trace(χ) =
N∑
i=1

χi1i2···iN

where i1 = i2 = · · · = iN
Definition 2 (Frobenius Norm): For a vector, matrix or

tensor, the value of the Frobenius norm is the square root
of sum of squares of all elements. That is, given a tensor χ ,
χ ∈ RI1×I2×···×IN , the square of the Frobenius norm of χ is

‖χ‖2F =

I1∑
i1

I2∑
i2

· · ·

IN∑
iN

χ2
i1i2···iN

Definition 3 (Tensor Vectorization): Given a tensor χ ,
χ ∈ RI1×I2×···×IN , the tensor vectorization of χ is χvec,
χvec ∈ RI1I2···IN where

χveci1i2···iN = χi1i2···iN

That is, the vectorization of a tensor refers to the vector
formed by expanding all the elements of the tensor.
Definition 4 (n-Mode Matricization): Given a tensor χ ,

χ ∈ RI1×I2×···×IN , n ∈ [1,N ], the n-mode matricization of
χ is χ(n), χ(n) ∈ R(I1···In−1In+1···IN )×In , where

χ(n)i1i2···iN
= χi1i2···iN

That is, the n-mode matricization of a tensor is the
n-dimensional expansion of the tensor.
Definition 5 (Hadamard Product): Given two matrices A

and B, A,B ∈ RI×J , the Hadamard product of A and B is

A*B =


A11B11 A12B12 · · · A1JB1J
A21B21 A22B22 · · · A2JB2J
...

...
. . .

...

AI1BI1 AI2BI2 · · · AIJBIJ


That is, for two vectors, matrices or tensors with the same
dimensions, the Hadamard product has the same dimension.
Definition 6 (n-Mode Product): Given a tensor χ and a

matrix A, χ ∈ RI1×I2×···×IN , A ∈ RIn×Jn , n ∈ [1,N ],
the n-mode product of χ and A is λ = χ×nA, λ ∈
RI1×···×In−1×Jn×In+1×···×IN , that

λi1···in−1jnin+1···iN =

In∑
i=1

χi1···in−1iin+1···iNAijn

IV. METHODOLOGY
This article proposes a method based on innovative ten-
sor decomposition and optimized ridge regression for judg-
ment prediction of legal cases, namely, TenRR. As shown
in Figure 2, TenRR is mainly composed of three
modules. (1) RTenr. RTenr represents each legal case as a
three-dimensional original tensor. (2) ITend. ITend decom-
poses the original tensor representing a legal case into a
core tensor by using a set of mapping matrices. (3) ORidge.
This article proposes an optimization method for ORidge
with respect to the set of mapping matrices. ORidge controls
the tensor decomposition process in ITend by optimizing
mapping matrices. As a result, the obtained core tensors carry
tensor elements and tensor structure information that is most
conducive to improving the accuracy of TenRR.

A. RTenr
The principle of predicting judgments of legal cases is to
model cases. Traditional case-modeling methods are based
on feature models, which have the following disadvantages:
(1) a large amount of legal expertise and manual labeling are
required; (2) the explosion of dimensions and the problem of
sparse data are easy to appear; and (3) feature models have
a strong dependence on lexical and grammatical information
in datasets. This situation greatly increases the computational
complexity and volatility of subsequent prediction algorithms
while reducing their accuracy and stability.

This article proposes a method based on tensor models for
describing legal cases, namely, RTenr. RTenr represents legal
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FIGURE 2. Technique route of TenRR.

cases as three-dimensional tensors. RTenrmainly includes the
following steps: (1) division of case modules, (2) filtering of
vocabularies in each module, (3) matrixization of modules,
and (4) generation of original tensors.

Division of case modules refers to the division of legal
cases into multiple modules. In accordance with previous
research and expert consultation, we divide each legal case
into five modules, namely, subject, object, behavior, reason,
and result modules. The subject module refers to the vic-
tims in legal cases and their background information. The
object module refers to the suspects in legal cases and their
background information. The behavior module refers to the
process of committing crimes. The reason module refers to
the cause of cases and the subjective attitude of victims and
suspects. The result module refers to the property loss and
social effect caused by cases.

Filtering of vocabularies in eachmodule refers to the clean-
ing of vocabularies in each module. All tensors representing
legal cases have the same dimension; consequently, the num-
ber of vocabularies in each module is the same. Filtering of
vocabularies is mainly divided into three steps.
• Vocabulary reduction: Dictionaries of stop words and
legal terms are constructed. Meaningless and redundant
vocabularies in casemodules are removed. Legal-related
terms are retained to avoid the loss of case elements
caused by word segmentation errors.

• Vocabulary ranking: The frequency and TF-IDF (term
frequency-inverse document frequency) value of each
vocabulary in case modules are calculated. The vocab-
ularies are sorted in accordance with the occurrence
order to ensure that words that are crucial to judgment
prediction of legal cases rank first.

• Cutting or padding: The standard length of casemodules
is set on the basis of the distribution of sample length in
the dataset of legal cases. Modules with more vocabular-
ies than the standard length are cut. Modules with less
vocabularies than the standard length are padded.

Matrixization of modules refers to the representation of
each case module as a matrix. On the basis of filtering

of vocabularies, we use Google’s word2vec tool and a
large number of Chinese corpora to train the word vector
model. Vocabularies in case modules are represented as low-
dimensional dense vectors. A padded word can be repre-
sented as a zero, mean, or random vector. Generation of
original tensors refers to representing legal cases as three-
dimensional tensors. We merge matrices representing case
modules in a three-dimensional space and then obtain an
original tensor representing a legal case.

Compared with traditional feature models, RTenr has
advantages. One is the automatic extraction of case features.
RTenr requires no large amount of legal expert knowledge
and manual annotation. It can avoid data sparsity. The other
is the description of cases from various levels. It captures
the potential correlation among case modules. Based on the
abovementioned characteristics, RTenr greatly improves the
accuracy and universality of subsequent algorithms.

B. ITend
Original tensors representing legal cases derived using RTenr
cannot be directly used as inputs of subsequent judgment
prediction algorithms,mainly due to the following two points.
(1) When the size of legal cases is large, original tensors
obtained using RTenr have high dimensions, which easily
cause dimensional explosion. This phenomenon seriously
increases the computational complexity of subsequent judg-
ment prediction algorithms. (2) Original tensors obtained
using RTenr carry a large amount of redundant, meaningless,
and inaccurate information, which seriously affects the accu-
racy of subsequent judgment prediction algorithms.

This article uses the tensor decomposition strategy to solve
the aforementioned problems. Tensor decomposition meth-
ods decompose original tensors into core tensors and a series
of factor matrices. Core tensors represent the main tensor
elements and tensor structure information of original ten-
sors. Tensor decomposition methods have the following two
advantages. (1) They greatly reduce the dimension of original
tensors, thereby decreasing the computational complexity
of subsequent prediction algorithms. (2) They remove the
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meaningless and redundant information in original tensors
and correct the inaccurate information. However, traditional
tensor decomposition methods (such as CP or Tucker tensor
decomposition algorithms) are unsupervised and poorly inter-
pretable and guidable.

This article proposes an innovative tensor decomposition
algorithm, namely, ITend. Unlike traditional tensor decompo-
sition algorithms, ITend enhances interpretability by setting
a set of mapping matrices. As shown in Figure 3, ITend is
mainly divided into two parts. (1) Calculation of the tran-
sitional tensor. The value of the transitional tensor is calcu-
lated using original tensors and the set of mapping matrices.
(2) Calculation of the core tensor. The value of the core tensor
is calculated using the transitional tensor. ITendmaps original
tensors into a space represented by the set of mapping matri-
ces to generate core tensors. Subsequent judgment prediction
algorithms intervene in the process of tensor decomposition
in ITend by optimizing the set of mapping matrices. Finally,
core tensors obtained using ITend carry tensor elements
and tensor structure information that is most conducive to
improving the accuracy of subsequent judgment prediction
algorithms.

FIGURE 3. Technique route of ITend.

1) CALCULATION OF THE TRANSITIONAL TENSOR
Subsequent judgment prediction algorithms intervene in the
tensor decomposition process through the set of mapping
matrices in ITend. The set of mapping matrices can be inter-
preted as the space that is most conducive to improving the
accuracy of subsequent algorithms. ITend is mainly divided
into two steps: (1) calculation of the transitional tensor and
(2) calculation of the core tensor. Core tensors obtained using
ITend represent the tensor elements and tensor structure infor-
mation that is most conducive to improving the accuracy of
subsequent prediction algorithms.

In this article, the transitional tensor is calculated from
the original tensor and the set of mapping matrices. The
transitional tensor represents the projection of the original
tensor on a space represented by the set of mapping matrices.
Problem 7 provides the formal definition of the problem to
be solved in this section. Under the constraints of the set of
mapping matrices, the transitional tensor contains the main
tensor elements and tensor structure information in the orig-
inal tensor. The transitional tensor is a bridge connecting the

original tensor and the set of mapping matrices. It provides
a strong support for the subsequent calculation of the core
tensor.
Problem 7: Given the original tensor χ derived by RTenr,

χ represents a legal case, χ ∈ RI1×I2×···×IN , the set of
mapping matrices {Cn}, Cn ∈ RJn×In , n ∈ [1,N ], calculate
the value of the transitional tensor ν, ν ∈ RJ1×J2×···×JN , that
ν minimize the following objective function:

FPr o1 =

∥∥∥∥∥χ − ν
N∏
n=1

×nCn

∥∥∥∥∥
2

F

(1)

where ν can be interpreted as the mapping of χ in the space
represented by the set of mapping matrices {Cn}.
Lemma 8: Given a tensor χ , χ ∈ RI1×I2×···×IN , the Frobe-

nius of χ has the following properties:

‖χ‖2F =
∥∥χ(p)∥∥2F , where p ∈ [1,N ]

Lemma 9: Given a matrix A, A ∈ RI×J , then the square of
the Frobenius norm of A has the following properties:

‖A‖2F = Trace(ATA)

Lemma 10: Given a tensor χ and a matrix A, χ ∈

RI1×I2×···×IN , A ∈ RIn×Jn , n ∈ [1,N ], λ = χ×nA, then

λ(n) = χ(n)A

Lemma 11: Given a matrix A, A ∈ RI×J , I 6 J , there
exists aB,B ∈ RJ×I whereB satisfies the following condition

AB = E

And the value of B can be obtained by singular value decom-
position of A.
Lemma 12: Given a tensor χ and two matrices A and B,

χ ∈ RI1×I2×···×IN , A ∈ RIn×Jn , B ∈ RJn×Kn , n ∈ [1,N ], then

χ×nA×nB = χ×n(AB)

Lemma 13: Given a tensor χ and two matrices A and B,
χ ∈ RI1×I2×···×IN , A ∈ RIn×Jn , B ∈ RIm×Jm , n,m ∈ [1,N ],
then

χ×nA×mB = χ×mB×nA

Lemma 14: Given a matrix A and a orthogonal matrix U ,
A ∈ RI×J , U ∈ RJ×K , then ‖A‖2F = ‖AU‖

2
F = ‖UA‖

2
F .

Lemma 15: Given amatrixA and a diagonal matrixU ,A ∈
RI×J , U ∈ RJ×J , let ϕ(A) = ‖A‖2F , φ(A) = ‖AU‖

2
F . Then

when φ(A) is minimum, ϕ(A) is minimum.
Lemma 16: Given two matrices A and B, A ∈ RI×J ,

B ∈ RJ×K , B = U
∑
V , where U and V are orthogonal

matrices,
∑

is a diagonal matrix, U ∈ RJ×J , V ∈ RK×K ,∑
∈ RJ×K . Let ϕ(A) = ‖A‖2F , φ(A) = ‖AB‖

2
F , then when

φ(A) is minimum, ϕ(A) is minimum.
Lemma 17: The objective function FPr o1 in problem 7 can

be transformed into the following form:

FPr o1 =

∥∥∥∥∥χ
N∏
n=1

×nBn − ν

∥∥∥∥∥
2

F

(2)
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Bn satisfies the following condition:

Bn = V (n)1(n)U (n)T (3)

where V (n), 1(n) and U (n) can be obtained by perform-
ing singular value decomposition on matrix Cn. Cn =
U (n)∑(n)V (n)T . U (n) and V (n) are orthogonal matrices.

∑(n)

is a diagonal matrix. 1(n) is the inverse matrix of
∑(n).

According to lemma 17, we convert problem 7 into the
form of equations 2 and 3. Lemmas 8, 9, 10, 11, 12, 13, 14, 15
and 16 provide support for the proof of lemma 17. Proofs 31,
32, 33, 34, 35, 36, 37, 38, 39 and 40 give the proof process of
lemmas 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 respectively.
Lemma 18: Given the original tensor χ derived by RTenr,

χ represents a legal case, χ ∈ RI1×I2×···×IN , the transi-
tional tensor ν, ν ∈ RJ1×J2×···×JN , the set of matrices {Bn},
Bn ∈ RIn×Jn , n ∈ [1,N ], and the object function Fsub1 =

Trace(vT(p)(χ
N∏
n=1
×nBn)(p)), p ∈ [1,N ], then the derivative of

function Fsub1 with respect to ν(p) is

∂Fsub1
∂ν(p)

= (χ
N∏
n=1

×nBn)(p) (4)

Lemma 19: Given the original tensor χ derived by RTenr,
χ represents a legal case, χ ∈ RI1×I2×···×IN , the transi-
tional tensor ν, ν ∈ RJ1×J2×···×JN , the set of matrices {Bn},
Bn ∈ RIn×Jn , n ∈ [1,N ], and the object function Fsub2 =

Trace((χ
N∏
n=1
×nBn)T(p)ν(p)), p ∈ [1,N ], then the derivative of

function Fsub2 with respect to ν(p) is

∂Fsub2
∂ν(p)

= (χ
N∏
n=1

×nBn)(p) (5)

Lemma 20: Given the transitional tensor ν, ν ∈

RJ1×J2×···×JN , and the object functionFsub3 = Trace(νT(p)ν(p)),
p ∈ [1,N ], then the derivative of function Fsub3 with respect
to ν(p) is

∂Fsub3
∂ν(p)

= ξν(p) (6)

where ξ is a constant, ξ = 2.
In this article, we use the least squares method to cal-

culate the value of ν in equation 2. The key is to find
out the partial derivative of the object function FPr o1 with

respect to ν. Let$ = χ
N∏
n=1
×nBn,$ ∈ RJ1×J2×···×JN . Then

FPr o1 = ‖$ − ν‖2F . By lemma 8, we can get that FPr o1 =∥∥$(p) − ν(p)
∥∥2
F , where p ∈ [1,N ]. Let C = $(p), D = ν(p),

C,D ∈ R(J1J2···Jp−1Jp+1···JN )×Jp . FPr o1 = ‖C − D‖2F . Accord-
ing to lemma 9, FPr o1 = Trace((C − D)T (C − D)). FPr o1 =
Trace(CTC−DTC−CTD+DTD). Since Trace(CTC) is not
a function of D, ∂Trace(C

TC)
∂D = 0. Therefore, the remaining

problem is to solve the values of the following partial deriva-
tives ∂Trace(D

TC)
∂D , ∂Trace(C

TD)
∂D , ∂Trace(D

TD)
∂D .

By lemmas 18, 19 and 20, we can obtain that

∂Trace(vT(p)(χ
N∏
n=1
×nBn)(p))

∂ν(p)
= (χ

N∏
n=1

×nBn)(p),

∂Trace((χ
N∏
n=1
×nBn)T(p)ν(p))

∂ν(p)
= (χ

N∏
n=1

×nBn)(p),

∂Trace(νT(p)ν(p))

∂ν(p)
= ξν(p),

where ξ is a constant, ξ = 2. Proofs 41, 42 and 43 give the
proof process of lemmas 18, 19 and 20, respectively. In sum-

mary, we can get that ∂FPr o1
∂ν(p)

= 2(ν(p) − (χ
N∏
n=1
×nBn)(p)).

That is

∂FPr o1
∂ν

= ξ (ν − χ
N∏
n=1

×nBn) (7)

where ξ is a constant, ξ = 2. According to the least squares
method, we set ∂FPr o1

∂ν
to 0. Finally, we get the calculation of

ν, that is

ν = χ

N∏
n=1

×nBn (8)

2) CALCULATION OF THE CORE TENSOR
In Sub-subsection IV-B1, ITend provides the set of mapping
matrices {Cn}, n ∈ [1,N ]. {Cn} can be interpreted as the map-
ping space that is most conducive to improving the accuracy
of subsequent judgment prediction algorithms. We map the
original tensor χ , which represents the legal case into the
space represented by {Cn}, and then obtain the transitional
tensor ν. ν represents the main tensor elements and tensor
structure information in χ . We use the core tensor χ̂ to
approximate ν. Accordingly, χ̂ represents the main tensor
information in χ that is most conducive to improving the
accuracy of subsequent judgment prediction algorithms.
Problem 21: Given the transitional tensor ν, ν ∈

RJ1×J2×···×JN , calculate the value of the core tensor χ̂ , χ̂ ∈
RJ1×J2×···×JN , so that χ̂ minimize the following objective
function:

FPr o2 = ‖ν − χ̂‖2F (9)

where χ̂ can be interpreted as the main element information
in tne original tensor χ and the main structure information in
the set of mapping matrices {Cn}.

Combining equation 1 in problem 7 and equation 13 in
problem 21, we can conclude that with ν as the bridge, χ̂
represents both the main tensor element information in χ
and the main tensor structure information in {Cn}. Therefore,
χ̂ is interpreted as the tensor element and tensor structure
information in χ that is most conducive to improving the
accuracy of the subsequent judgment prediction algorithms.
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Lemma 22: Given the transitional tensor ν, ν ∈

RJ1×J2×···×JN , the core tensor χ̂ , χ̂ ∈ RJ1×J2×···×JN , and the
object function Fsub4 = Trace(χ̂T(p)ν(p)), p ∈ [1,N ], then the
derivative of function Fsub4 with respect to χ̂(p) is

∂Fsub4
∂χ̂(p)

= ν(p) (10)

Lemma 23: Given the transitional tensor ν, ν ∈

RJ1×J2×···×JN , the core tensor χ̂ , χ̂ ∈ RJ1×J2×···×JN , and the
object function Fsub5 = Trace(νT(p)χ̂(p)), p ∈ [1,N ], then the
derivative of function Fsub5 with respect to χ̂(p) is

∂Fsub5
∂χ̂(p)

= ν(p) (11)

Lemma 24: Given the transitional tensor ν, ν ∈

RJ1×J2×···×JN , the core tensor χ̂ , χ̂ ∈ RJ1×J2×···×JN , and the
object function Fsub6 = Trace(χ̂T(p)χ̂(p)), p ∈ [1,N ], then the
derivative of function Fsub6 with respect to χ̂(p) is

∂Fsub6
∂χ̂(p)

= ξ χ̂(p) (12)

where ξ is a constant, ξ = 2.
We use the least squares method to find the value of

χ̂ in equation 13. According to the calculation steps of
the least square method, we need to find out the partial
derivative of the object function FPr o2 with respect to χ̂ .

By lemma 8, we can obtain that FPr o2 =
∥∥ν(p) − χ̂(p)∥∥2F ,

where p ∈ [1,N ]. By lemma 9, we can get that
FPr o2 = Trace((ν(p) − χ̂(p))T (ν(p) − χ̂(p))). That is FPr o2 =

Trace(νT(p)ν(p)−ν
T
(p)χ̂(p)− χ̂

T
(p)ν(p)+ χ̂

T
(p)χ̂(p)). Since ν(p) is not

a function of χ̂(p),
∂Trace(νT(p)ν(p))

∂χ̂(p)
= 0. Based on lemmas 22, 23

and 24, we can get that
∂Trace(νT(p)χ̂(p))

∂χ̂(p)
= ν(p),

∂Trace(χ̂T(p)ν(p))
∂χ̂(p)

=

ν(p),
∂Trace(χ̂T(p)χ̂(p))

∂χ̂(p)
= ξ χ̂(p), where ξ = 2. Based on the above

analysis, we can get that ∂FPr o2
∂χ̂(p)

= ξ (χ̂(p) − ν(p)). That is:

∂FPr o2
∂χ̂

= ξ (χ̂ − ν) (13)

where ξ is a constant, ξ = 2. According to the least squares
method, let ∂FPr o2

∂χ̂
= 0, we can get that

χ̂ = ν (14)

Proofs 44, 45 and 46 give the proof process of lemmas 22,
23 and 24, respectively. Lemmas 22, 23 and 24 provide the
theoretical support for the solution of the core tensor χ̂ .

C. ORidge
In terms of judgment prediction of legal cases, the dimension
of the core tensor χ̂ obtained using ITend is much smaller
than the dimension of the original tensor χ obtained using
RTenr. However, χ̂ may be multicollinear. Multicollinearity
has a considerable effect on judgment prediction algorithms.
It can cause the following problems: (1) parameter estimates
are sensitive, unstable, and distorted; (2) the variance and

covariance of parameter estimates are large; and (3) the anal-
ysis function of models is reduced.

To solve the abovementioned problems, this article pro-
poses an optimization algorithm based on ridge regression
and a set of mapping matrices, namely, ORidge. Based on the
traditional ridge regression model, ORidge introduces a set
of mapping matrices into its loss function. This article also
proposes an optimization algorithm for the loss function in
ORidge versus the set of mapping matrices. ORidge controls
the tensor decomposition process in ITend by optimizing the
set of mapping matrices. As a result, core tensors obtained
using ITend carry tensor elements and tensor structure infor-
mation that is most conducive to improving the accuracy
of ORidge. ORidge uses the L2 regular term to prevent
overfitting and solve problems caused by multicollinearity.
Definition 25 presents the formal definition of the loss func-
tion in ORidge.
Definition 25: Given the core tensor χ̂ (m), χ̂ (m)

∈

RJ1×J2×···×JN , m ∈ [1,M ], and the set of mapping matrices
{Cn}, Cn ∈ RJn×In , n ∈ [1,N ], χ̂ (m) represents a legal case.
The loss function of ORidge is defined as

FORidge=
1
2M

M∑
m=1

∥∥∥ϕ(χ̂ (m))−φ(χ̂ (m), µ)
∥∥∥2
F
+Fψ (α,µ, {Cn})

(15)

where ϕ(χ̂ (m)) represents the judgment result of the legal
case represented by χ̂ (m), including sentences and fines.
φ(χ̂ (m), µ) = χ̂

(m)T
vec µ. µ ∈ RJ1J2···JN . Fψ (α,µ, {Cn}) =

ψ(α0, µ) +
N∑
n=1

ψ(αn,Cn), α ∈ RN+1. ψ(λ,A) = λ ‖A‖2F .

‖A‖2F is the L2 regular term.
Lemma 26: Given matrices A, B and C , A ∈ RP×M , B ∈

RM×N , C ∈ RN×P. Then T race(ABC) = Trace(CAB).

Lemma 27: Given a tensor χ̂ (m), χ̂ (m)
∈ RJ1×J2×···×JN ,

m ∈ [1,M ], parameters of ORidge µ, µ ∈ RJ1J2···JN , fϕ =
Trace(ϕ(χ̂ (m))T χ̂ (m)T

vec µ). χ̂ (m) represents a legal case, ϕ(χ̂ (m))
represents the judgment result of χ̂ (m), including sentences
and fines. Then

∂fϕ

∂χ̂
(m)
vec
= ϕ(χ̂ (m))µ

Lemma 28: Given a tensor χ̂ (m), χ̂ (m)
∈ RJ1×J2×···×JN ,

m ∈ [1,M ], parameters of ORidge µ, µ ∈ RJ1J2···JN , fχ =
Trace(µT χ̂ (m)

vec ϕ(χ̂ (m))). χ̂ (m) represents a legal case, ϕ(χ̂ (m))
represents the judgment result of χ̂ (m), including sentences
and fines. Then

∂fχ

∂χ̂
(m)
vec
= ϕ(χ̂ (m))µ

Lemma 29: Given a tensor χ̂ (m), χ̂ (m)
∈ RJ1×J2×···×JN ,

m ∈ [1,M ], parameters of ORidge µ, µ ∈ RJ1J2···JN , fT =
Trace(µT χ̂ (m)

vec χ̂
(m)T
vec µ). χ̂ (m) represents a legal case, ϕ(χ̂ (m))

represents the judgment result of χ̂ (m), including sentences

167920 VOLUME 8, 2020



X. Guo et al.: TenRR: An Approach Based on Innovative Tensor Decomposition and Optimized Ridge Regression

and fines. Then

∂fT

∂χ̂
(m)
vec
= ξµµT χ̂ (m)

vec

where ξ is a constant, ξ = 2.
Lemma 30: Given a matrix Cn, Cn ∈ RJn×In , FC =

Trace(CT
n Cn), then

∂FC
∂Cn
= ξCn

where ξ is a constant, ξ = 2.
We use mini-batch gradient descent (MBGD) to solve

values of parameters in function 15. The key to the prob-
lem is to find out the partial derivative of function 15
with respect to Cn. Let Fm =

∥∥ϕ(χ̂ (m))− φ(χ̂ (m), µ)
∥∥2
F ,

then FORidge = 1
2M

M∑
m=1

Fm + ψ(α0, µ) +
N∑
n=1

ψ(αn,Cn).

∂FORidge
∂Cn

=
1
2M

M∑
m=1

∂Fm
∂Cn
+

∂ψ(α0,µ)
∂Cn

+

∂
N∑
n=1

ψ(αn,Cn)

∂Cn
. Since

ψ(α0, µ) is not a function of Cn,
∂ψ(α0,µ)
∂Cn

= 0. According to

lemma 9, Fm = Trace(ϕ(χ̂ (m))Tϕ(χ̂ (m))−ϕ(χ̂ (m))T χ̂ (m)T
vec µ−

µT χ̂
(m)
vec ϕ(χ̂ (m)) + µT χ̂

(m)
vec χ̂

(m)T
vec µ). Since ϕ(χ̂ (m)) is not a

function of Cn,
∂Trace(ϕ(χ̂ (m))

T
ϕ(χ̂ (m)))

∂Cn
= 0. Since ∂F

∂Cn
=

∂F
∂χ̂

(m)
vec

∂χ̂
(m)
vec

∂Cn
, we find the value of ∂F

∂Cn
by calculating ∂F

∂χ̂
(m)
vec

. Let

fϕ = Trace(ϕ(χ̂ (m))T χ̂ (m)T
vec µ).

By lemma 27, we can get that ∂fϕ
∂χ̂

(m)
vec
= ϕ(χ̂ (m))µ. Let

fχ = Trace(µT χ̂ (m)
vec ϕ(χ̂ (m))), by lemma 28, we can get

that ∂fχ
∂χ̂

(m)
vec
= ϕ(χ̂ (m))µ. Let fT = ∂Trace(µT χ̂ (m)

vec χ̂
(m)T
vec µ),

by lemma 29, we can get that ∂fT
∂χ̂

(m)
vec
= ξµµT χ̂

(m)
vec , where ξ is a

constant, ξ = 2. Therefore ∂Fm
∂χ̂

(m)
vec
= 2(µµT χ̂ (m)

vec −ϕ(χ̂ (m))µ).

According to equations 8 and 14, we can get that ∂χ̂
(m)
vec

∂Cn
=

∂χ̂
(m)
vec

∂Bn
∂Bn
∂Cn
= (χ

N∏
k=1,k 6=n

×kBk )
∂Bn
∂Cn

. ∂Bn
∂Cn

can be obtained by

the rule of inverse matrix derivation. Thus

∂Fm
∂Cn
= ξFµFNFB (16)

where Fµ = µµT χ̂
(m)
vec − ϕ(χ̂ (m))µ, FN = χ

N∏
k=1,k 6=n

×kBk ,

FB =
∂Bn
∂Cn

, ξ = 2. By lemma 30, we can get that ∂ψ(αn,Cn)
∂Cn

=

2αnCn. Thus

∂FORidge
∂Cn

=
1
M

M∑
m=1

FµFNFB + 2αnCn (17)

Proofs 47, 48, 49, 50 and 51 give the proof process of
lemmas 26, 27, 28, 29 and 30, respectively.

V. RESULTS AND ANALYSIS
A. DATA DESCRIPTION
The dataset used in this article consists of real legal cases
obtained from the Chinese Referee Document Network.
The dataset contains nearly 3 million legal cases involving
203 crimes. We divide each judgment of legal cases into two
parts, namely, sentences and fines. On the basis of a large
amount of legal expertise, in the early work of this article,
we extracted features from the original dataset and then
obtained the number of sentence and fine of each legal case.
Such work provided effective data support for the training of
judgment prediction models.

The legal cases in the dataset involve sentences ranging
from 0 to 300 (in units of months) and fines ranging from
0 to 100,000 (in units of yuan). Figure 4 shows the number
of sentences and fines in some legal cases of fixed-term
imprisonment.We analyze legal case data and find interesting
phenomena. (1) Sentences in more than 80% of legal cases
are concentrated within 3 years. (2) Fines in more than 80%
of legal cases are concentrated within 6000 yuan. (3) The
number of legal cases sentenced to death or life imprisonment
is small, 0.159% and 0.328%, respectively. (4) In nearly 50%
of legal cases, the number of fines is 0 yuan.

FIGURE 4. Sentences and fines of legal cases.

B. BASELINE APPROACHES
This article proposes a new method for the judgment of
legal cases, namely, TenRR. TenRR mainly consists of
three modules. (1) RTenr. It represents legal cases as three-
dimensional original tensors. (2) ITend. It decomposes orig-
inal tensors into core tensors. (3) ORidge. It is trained using
the obtained core tensors, and a judgment prediction model
for legal cases is obtained. The set of mapping matrices
{Cn} in ITend is crucial. {Cn} is a bridge connecting ITend
and ORidge. It enables ORidge to control the tensor decom-
position process in ITend. Consequently, the obtained core
tensor χ̂ contains the tensor elements and tensor structure
information that is most conducive to improving the accuracy
of TenRR.

Studies on judgment prediction are currently limited.
Proposed methods are mainly based on feature models
and machine learning algorithms. Considering that the
case documents are text data, we set the following four
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baselines on the basis of latest research in the field of text
analysis.
• Prediction methods based on feature models: These
methods use feature models to represent legal cases. The
obtained matrices are input into prediction algorithms.

• Prediction methods based on matrix decomposition:
These methods use feature models to represent legal
cases decompose original matrices via matrix decompo-
sition, and train prediction algorithms through obtained
matrices.

• Prediction methods based on tensor models: These
methods represent legal cases as three-dimensional ten-
sors and then input them into prediction algorithms.

• Prediction methods based on unsupervised tensor
decomposition:Thesemethods use tensormodels to rep-
resent legal cases. They decompose original tensors into
core tensors by using unsupervised tensor decomposi-
tion. Core tensors are used to train prediction algorithms.

The highlight of the method proposed in this paper is
the setting of mapping matrices. Mapping matrices closely
link the case-modeling process with subsequent prediction
algorithms. The abovementioned four baselines can reflect
the advantages of mapping matrices in TenRR. Prediction
algorithms used in this article include commonly used neu-
ral networks and regression algorithms. Neural networks
include TextCNN [8], TextRNN [9], TextCNN attention [10],
TextRNN attention [11], LSTM [12], Bi-LSTM [13],
GRU [14] and Bi-GRU [15]. Regression algorithms include
linear regression [16], polynomial regression [17], ridge
regression [18], Lasso regression [19], and ElasticNet
regression [20].

C. PARAMETER ADJUSTMENT AND
EXPERIMENTAL SETTINGS
This article proposes a new method based on the innova-
tive tensor decomposition and optimized ridge regression,
namely, TenRR. TenRR consists of three parts: RTenr, ITend,
and ORidge. Unlike traditional ridge regression algorithms,
in addition to the regression coefficient, the parameters
involved in TenRR include a set of mapping matrices {Cn}.
In TenRR, ORidge controls the tensor decomposition pro-
cess in ITend by optimizing the values of {Cn}. Therefore,
the selection of initial values of the set of mapping matrices
{Cn} is important. It affects the convergence speed and accu-
racy of judgment prediction algorithms.

Before conducting formal experiments, we establish
numerous preliminary experiments on small batch datasets.
We set different initial values of mapping matrices in accor-
dance with different steps on each small batch dataset. Then,
we monitor the influence of the initial values of mapping
matrices on the convergence speed of prediction algorithms.
From previous experiments, we can conclude that when each
mapping matrix has a simple linear relationship and the
absolute values of its elements are small, the loss function
can reach the optimal value rapidly. That is, the prediction
algorithm has a fast convergence speed.

TenRR is a regression algorithm, and each obtained sen-
tence or fine is an accurate value. However, in practice,
the judge would prefer to see the range of sentences or fines.
Therefore, we set a fault tolerance window. When the dif-
ference between the predicted and real values is within the
window, we consider the predicted value to be correct. In this
paper, the fault tolerance window adopts a dynamic float-
ing mechanism. For sentences, the fault tolerance window
is 3 months. When the prison term is more than 10 years,
the fault tolerance window can be extended up to 6 months.
For fines, the fault tolerance window is 300 yuan. When the
fine involved is more than 10,000 yuan, the fault tolerance
window can be extended to 500 yuan. When the fine involved
is more than 50,000 yuan, the fault tolerance window can be
extended to 1,000 yuan.

For traditional neural networks, such as TextCNN,
TextRNN, TextCNN attention, TextRNN attention, LSTM,
Bi-LSTM, GRU, and Bi-GRU, this article performs 10 iter-
ations with a batch size of 128, a hidden layer size of 512,
a hidden layer number of 3, and a learning rate of 0.001.
We use TensorFlow as the program development tool and a
graphics processing unit to increase the calculation speed. For
traditional regression algorithms, such as linear, polynomial,
Lasso, and ElasticNet, this article uses the optimal order and
regression coefficients in each specified interval.

FIGURE 5. Predicted and actual values of sentences in legal cases of
fixed-term imprisonment.

D. EXPERIMENTAL RESULTS AND ANALYSIS
This subsection provides the experimental results and anal-
ysis in this article. Figures 5, 6 and 7 show the predicted
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FIGURE 6. Predicted and actual values of sentences in legal cases of life
imprisonment.

FIGURE 7. Predicted and actual values of sentences in legal cases of
death penalty.

and actual values of sentences in legal cases of fixed-
term imprisonment, life imprisonment, and death penalty,
respectively. In cases of death penalty, sentences mean
suspended sentences. In cases of life imprisonment, sentences

FIGURE 8. Predicted and actual values of fines in legal cases.

mean commutation. Figure 8 shows the predicted and actual
values of the fines in legal cases. Subfigure (a) depicts the
experimental results of the judgment predictionmethod based
on tensormodels, which is an algorithm combining RTenr and
traditional Ridge regressions. Subfigure (b) demonstrates the
experimental results of TenRR. Each figure has two curves,
of which the dark curve represents the distribution of actual
sentences or fines, and the light curve represents the distri-
bution of predicted sentences or fines for corresponding legal
cases.

From Figures 5, 6, 7 and 8, compared with the prediction
results of the traditional ridge regression algorithms, those
of TenRR on sentences and fines are more accurate. The
main reason is the use of ITend and ORidge in TenRR.
ITend decomposes the three-dimensional original tensor χ
obtained using RTenr into a core tensor χ̂ . χ represents a
legal case. First, ITend establishes a set of mapping matri-
ces {Cn}. It maps χ into a feature space represented by {Cn}
and then obtains the core tensor χ̂ . χ̂ greatly reduces the
dimensions of x while removing redundant, meaningless, and
inaccurate information from it. Second, ORidge intervenes in
the tensor decomposition process in ITend by optimizing the
value of {Cn}; therefore, the obtained core tensor χ̂ carries
tensor elements and tensor structure information that is most
beneficial to improving the prediction accuracy of TenRR.
{Cn} is the bridge connecting ITend and ORidge. In terms
of sentence prediction, the number of legal case of fixed-
term imprisonment is larger than those of life imprisonment
and death penalty, and, hence, the prediction accuracy rate of
fixed-term imprisonment is higher.

VOLUME 8, 2020 167923



X. Guo et al.: TenRR: An Approach Based on Innovative Tensor Decomposition and Optimized Ridge Regression

TABLE 1. Prediction methods based on feature models.

TABLE 2. Prediction methods based on matrix decomposition.

TABLE 3. Prediction methods based on tensor models.

Tables 1 to 4 present the judgment prediction methods
based on feature models, matrix decomposition, tensor mod-
els, and unsupervised tensor decomposition, respectively. For
convenience, the prediction accuracy of TenRR is also shown
in Table 3.

Subtables (a) in Tables 1 to 4 demonstrate the accuracy
of judgment prediction algorithms based on neural networks.
In this article, every 3 months is classified as one cate-
gory. Every 100 yuan is also classified as one category. The
prediction accuracy of RNNs is higher than that of CNNs.

TABLE 4. Prediction methods based on unsupervised tensor
decomposition.

RNNs can capture the contextual information among vocab-
ularies. By contrast, in CNNs, the convolution kernel focuses
on capturing spatial correlation information among vocabu-
laries. Therefore, RNNs are better at processing time series
data than CNNs. Nevertheless, LSTMs have higher predic-
tion accuracy than RNNs. The main reason is that handling
the long-distance dependency is difficult for RNNs. LSTMs,
on the contrary, solve the problem by setting long-term state
and gates. Compared with unidirectional LSTM, Bi-LSTM
fully considers the context information of vocabularies and,
thus, has higher prediction accuracy. GRUs and LSTMs have
comparable accuracy, but GRU has faster convergence speed.
GRUs pass outputs directly to the next neuron, and no out-
put gate is needed. They also have fewer parameters than
LSTMs.

Subtables (b) in Tables 1 to 4 present the accuracy of
different regression algorithms. Polynomial regression has
higher prediction accuracy than linear regression because
polynomial regression can handle nonlinear relationships
in datasets. Compared with linear and polynomial regres-
sion, ridge regression, Lasso regression, ElasticNet, and
TenRR have higher prediction accuracy. Linear and polyno-
mial regression have difficulty dealing with multicollinearity.
Ridge regression, Lasso regression, ElasticNet, and TenRR
solve the problem through L1 or L2 regular term. Compared
with ridge regression, Lasso regression has higher accuracy.
L1 normal form has the function of feature selection, which
can reduce the influence of unnecessary features on the accu-
racy of prediction models.

Tables 1 and 2 indicate that prediction methods based on
matrix decomposition models are more accurate than those
based on feature models. Matrix decomposition methods
(such as SVD) greatly reduce the dimensions of origi-
nal matrices. They remove redundant information and pre-
dict missing data. These factors improve the accuracy
of subsequent prediction algorithms. Similarly, as shown
in Tables 3 and 4, the accuracy of prediction algorithms based
on tensor decomposition models is higher than that of predic-
tion algorithms based on tensor models.
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Matrix or tensor decomposition algorithms can reduce the
dimension and sparseness of original data. They help improve
the accuracy and stability of subsequent prediction algo-
rithms. Comparison of Tables 1 to 4 shows that prediction
methods based on tensors perform better than those based
on matrices. Tensor models can describe legal cases from
multiple directions. Sparseness and accuracy of data in tensor
models are better than those of data in matrix models. Tensor
models also provide considerable data support for the training
of subsequent prediction algorithms.

Tables 1 to 4 imply that compared with a series of neu-
ral networks and regression algorithms, TenRR has higher
accuracy in judgment prediction of legal cases. The main
reason is the use of mapping matrices. ITend sets mapping
matrices and decomposes original tensors representing legal
cases into core tensors under the guidance of mapping matri-
ces. Core tensors greatly reduce the dimensions of original
tensors while removing inaccurate, redundant, and meaning-
less information from them. ORidge intervenes in the tensor
decomposition process in ITend by optimizing the value of
mapping matrices. As a result, core tensors obtained using
ITend represent the tensor elements and tensor structure infor-
mation that is most conducive to improving the accuracy of
TenRR.

VI. CONCLUSIONS
This article proposes a new method for judgment prediction
of legal cases, namely, TenRR. TenRR is based on innovative
tensor decomposition and optimized ridge regression. TenRR
is mainly divided into three steps. (1) A method based on
tensor models for representing legal cases, namely, RTenr.
We use RTenr to represent legal cases as three-dimensional
original tensors. (2) An innovative tensor decomposition
method, namely, ITend. ITend decomposes original tensors
into core tensors. (3) An optimized ridge regression algo-
rithm, namely, ORidge. We train ORidge using obtained core
tensors. Finally, a judgment prediction model for legal cases
is obtained.

Compared with judgment prediction models based on fea-
ture models and classification algorithms, TenRR has the
following advantages. (1) RTenr does not require consider-
able expert knowledge and manual labeling, and it can fully
describe legal cases. (2) ITend establishes a set of mapping
matrices {Cn}. It maps original tensors into a feature space
represented by {Cn} and then obtains core tensors. Core ten-
sors greatly reduce the dimensions of original tensors while
removing redundant, meaningless, and inaccurate informa-
tion from them. ITend avoids dimensional explosion and
sparse data. (3) ORidge interferes with the tensor decompo-
sition process in ITend by optimizing the value of mapping
matrices {Cn}. Therefore, core tensors derived using ITend
carry the tensor elements and tensor structure information
that is most conducive to improving the accuracy of TenRR.
The aforementioned advantages greatly improve the accu-
racy of TenRR. This article further proposes an optimization
algorithm for ORidge with respect to the set of mapping

matrices {Cn}. First, we calculate the partial derivative of the
loss function with respect to mapping matrices ∂FORidge

∂Cn
. Then,

we complete the iteration of {Cn} by using MBGD.

FIRST APPENDIX
Proofs 31, 32, 33, 34, 35, 36, 37, 38, 39 and 40 give the proof
process of lemmas 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17
respectively.
Proof 31: From the definition of tensor matrixization 4,

we know that the elements in χ(p) have not changed compared
to χ , so the sum of the squares of their elements is equal, that
is,
∥∥χ(p)∥∥2F = ‖χ‖2F .
Proof 32: By definition 2, ‖A‖2F =

I∑
i=1

J∑
j=1

A2ij. Let B =

ATA, B ∈ RJ×J . According to definition 1, Trace(B) =
J∑
j=1

Bjj. From the rule of matrix multiplication, Bjj =

I∑
i=1

ATjiAij. That is Bjj =
I∑
i=1

A2ij. Therefore, Trace(B) =

J∑
j=1

Bjj =
J∑
j=1

I∑
i=1

A2ij. ‖A‖
2
F = Trace(B) = Trace(ATA).

Proof 33: By definition 4, χ(n) ∈ R(I1···In−1In+1···IN )×In . Let
B = χ(n)A, B ∈ R(I1···In−1In+1···IN )×Jn . B(i1i2···in−1in+1···iN )jn =
In∑
k=1

χ(n)(i1i2···in−1in+1···iN )k
Akjn . According to the definition

of 4, χ(n)(i1i2···in−1in+1···iN )k = χi1i2···in−1kin+1···iN . Therefore,

B(i1i2···in−1in+1···iN )jn =
In∑
k=1

χi1i2···in−1kin+1···iNAkjn . Let γ =

χ×nA, from definition 6, γ ∈ RI1×···×In−1×Jn×In+1×···×IN .

γi1i2···in−1jnin+1···iN =
In∑
k=1

χi1i2···in−1kin+1···iNAkjn . by defini-

tion 4, γ(n) ∈ R(I1···In−1In+1···IN )×Jn , γ(n)(i1i2···in−1in+1···iN )jn =
γi1i2···in−1jnin+1···iN . Then γ(n)(i1i2···in−1in+1···iN )jn

=

B(i1i2···in−1in+1···iN )jn . B = γ(n) = χ(n)A.

Proof 34: By performing singular value decomposition on
A, we can get that A = U

∑
V T . U ∈ RI×I , v ∈ RJ×J ,

∑
∈

RI×J . U and V are orthogonal matrices.
∑

is the diagonal
matrix, and the elements on the diagonal are not all 0, Since
I 6 J ,

∑
, there exists a matrix 1, which satisfies 61 = E .

From the properties of orthogonal matrices, we can get that
UUT

= UTU = E , VV T
= V TV = E . Let C = V1UT ,

then AC = U
∑
V TV1UT

= E . Therefore, B = V1UT .
Proof 35: Let γ = χ×nA×nB, τ = χ×nA.

Then γ = τ×nB, τ ∈ RI1×···×In−1×Jn×In+1×···×IN ,
γ ∈ RI1×···×In−1×Kn×In+1×···×IN . From the defini-

tion of 6, γi1i2···in−1knin+1···iN =

Jn∑
j=1
τi1i2···in−1jin+1···iNBjkn .

τi1i2···in−1jin+1···iN =

In∑
i=1
χi1i2···in−1iin+1···iNAij. Then

γi1i2···in−1knin+1···iN =
Jn∑
j=1

In∑
i=1
χi1i2···in−1iin+1···iNAijBjkn .

Let C = AB, ν = χ×nC , then C ∈ RIn×Kn .
ν ∈ RI1×···×In−1×Kn×In+1×···×IN . From the definition of 6,
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νi1i2···in−1knin+1···iN =

In∑
i=1
χi1i2···in−1iin+1···iNCikn . Cikn =

Jn∑
j=1

AijBjkn . Then νi1i2···in−1knin+1···iN =
In∑
i=1

Jn∑
j=1
χi1i2···in−1iin+1···iN

AijBjkn . Therefore, γ = ν. That is χ×nA×nB = χ×n(AB).
Proof 36: Assume that the value of m is less than n,

let γ = χ×nA×mB, τ = χ×nA, then γ = τ×mB.
γ ∈ RI1×···×Im−1×Jm×Im+1×···×In−1×Jn×In+1×···×IN , τ ∈

RI1×···×In−1×Jn×In+1×···×IN . By the definition of tensor prod-
uct 6, we can obtain that

γi1i2···im−1jmim+1···in−1jnin+1···iN

=

Im∑
j=1

τi1i2···im−1jim+1···in−1jnin+1···iNBjjm .

Since

τi1i2···im−1jim+1···in−1jnin+1···iN

=

In∑
i=1

χi1i2···im−1jim+1···in−1iin+1···iNAijn ,

then

γi1i2···im−1jmim+1···in−1jnin+1···iN

=

Im∑
j=1

In∑
i=1

χi1i2···im−1jim+1···in−1iin+1···iNAijnBjjm .

Let ω = χ×mB×nA, κ = χ×mB, then ω =

κ×nA. ω ∈ RI1×···×Im−1×Jm×Im+1×···×In−1×Jn×In+1×···×IN ,
κ ∈ RI1×···×Im−1×Jm×Im+1×···×IN . By the definition of tensor
product 6, we can get that

ωi1i2···im−1jmim+1···in−1jnin+1···iN

=

In∑
i=1

κi1i2···im−1jmim+1···in−1iin+1···iNAijn .

Since

κi1i2···im−1jmim+1···in−1iin+1···iN

=

Im∑
j=1

χi1i2···im−1jim+1···in−1iin+1···iNBjjm ,

then

ωi1i2···im−1jmim+1···in−1jnin+1···iN

=

In∑
i=1

Im∑
j=1

χi1i2···im−1jim+1···in−1iin+1···iNBjjmAijn .

Based on the above analysis, we can obtain that γ = ω.
That is χ×nA×mB = χ×mB×nA.
Proof 37: By lemma 9, we can get that ‖A‖2F =

Trace(ATA), ‖UA‖2F = Trace((UA)TUA). That is ‖UA‖2F =
Trace(ATUTUA). From the properties of orthogonal matri-
ces, we can obtain that UTU = E . Then ‖UA‖2F =

Trace(ATA) = ‖A‖2F .

From the properties of Frobenius norm, we can get
that ‖AU‖2F =

∥∥(AU )T
∥∥2
F =

∥∥UTAT
∥∥2
F . By lemma 9,∥∥UTAT

∥∥2
F = Trace((UTAT )TUTAT ). That is

∥∥UTAT
∥∥2
F =

Trace(AUUTAT ). From the properties of orthogonal matri-
ces, we can obtain that UUT

= E . Then
∥∥UTAT

∥∥2
F =

Trace(ATA). Therefore, ‖AU‖2F = ‖A‖
2
F .

Proof 38: From the definition of 2, we can get that

‖A‖2F =
I∑
i=1

J∑
j=1

A2ij. Let B = AU , B ∈ RI×J . ‖AU‖2F =

‖B‖2F =
I∑
i=1

J∑
j=1

B2ij. Since Bij =
J∑

p=1
AipUpj, ‖AU‖2F =

I∑
i=1

J∑
j=1

J∑
p=1

A2ipU
2
pj. From the properties of diagonal matrices,

we can get that ‖AU‖2F =
I∑
i=1

J∑
j=1

A2ijU
2
jj . Since U

2
jj > 0,

the minimum of
I∑
i=1

J∑
j=1

A2ijU
2
jj is equivalent to the minimum of

I∑
i=1

J∑
j=1

A2ij. Therefore, when ‖AU‖
2
F takes the minimum value,

‖A‖2F takes the minimum value.

Proof 39: From the known, we can get that φ(A) =
‖AB‖2F =

∥∥AU∑V
∥∥2
F . Since V is a orthogonal matrix,

by lemma 14,
∥∥AU∑V

∥∥2
F =

∥∥AU∑∥∥2
F . Let C = AU ,

C ∈ RI×J . φ(A) =
∥∥C∑∥∥2

F . According to lemma 15, when∥∥C∑∥∥2
F takes the minimum value, ‖C‖2F takes the minimum

value. By lemma 14, we can obtain that ‖C‖2F = ‖AU‖
2
F =

‖A‖2F . Since ϕ(A) = ‖A‖
2
F , when φ(A) is minimum, ϕ(A) is

minimum.

Proof 40: Let λ = χ − ν
N∏
n=1
×nCn, λ ∈ RI1×I2×···×IN .

Then FPr o1 = ‖λ‖2F . By lemma 8, we can get that FPr o1 =
‖λ‖2F =

∥∥λ(p)∥∥2F , p ∈ [1,N ]. Let A = λ(p), A ∈
R(I1I2···Ip−1Ip+1···IN )×Ip . Then FPr o1 = ‖A‖2F . According to
lemma 11, let B satisfies the condition that CpB = E , B ∈
RIp×Jp . then B = V (p)1U (p)T , where U (p), 1, V (p) can
be obtained from the singular value decomposition of Cp,
Cp = U (p)∑(p)V (p)T . U (p) and V (p) are orthogonal matrices,∑(p) is the diagonal matrix. 1 is the inverse of the diagonal
matrix

∑(p). 1 is the diagonal matrix.
From lemma 16, we can get that when ‖AB‖2F takes

the minimum value, ‖A‖2F takes the minimum value.
Then FPr o1 = ‖AB‖2F . Since ‖AB‖2F =

∥∥λ(p)B∥∥2F ,
by lemma 10, we can get that FPr o1 =

∥∥λ(p)B∥∥2F =∥∥∥(λ×pB)(p)∥∥∥2F . λ×pB = (χ − ν
N∏
n=1
×nCn)×pB. That is

λ×pB = χ×pB− (ν
N∏
n=1
×nCn)×pB. From lemma 13, we can

obtain that (ν
N∏
n=1
×nCn)×pB = (ν

N∏
n=1,n6=p

×nCn)×pCp×pB.
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From lemma 12, we can obtain that (ν
N∏

n=1,n6=p
×nCn)×pCp×p

B = (ν
N∏

n=1,n6=p
×nCn)×p(CpB). Since CpB = E , then

(ν
N∏
n=1
×nCn)×pB = ν

N∏
n=1,n6=p

×nCn. Therefore, λ×pB =

χ×pB− ν
N∏

n=1,n6=p
×nCn.

From the above analysis, we can get that FPr o1 =∥∥∥(λ×pB)(p)∥∥∥2F = ∥∥λ×pB∥∥2F . That is FPr o1 = ∥∥∥∥χ×pB − ν
N∏

n=1,n6=p
×nCn

∥∥∥∥2
F
. According to the same principle, we can get

the following formula by analogy.

FPr o1 =

∥∥∥∥∥χ
N∏
n=1

×nBn − ν

∥∥∥∥∥
2

F

(18)

Bn satisfies the following condition:

Bn = V (n)1(n)U (n)T (19)

where V (n), 1(n) and U (n) can be obtained by perform-
ing singular value decomposition on matrix Cn. Cn =
U (n)∑(n)V (n)T . U (n) and V (n) are orthogonal matrices.

∑(n)

is a diagonal matrix. 1(n) is the inverse matrix of
∑(n).

SECOND APPENDIX
Proofs 41, 42 and 43 give the proof process of lemmas 18, 19
and 20, respectively.
Proof 41: Let C = v(p), C ∈ R(J1J2···Jp−1Jp+1···JN )×Jp ,

D = (χ
N∏
n=1
×nBn)(p), D ∈ R(J1J2···Jp−1Jp+1···JN )×Jp . Then

Fsub1 = Trace(CTD). Let A = CTD, A ∈ RJp×Jp .
From the matrix multiplication rule,, we can get that

Aij =
J1J2···Jp−1Jp+1···JN∑

k=1
CT
ikDkj. According to definition 1,

Fsub1 = Trace(A) =
Jp∑
j=1

Ajj. Then Trace(A) =
Jp∑
j=1

J1J2···Jp−1Jp+1···JN∑
k=1

CkjDkj. When k = i, ∂(CijDij)
∂Cij

= Dij. When

k 6= i, ∂(CkjDkj)
∂Cij

= 0. Therefore, ∂Trace(A)
∂Cij

= Dij. That is

∂Fsub1
∂C = D. ∂Fsub1

∂ν(p)
= (χ

N∏
n=1
×nBn)(p).

Proof 42: Let C = v(p), C ∈ R(J1J2···Jp−1Jp+1···JN )×Jp ,

D = (χ
N∏
n=1
×nBn)(p), D ∈ R(J1J2···Jp−1Jp+1···JN )×Jp . Then

Fsub2 = Trace(DTC). Let A = DTC , A ∈ RJp×Jp .
From the matrix multiplication rule,, we can get that Aij =
J1J2···Jp−1Jp+1···JN∑

k=1
DTikCkj. According to definition 1, Fsub2 =

Trace(A) =
Jp∑
j=1

Ajj. Fsub2 =
Jp∑
j=1

J1J2···Jp−1Jp+1···JN∑
k=1

DkjCkj.

When k = i, ∂(DijCij)
∂Cij

= Dij. When k 6= i, ∂(DkjCkj)
∂Cij

= 0.

Therefore, ∂Trace(A)
∂Cij

= Dij.
∂Fsub2
∂C = D. ∂Fsub2

∂ν(p)
=

(χ
N∏
n=1
×nBn)(p).

Proof 43: Let C = v(p), C ∈ R(J1J2···Jp−1Jp+1···JN )×Jp ,
then Fsub3 = Trace(CTC). Let A = CTC , A ∈

RJp×Jp . According to definition 1, Fsub3 = Trace(A) =
Jp∑
j=1

Ajj. From the matrix multiplication rule, we can get

that Aij =
J1J2···Jp−1Jp+1···JN∑

k=1
CT
ikCkj. Trace(A) =

Jp∑
j=1

J1J2···Jp−1Jp+1···JN∑
k=1

CT
jkCkj. When k = i, ∂(CijCij)

∂Cij
= 2Cij. When

k 6= i, ∂(CkjCkj)
∂Cij

= 0. Therefore, ∂Trace(A)
∂Cij

= 2Cij.
∂Fsub3
∂C = 2C .

∂Fsub3
∂ν(p)
= ξν(p), where ξ is a constant, ξ = 2.

THIRD APPENDIX
Proofs 44, 45 and 46 give the proof process of lemmas 22, 23
and 24, respectively.
Proof 44: Let A = χ̂(p), A ∈ R(J1J2···Jp−1Jp+1···JN )×Jp , D =

ν(p), D ∈ R(J1J2···Jp−1Jp+1···JN )×Jp , G = ATD, G ∈ RJp×Jp .
Then Fsub4 = Trace(G). According to definition 1, we can

obtain that Trace(G) =
Jp∑
j=1

Gjj. Knowing from the rule of

matrix multiplication, Gij =
J1J2···Jp−1Jp+1···JN∑

k=1
ATikDkj. Then

Trace(G) =
Jp∑
j=1

J1J2···Jp−1Jp+1···JN∑
k=1

ATjkDkj. That is Fsub4 =

Jp∑
j=1

J1J2···Jp−1Jp+1···JN∑
k=1

AkjDkj. When k = i, ∂(AijDij)
∂Aij

= Dij.

When k 6= i, ∂(AkjDkj)
∂Aij

= 0. Therefore, ∂Fsub4
∂Aij

= Dij.
∂Fsub4
∂χ̂(p)

= ν(p).

Proof 45: Let A = χ̂(p), A ∈ R(J1J2···Jp−1Jp+1···JN )×Jp , D =
ν(p), D ∈ R(J1J2···Jp−1Jp+1···JN )×Jp , G = DTA, G ∈ RJp×Jp .
Then Fsub5 = Trace(G). According to definition 1, we can

obtain that Trace(G) =
Jp∑
j=1

Gjj. Knowing from the rule of

matrix multiplication, Gij =
J1J2···Jp−1Jp+1···JN∑

k=1
DTikAkj. Then

Trace(G) =
Jp∑
j=1

J1J2···Jp−1Jp+1···JN∑
k=1

DTjkAkj. That is Fsub5 =

Jp∑
j=1

J1J2···Jp−1Jp+1···JN∑
k=1

DkjAkj. When k = i, ∂(DijAij)
∂Aij

= Dij.

When k 6= i, ∂(DkjAkj)
∂Aij

= 0. Therefore, ∂Fsub5
∂Aij

= Dij.
∂Fsub5
∂χ̂(p)

= ν(p).

Proof 46: Let A = χ̂(p), A ∈ R(J1J2···Jp−1Jp+1···JN )×Jp ,
G = ATA, G ∈ RJp×Jp . Then Fsub6 = Trace(G).
According to definition 1, we can obtain that
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Trace(G) =
Jp∑
j=1

Gjj. Knowing from the rule of matrix

multiplication, Gij =

J1J2···Jp−1Jp+1···JN∑
k=1

ATikAkj. Then

Trace(G) =
Jp∑
j=1

J1J2···Jp−1Jp+1···JN∑
k=1

ATjkAkj. That is Fsub6 =

Jp∑
j=1

J1J2···Jp−1Jp+1···JN∑
k=1

Akj2. When k = i, ∂(Aij
2)

∂Aij
= 2Aij. When

k 6= i, ∂(Aij
2)

∂Aij
= 0. Therefore, ∂Fsub6

∂Aij
= 2Aij.

∂Fsub6
∂χ̂(p)

= ξ χ̂(p),
where ξ is a constant, ξ = 2.

FOURTH APPENDIX
Proofs 47, 48, 49, 50 and 51 give the proof process of lemmas
26, 27, 28, 29 and 30, respectively.
Proof 47: Let D = AB, D ∈ RP×N , G = DC ,

G ∈ RP×P. Then T race(ABC) = T race(G). According to

definition 1, we can get that T race(G) =
P∑
i=1

Gii. By the

rule of matrix multiplication, Gij =
N∑
k=1

DikCkj. Dij =

M∑
q=1

AiqBqj. Thus Gij =
N∑
k=1

M∑
q=1

AiqBqkCkj. Then T race(G) =

P∑
i=1

N∑
k=1

M∑
q=1

AiqBqkCki.

Let Z = CA, Z ∈ RN×M , S = ZB, S ∈

RN×N . Then T race(CAB) = T race(S). According to

definition 1, we can get that T race(S) =

N∑
k=1

Skk .

By the rule of matrix multiplication, Zmn =
P∑
i=1

CmiAin.

Smn =
M∑
q=1

ZmqBqn. That is Smn =
M∑
q=1

P∑
i=1

CmiAiqBqn. Then

T race(S) =
N∑
k=1

M∑
q=1

P∑
i=1

CkiAiqBqk . Therefore, T race(S) =

T race(G). T race(ABC) = T race(CAB).
Proof 48: Let A = ϕ(χ̂ (m)), A ∈ R1, B = χ̂

(m)
vec , B ∈

RJ1J2···JN . Then fϕ = Trace(ATBTµ) = ATrace(BTµ). Let
D = BTµ, D ∈ R1. By the rule of matrix multiplica-

tion, Dij =
J1J2···JN∑
k=1

BTikµkj =
J1J2···JN∑
k=1

Bkiµkj. According

to definition 1, Trace(D) =
1∑

p=1
Dpp. That is Trace(D) =

1∑
p=1

J1J2···JN∑
k=1

Bkpµkp. When k = i, p = j, ∂(Bijµij)
∂Bij

= µij.

Otherwise, ∂(Bkpµkp)
∂Bij

= 0. Then ∂Trace(D)
∂B = µ. That is

∂fϕ
∂χ̂

(m)
vec
= ϕ(χ̂ (m))µ.

Proof 49: Let A = ϕ(χ̂ (m)), A ∈ R1, B = χ̂
(m)
vec ,

B ∈ RJ1J2···JN . Then fχ = Trace(µTBA) = ATrace(µTB).
Let D = µTB, D ∈ R1. According to definition 1,

Trace(D) =
1∑

p=1
Dpp. By the rule of matrix multiplication,

Dij =
J1J2···JN∑
k=1

µTikBkj =
J1J2···JN∑
k=1

µkiBkj. Then Trace(D) =

1∑
p=1

J1J2···JN∑
k=1

µkpBkp. When k = i, p = j, ∂(µijBij)
∂Bij

= µij.

Otherwise, ∂(µkpBkp)
∂Bij

= 0. Then ∂Trace(D)
∂B = µ. That is

∂fχ
∂χ̂

(m)
vec
= ϕ(χ̂ (m))µ.

Proof 50: Let B = χ̂
(m)
vec , B ∈ RJ1J2···JN . Then

fT = Trace(µTBBTµ). According to lemma 26,
Trace(µTBBTµ) = Trace(BTµµTB). Let D = µµT , D ∈
R(J1J2···JN )×(J1J2···JN ). fT = Trace(BTDB). Let H = BTD,
H ∈ R1×(J1J2···JN ), G = HB, G ∈ R1. According to

definition 1, Trace(G) =
1∑

p=1
Gpp. By the rule of matrix mul-

tiplication, Gij =
J1J2···JN∑
k=1

HikBkj. Hmn =
J1J2···JN∑
q=1

BTmqDqn =

J1J2···JN∑
q=1

BqmDqn. Then Gij =
J1J2···JN∑
k=1

J1J2···JN∑
q=1

BqiDqkBkj.

Trace(G) =
1∑

p=1

J1J2···JN∑
k=1

J1J2···JN∑
q=1

BqpDqkBkp. When q = i,

p = j, ∂(BijDikBkj)
∂Bij

= DikBkj. When k = i, p = j, ∂(BqjDqiBij)
∂Bij

=

BqjDqi = DTiqBqj. Otherwise,
∂(BqpDqkBkp)

∂Bij
= 0. Therefore,

∂Trace(G)
∂B = DB + DTB. Since D = DT , ∂Trace(G)

∂B = 2DB.
That is ∂fT

∂χ̂
(m)
vec
= ξµµT χ̂

(m)
vec , where ξ is a constant, ξ = 2.

Proof 51: Let A = Cn, A ∈ RJn×In . Then FC =

Trace(ATA). Let D = ATA, D ∈ RIn×In . According to

definition 1, Trace(D) =
In∑
i=1

Dii. By the rule of matrix mul-

tiplication, Dij =
Jn∑
k=1

ATikAkj =
Jn∑
k=1

AkiAkj. Then Trace(D) =

In∑
i=1

Jn∑
k=1

A2ki. When k = m, i = n, ∂(A
2
mn)

∂Amn
= 2Amn. Otherwise,

∂(A2ki)
∂Amn

= 0. Therefore, ∂Trace(D)
∂A = 2A. That is ∂FC

∂Cn
= ξCn,

where ξ is a constant, ξ = 2.
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