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ABSTRACT In order to adapt to the rapid development of cloud computing, big data, and other technologies,
the combination of data center networks and SDN is proposed tomake networkmanagementmore convenient
and flexible. With this advantage, routing strategies have been extensively studied by researchers. However,
the strategies in the controller mainly rely on manual design, the optimal solutions are difficult to be
obtained in the dynamic network environment. So the strategies based on artificial intelligence (AI) are
being considered. This paper proposes a novel routing strategy based on deep Q-learning (DQL) to generate
optimal routing paths autonomously for SDN-based data center networks. To satisfy the different demands
of mice-flows and elephant-flows in data center networks, deep Q networks are trained for them respectively
to achieve low latency and low packet loss rate for mice-flows as well as high throughput and low packet loss
rate for elephant-flows. Furthermore, with the consideration of the distribution of traffic and the limitated
resources of data center networks and SDN, we choose port rate and flow table utilization to describe
the network state. Simulation results show that compared with Equal-Cost Multipath (ECMP) routing
and Selective Randomized Load Balancing (SRL)+FlowFit, the proposed routing scheme can reduce both
the average delay of mice-flows and average packet loss rate, while increase the average throughput of
elephant-flows.

INDEX TERMS Data center, SDN, flow types, deep Q-learning.

I. INTRODUCTION
With the rapid growth in cloud computing, big data, and
other technologies, the scale of data center networks is
expanding continuously [1]. The traditional networks cannot
meet the requirements of the existing data center networks
due to the difficulties in network management and deploy-
ment. The emergence of SDN indicates the way to solve the
above problem. It’s a novel networking architecture which
separates the control plane from data plane of the forwarding
device. Data center networks can benefit from the centralized
control of SDN tomake intelligent dynamic decisions. In data
center networks, routing is an important research point and
has been researched for a long time. With the advantage of
SDN, routing strategies can be deployed conveniently and
flexibly based on the global view of network. To further
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achieve effective routing in data center networks, flows are
categorized into two types: elephant-flows and mice-flows.
Elephant-flows carry large amounts of data and last for a
long time, while mice-flows do the opposite. In the light
of traffic characteristics, literature [2]–[11] are focus on the
routing approaches in data center networks based on SDN.
However, all of these routing strategies need to be designed
manually. In the face of the changing network environment,
they are difficult to achieve optimal solution. The rise of
AI brings a new idea for us to dispose of routing prob-
lem. Reinforcement learning (RL) represented by Q-learning
(QL) [12] is an important branch of AI. It seeks the optimal
strategy through continuous ‘‘trial and error’’ interactions
with the environment. Nevertheless, the diversity of network
state may cause the storage space required for Q-table to be
too large to use normally. DQL [13] which adopts neural
network to fit Q-table is a good solution for the above prob-
lem. NetworkAI [14] proposes an intelligent architecture for
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self-learning control strategies in SDN networks. It combines
SDN with deep reinforcement learning (DRL) and presents a
simple example that solving QoS routing problem with DQL.
However, the paper focuses on the design of architecture and
the specific design of routing scheme is not explained.

In this paper, we propose a routing strategy based on DQL
for data center networks based on SDN. We build two DQNs
to make routing decisions intelligently. One for elephant-
flows to achieve low packet loss rate and high throughput,
the other for mice-flows to achieve low packet loss rate and
low latency. In this way, the approximate optimal routing
strategy can be obtained. To summarize, we make the follow-
ing contributions in this paper.
• An intelligent network architecture is built for routing
in data center. According to the traffic characteristics
of data center network, it will dynamically generate
optimal routing strategies for elephant-flows and mice-
flows, respectively.

• Specific design of DQL algorithm is presented, includ-
ing the design of state space, action space and reward
function. To better describe the state of the network,
we combine the port rate and flow table occupancy rate
in switches for the purpose, which reflect the distribution
of traffic in the network and the utilization of network
resources, including link bandwidth resources and flow
table resources.

• The effectiveness of the proposed routing algorithm is
verified by simulations. It is illustrated that the perfor-
mance of mice-flows can be improved in the aspects of
packet loss rate and delay, while elephant-flows behave
better in terms of packet loss rate and throughput.

II. RELATED WORKS
In data center networks, routing has been studied for a long
time as an crucial research orientation. With the rise of SDN
in recent years, lots of routing strategies based on SDN have
been proposed, so that fine-grained flow control is achieved.
Load balance routing is widely researched in data centers
to ensure the sustainability of the network, it tries to guar-
antee the transmission quality of the flows while reserve
some space for possible subsequent flows. Literature [2]–[4]
focus on balancing load for elephant-flows. [2] selects the
path that would accommodate the flow for routing and [3]
chooses the least crowded path. [4] splits and sends elephant-
flows through multiple paths based on the ratios which are
dynamically computed. The researchers in [5]–[7] design
rerouting schemes to further balance the network load. They
periodically determine whether the network load is balanced
by setting the parameter such as load balance degree. When
the parameter exceeds the threshold, flow scheduling or
flow splitting is triggered. The above shemes can effectively
reduce the packet loss rate and increase the throughput of
elephant-flows. It should be noted that the load balance
mentioned above refers to link load balance, another called
flow table load balance has been proposed recently with the

consideration of the limited flow table capacity in SDNs.
Research [8] introduces flow table load balance for mice-
flows which account for the majority of traffic in data centers
to prevent the packet loss caused by flow table overflow.
In addition, considering the low latency characteristic of
mice-flows, the following routing schemes are put forward.
Literature [9] picks the path with the lowest delay for mice-
flows and [10] assigns dedicated low-latency paths for them.
[11] decreases the delay by reducing the number of flow rules
installed to transmit mice-flows. However, all of these solu-
tions are based on manual design which is non-intelligent,
it implies that when similar traffic patterns happen, the same
paths will be selected even the routing strategies have resulted
in poor network performance. So, they lack the ability to
learn from previous experiences[15]. Facing the problem,
AI as a popular tool provides solution. Literature [15], [16]
apply deep learning to avoid congestion in different network
scenario. A Convolutional Neural Network (CNN) is trained
for each path combination to generate the result that any
chosen path is congested or not according to the input traffic
pattern. [12] realizes QoS adaptive routing based on QL
which is a typical reinforcement learning algorithm, QoS-
aware reward function is put forward to direct the learning
process of optimal routing. Nevertheless, because of the fine-
grained flow control and the changing network environment,
QL calls for huge storage space to maintain Q-table. To over-
come the defect, DQL that combines deep learning with QL
is proposed. In [14], DRL is applied to solve large scale
network control problems, and a simple example that using
DQL for QOS routing is present. It lays stress on the proposed
architecture which introduces DRL to SDN, but the design of
the routing sheme is not account for. DROM [17] and TIDE
[18] are rencent DRL mechanisms for routing optimization.
However, their actions depend on link weights modification,
the optimal routing path can only be obtained indirectly by
shortest path algorithms.

III. SYSTEM ARCHITECTURE
For the purpose of combining SDN-based data center net-
works with DQL, we introduce AI agent contained in AI
plane to traditional SDN architecture, realizing intelligent
routing decisions. We present the proposed system architec-
ture in Figure 1. It contains three planes: data plane, control
plane and AI plane. The functions of these three planes are
described in detail below.

A. DATA PLANE
The data plane is mainly composed of switches which focus
on packet forwarding, and all these switches support Open-
Flow protocol. In particular, Fat-Tree [20] as a typical data
center network topology is adopted to be data plane in this
paper, which is shown in Figure 2. There are multiple paths
between the source and destination nodes in Fat-Tree topol-
ogy, providing data centers with high bandwidth and good
fault tolerance.
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FIGURE 1. System architecture.

FIGURE 2. Fat-Tree topology.

B. CONTROL PLANE
The control plane interacts with the data plane through the
south interface protocol(OpenFlow). The controller obtains
network topology by using Link Layer Discovery Protocol,
and it periodically sends state query messages to each switch
to acquire the state information of switches, such as flow
table status and port status. When a new flow arrives at
the network, the controller first calculates the flow rate and
estimates the flow type based on the flow statistics. If the flow
rate exceeds thethreshold(According to previous studies, this
value was often set to 5% of the link capacity), we regard
the flow as elephant-flow. Otherwise, we regard the flow as
mice-flow.

In addition, the network performance evaluation(e.g.,
packet loss rate, delay, throughput) is also collected. All of
these information is prepared for routing strategies formula-
tion. The controller converts the strategies to flow rules and
installs them on the corresponding switches.

C. AI PLANE
The AI plane is the core part of the system. AI agent can
learn the optimal routing scheme autonomously from previ-
ous experience. Intelligent routing policies are dynamically
generated to improve the performance of mice-flows and
elephant-flows. The plane gains the flow type, network state
information and network performance evaluation from the
control plane through the north interface. For different flow
types, the AI agent learns the different optimal routing strat-
egy with network state information and network performance
evaluation. In detail, two DQNs are designed for mice-flows
and elephant-flows, respectively. Our goal is to achieve low
latency and low packet loss for mice-flows, while low packet
loss and high throughput for elephant-flows. Through QL,
the agent obtains the optimal routing strategy by interacting
with the environment. Furthermore, deep neural network is
used to approximate the huge policy table, thus we can obtain
the optimal routing path according to the input network state
and flow type quickly.

IV. PROBLEM FORMULATION
We model the data center network as a directed graph
G = {V ,E}, where V represents the set of all switch
nodes and E denotes the set of links between switches. The
flow table capacity of each switch is Rm, and the capac-
ity of each link is Cm. During the period from t1 to tn,
n → +∞, we assume that the set of all mice-flows and all
elephant-flows are Fmice = {fw |w ∈ [1, p] } and Felephant =
{fv |v ∈ [1, q] }, where p and q are the number of mice-
flows and elephant-flows, p → +∞, q → +∞. Further-
more, we set the existing flows in the network at time ti as
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Fti =
{
f jti = (sjti , d

j
ti , r

j
ti ) |ti ∈ [t1, tn), j ∈ [1,m]

}
. f jti is the

j-th flow at ti, while (s
j
ti , d

j
ti , r

j
ti ) stands for the source switch,

destination switch and bandwidth requirement of this flow,
m is the total number of flows in the network at the moment.
f jti (u, v) describes the relationship between f jti and link (u, v),
u ∈ V and v ∈ VN (u). VN (u) is the set of neighbor switches
of u. If f jti is on link (u, v), f jti (u, v) = 1. If not, f jti (u, v) = 0.
We use d(x), p(x), t(x) respectively to represent the average
delay, average packet loss rate and average throughput of the
flow x. So, we can calculate the following indicators:

Dmice = lim
p→+∞

∑
w∈[1,p]

d(fw)

p
(1)

Pmice = lim
p→+∞

∑
w∈[1,p]

p(fw)

p
(2)

Pelephant = lim
q→+∞

∑
v∈[1,q]

p(f ′v )

q
(3)

Telephant = lim
q→+∞

∑
v∈[1,q]

t(f ′v )

q
(4)

Dmice, Pmice are the average delay and average packet loss
rate of mice-flows during t1 to tn, while Pelephant , Telephant
are the average packet loss rate and average throughput of
elephant-flows during t1 to tn.
According to traffic characteristics of data center networks,

we set our target of the routing problem as follows:

minDmice (5)

minPmice (6)

minPelephant (7)

maxTelephant (8)

subject to:
∑

v∈VN (u)

[f jti (u, v)− f
j
ti (v, u)]

=


1, u = sjti
−1, u = d jti ,

0, u 6= sjti , d
j
ti

∀u ∈ V (9)

∑
j∈[1,m]

r jti f
j
ti (u, v) ≤ Cm, ∀(u, v) ∈ E (10)

∑
v∈VN (u)

f jti (u, v) ≤ Rm, ∀u ∈ V (11)

Constraint(9) is the classical flow conservation constraint,
it ensures that the ingress flows are equal to the egress flows
for each switch. Constraint(10) and constraint(11) represent
capacity limits for links and flow tables, respectively. Fur-
thermore, the link capacity Cm can be also expressed as the
minimum of the allowable port rates at both ends of the link.
In this paper, the rate of each port is limited to a same value,
so the link capacity is equal to port capacity here.

The routing process is actually a network state transition
process. Here, in order to better express the network state,

for the network state at a certain moment, we select the
instantaneous state of this moment and recent n-1 moments
to represent it. Based on this setting, we approximate the
routing process as a Markov Decision Process (MDP), and
the relevant parameters are designed as follows:

A. STATE SPACE
Two state objects are considered here: flow table state and
port state. We call these two states as network state collec-
tively. As shown in Figure 3, we treat the state of the network
as an image, and treat different network features as different
pixel channels. Here, channels respectively represent the flow
table utilization rate and the port rate of each switch at current
and previous moments. Therefore, the state space can be
expressed as follow:

State = {s = [FTswi,tj ,PSpk ,swi,tj ]|i ∈ [1, n],

j ∈ [1,m], k ∈ [1, z]}

where n, m and z are respectively the number of switches,
moments and ports of a single switch. FTswi,tj represents the
flow table utilization rate of switch i at the moment tj, it is in
the range of 0 to 1. Meanwhile, PSpk ,swi,tj represents the port
rate of port k in switch i at the moment tj, it doesn’t exceed
psmax. psmax is a fixed value, it’s the maximum amount of
traffic that a port can pass per second.

In particular, FTswi,tj is a finite set with v elements
(v is the flow table capacity), while PSpk ,swi,tj is continuous.
To reduce computational complexity, we divide it into several
levels to achieve the purpose of decentralization. The number
of levels should not be too much or too little. It is supposed
to ensure state differentiation while reducing computational
complexity as far as possible. Here, we select ten levels in
our scheme. Then PSpk ,swi,tj turns into a finite set with ten
elements.

B. ACTION SPACE
The action space can be described as follows:

Action = {ap1 , ap2 , . . . apk , . . . apN }

where p1 to pN are all paths in the network, apk ∈ {0, 1}.
If apk = 1, the current flow is assigned to path k . If apk = 0,

the result is the opposite. In particular, we consider that flows
are indivisible, so each flow can only be assigned to one path.
Action satisfies the following equation: Action ∗ One = 1.
Where, One is an N-dimensional column vector with all 1’s
in it.

Especially, for a certain flow (ip_src, ip_dst) under a state,
the executable actions are in the alternative path set between
the source and destination servers of the flow. Taking the Fat-
Tree topology with k parameter as an example, the maximum
number of actions is (k/2)2.

C. REWARD FUNCTION
Considering the characters of elephant-flow and mice-flow,
we formulate different reward functions for these two types
of flow. For elephant-flow, the goal is to minimize packet
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FIGURE 3. Network state.

loss rate and maximize throughput. And for mice-flow,
the goal is tominimize packet loss rate and latency. Therefore,
the reward functions are set up as follows:

For elephant-flows,

Relephant = α ∗ (1− PLR)+ β ∗ TP (12)

where PLR represents the average packet loss rate of
elephant-flows in the network, TP is the average through-
put of elephant-flows after processing(Average throughput
divided by the maximum receiving rate at the receiving
end). This is done for bringing the two indicators into the
same order of magnitude(0-1) to facilitate comprehensive
evaluation. α and β are the weights of the two indicators,
respectively, indicating the importance of the indicators. They
satisfy that α + β = 1.

For mice-flows,

Rmice = λ ∗ (1− PLR2)+ µ ∗ (1− DL) (13)

where PLR2 represents the average packet loss rate of mice-
flows, andDL is the normalized average delay of mice-flows.
Both of these indicators are between 0 and 1. λ and µ are the
weights of the two indicators respectively and λ+ µ = 1.

V. ALGORITHM DESIGN
RL is a tool to solve the MDP problem. QL is a classical
RL algorithm, which is based on value. It sacrifices some of
its current earnings for its long-term earnings. Q stands for
Q(s, a), it is the expected benefit of taking action a(a ∈ A)
at a certain state s(s ∈ S). The main idea of the algorithm is
to build a Q-table to store Q, and then select the action that
can obtain a large profit according to the Q value. However,
the state space is too large to build a Q-table in finite memory
in our scenario. To address the problem, DQL is adopted here.

A. DQL ALGORITHM
In this section, we introduce DQN in detail and show our
improvement to DQN for the routing problem.

DQL is an algorithm that combines deep neural network
and QL. Deep neural network has good generalization ability
and can approximate almost any nonlinear function. There-
fore, on the basis of QL algorithm, the deep neural network is
used to establish the mapping relationship between state and

action, so as to realize the accelerated solution of the problem
and solve the dimension disaster problem caused by the large
scale of system state.

QL updates the value function as follow:

Q(s, a)← Q(s, a)+ α(r+γ max
a′

Q(s′, a′)−Q(s, a)) (14)

where α ∈ (0, 1] is the learning rate. Q(s, a) and Q(s′, a′)
are the Q values of current moment and next moment,
respectively.

Instead of searching Q values in Q-table, DQL uses
deep neural network such as CNN to estimate Q(s, a), i.e.,
Q(s, a; θ ) ≈ Q(s, a), where θ represents the set of weights
and biases which are the parameters of neural network. The
network is trained by minimizing the loss, the loss function
can be expressed as follow:

L(θ ) = E[(r + γ max
a′

Q(s′, a′; θ ′)− Q(s, a; θ ))2] (15)

r + γ maxa′ Q(s′, a′; θ ′) is the target Q value calculated by
QL. While, Q(s, a; θ ) is the Q value estimated. Our goal is to
get the estimate Q close to the target Q.

To obtain the two types of Q value, we adopt two indepen-
dent neural networks with the same structure: evaluated Q-
network and target Q-network. The former generates the esti-
mateQ according to the current state. It changes parameters in
each episode to decrease the loss. While, the latter outputs Q
corresponded to the next state, preparing for the calculation of
the target Q. It updates parameters with evaluated Q-network
every some steps.

To provide training samples, DQN has a reply memory
which stores historical experiences. Experiences are selected
randomly from the reply memory to train the neural network.
In this way, the problem of time-correlation of samples is
solved and the stability of training is improved.

We summarize the workflow of DQL in Figure 4.
In particular, in the routing scenario, the information about

the arrival flow of next moment is unknown, including the
flow type as well as the source and destination IP address of
the flow. And the available paths for the flow are uncertain.
We let Q1 and Q2 be the action value function for mice-
flows and elephant-flows, respectively. We set the alternative
path set as A_set = {a_seti,j |i ∈ [1,m] , j ∈ [1,m], i 6= j},
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FIGURE 4. The workflow of DQL.

where m is the number of edge switches, a_seti,j represent
the available paths between the i-th and j-th edge switches.
A_set is made up of m(m− 1) sets (a_seti,j), and the optional
path set for the flow may be any a_seti,j from A_set . Based
on the above settings and considerations, we improve the
target Q value to fit our scenario. The new target Q value can
be expressed as r + γ [ 1

m(m−1) (p
∑
i,j

max
a′∈a_seti,j

Q1(s′, a′; θ ′1) +

q
∑
i,j

max
a′∈a_seti,j

Q2(s′, a′; θ ′2))], where p, q are weight factors,

they are configured to the proportion of mice-flows and
elephant-flows in the network, respectively. In this way,
we can solve the problem that the information about the
arrival flow of next moment is unknown, so that we can better
assess the next state.

B. ROUTING ALGORITHM BASED ON DQL
We train different DQNs for elephant-flow and mice-flow.
With the advantage of QL, the agent can learn the optimal
routing path of each state by trial-and-error while guarantee
the long-term benefits, the result will be more accurate than
the manually designed routing scheme. CNN is used to fit the
policy table–Q table, so that the agent can quickly obtain the
optimal path, saving the memory space and lookup time of
policy table.

When a new flow arrives at the network, the controller
first determines the type of the flow and obtains all paths
between the source and destination servers of the flow from
the precomputed alternative path set A_set . The selected
paths constitutes the optional action set a_set for the flow.
Get the current network status s and put it into CNN which
is the evaluated q-network with action value function Q and
parameter θ (CNN1, Q1, θ1 for mice-flows and CNN2, Q2,
θ2 for elephant-flows), Q values corresponding to all paths

in A_set in the current state can be obtained. Then, select
a path randomly or select the path with the maximum Q
value from a_set of the flow as action a, and install flow
rules for switches on the path. Finally, calculate reward r and
update the network state st+1, store (s, a, r, st+1) for CNNs
training. In training, the target q-network CNN ′ with action
value function Q and parameter θ is adopted to work with
CNN (CNN ′1, Q1, θ1 for mice-flows and CNN ′2, Q2, θ2 for
elephant-flows). When the CNNs have been trained well,
we can generate optimal routing strategies for flows from the
flow type and current network state.

We present the learning phase and routing phase of routing
algorithm based on DQL in Algorithm 1 and Algorithm 2.
Among them, Algorithm 1 is executed at the initial stage
of network operation. It constantly updates routing policies
through learning from historical experience, and it has high
computational complexity due to the large state space and
action space.When the learning phase is complete, the trained
CNNs are adopted in Algorithm 2. Routing strategies have
been obtained in advance through Algorithm 1, they can be
generated directly from CNNs without extra computation,
so that the intelligent routing is realized. In particular, because
elephant-flows and mice-flows have similar learning pro-
cesses, Algorithm 1 is the general algorithm of the two types
of flows.

Algorithm 1 Learning Phase
1: Obtain the alternative path set of the flow (a_set) from
A_set

2: while new flow do
3: Select at randomly
4: Otherwise input st into CNN to gain

the Q(st , a; θ ), select at = argmaxa Q(st , a; θ )
5: Calculate the reward rt and monitor the next

network state st+1
6: Store (st , at , rt , st+1) in replay memory D
7: Select random m minibatch from D
8: Minimize the loss function

[ri + γ [ 1
m(m−1) (p

∑
i,j

max
a′∈a_seti,j

Q1(si+1, a
′
; θ1) +

q
∑
i,j

max
a′∈a_seti,j

Q2(si+1, a
′
; θ2))− Q(si, ai; θ )]2

and update the parameter θ
9: Set θ1(θ2) = θ every L steps
10: end while

VI. SIMULATION
A. EXPERIMENT SETUP
We establish the network topology usingMininet [19] emula-
tor, which provides virtual network elements to easily create
a network that supports OpenFlow protocol. Ryu [20] which
is an open source SDN controller is chosen to operate the
network. Iperf is selected to be responsible for generating the
traffic. In addition, we select Fat-Tree, a typical data center
network topology to be our topology. For the convenience of
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Algorithm 2 Routing Phase
1: while new flow do
2: Determine the type of flow
3: Obtain the alternative path set of the flow (a_set)

from A_set
4: if mice-flow then
5: Input st into CNN1 to gain the Q(st , a; θ ),

select at = argmaxa Q(st , a; θ )
6: Install the flow rules according to at
7: end if
8: if elephant flow then
9: Similar to the process above, change CNN1

into CNN2
10: end if
11: end while

FIGURE 5. The changes of the three indicators during the training process.

simulation, we use a Fat-Tree [21] topology with a param-
eter of 4 as an example, which contains 20 switches and
16 servers. The link capacity and flow table capacity are set to
100 and 20, respectively. To emulate the traffic in data center
networks, we set 20 percent of the flows to be mice-flows,
and the others to be elephant-flows. The threshold of the two
types of flows is 0.5 percent of the link bandwidth. And the
duration is 5s for mice-flows, while 30s for elephant-flows.
The related parameters of reward function are set as follows:
α = β = λ = µ = 0.5.

B. PERFORMANCE AND RESULTS
In order to demonstrate the effectiveness of the proposed
scheme, experiments were performed under different network
loads (0.1, 0.5, 0.9). We take 0.9 for example, Figure 5 shows
the training process of the AI agent under this load. From 5(a)
and 5(b), we can find that the average delay of mice-flows
and average packet loss rate display a decreasing trend with
the increase of training steps. While the average throughput

TABLE 1. Convergence steps (k).

TABLE 2. Average delay comparison of mice-flows (ms).

TABLE 3. Average packet loss rate comparison of all flows (%).

TABLE 4. Average throughout comparison of elephant-flows (%).

of elephant-flows shows an upward trend in this interval
in 5(c). All indicators will level off after a certain number of
steps.We record the convergence steps of each standard under
each network load in Table 1. In particular, when the load
increases, the indicators tend to stabilize in a shorter period
of time. It should be noted that the average packet loss rate we
measure in this paper is for all traffic in the network, including
mice-flows and elephant-flows.

We compare our scheme with two methods. One is the
classic data center network routing algorithm – ECMP [22],
which adopts polling to allocate flows, not considering the
network status. The other is SRL+FlowFit [23]. As a routing
initialization algorithm, SRL randomly selects two equivalent
shortest paths, and the pathwith the least loadwill be the inital
path. Furthermore, FlowFit periodically monitors the state of
the network and reassigns flows to optimal links. As shown
in Table 2 to Table 4, the proposed scheme reduces the delay
of mice-flows by an average of 55.08% and 28.16% under
the network load of 0.1 to 0.9, compared with ECMP and
SRL+FlowFit. The average packet loss rate is 33.17% and
25.5% lower than that of ECMP and SRL+FlowFit. Mean-
while, the average throughput of elephant-flows is 35.8% and
22.68% higher than that of the other methods. For the sake of
clarity, we explain the calculation method of the above results
here. Taking Table 2 as an example, we calculate the delay
reduction of mice-flows of the proposed scheme compared
with other schemes under each load, and then calculate the
average value.
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In addition, we obtain the path computation time of the
three methods on our experimental platform, they are 2.27e-
4s, 4.14e-4s, 2.53e-3s for ECMP, SRL+FlowFit and our
scheme. The computation time of our proposed scheme is
higher than that of the others because of the dot product
operations in neural networks. We can further reduce the time
by improving the neural network structure in the future work.

Based on the above results, we can infer that the schemewe
proposed is able to learn the routing strategy through training,
and the trained network could provide optimized routing
strategy to achieve network performance improvement. With
the help of the two DQNs, low delay and low packet loss
of mice-flows are realized, while the high throughput and
low packet loss of elephant-flows are also guaranteed. Albeit
complicated in computation, the improvement of network
performance is obvious.

VII. CONCLUSION
In this paper, we focus on solving routing problems in SDN-
based data center networks. DQL is employed to achieve
the optimal routing. In the learning phase, we constantly
adjust our routing strategies through trial and error, and train
CNNs to generate the optimal paths. It spends a lot of time
and computing resources. For the subsequent routing phase,
we can obtain the optimal routing strategies according to the
trained CNNs accurately and quickly without extra calcula-
tions. Aiming at the two types of flows in data center net-
works, elephant-flows and mice-flows, two DQNs are built to
train and generate the corresponding routing strategy respec-
tively. Meanwhile, the flow table utilization and port rate are
both taken into account to describe the network state in the
scheme. We have successfully verified the effectiveness of
the proposed mechanism in a simulated data center network.
Simulation results show that, the proposed routing scheme
can not only provide optimized routing strategy intelligently,
but also improve the network performance. In the future,
we will improve the neural network structure to reduce the
path computation time. Furthermore, the routing problemwill
be researched in a more complex scenario, where multiple
flows arrive at the network at the same interval.
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