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ABSTRACT In this paper, a neural network that is able to form a low-dimensional topological hidden
representation is explained. The neural network can be trained as an autoencoder, as a classifier or as a
mixture of both and produces a different low-dimensional topological map for each. When it is trained as
an autoencoder, the inherent topological structure of the data can be visualized, while when it is trained as a
classifier, a topological structure that is further constrained by a given concept, for example, the labels of the
data, can be formed. Here, the resulting visualization is not only structural but also conceptual. The proposed
neural network significantly differs from many dimensional reduction models, primarily in its ability to
execute both supervised and unsupervised dimensional reduction and its ability to visualize not only the
structure of high-dimensional data but also the concept assigned to them at various levels of abstraction.

INDEX TERMS Autoencoder, concept visualization, dimensional reduction, learning representations, neural
network, self-organizing maps, topological representations.

I. INTRODUCTION
In this study, a neural network that is able to build a con-
textual topological map in its hidden layer is explained.
Over the past few years, rich collections of machine learn-
ing methods for visualizing high-dimensional data through
dimensional reduction have been proposed. Many of them
form low-dimensional representations while preserving some
inherent characteristics of high-dimensional data. For exam-
ple, stochastic neighborhood embedding (SNE) [1] and its
variants [2], [3] map high-dimensional data into a low-
dimensional space while preserving the stochastic neigh-
borhood structure of the data. Locally linear embedding
(LLE) [4] is a dimensional reduction method that locally
preserves the linear dependency of high-dimensional data,
while isometric mapping (ISOMAP) [5], [6] is also a
nonlinear dimensional reduction mapping that preserves
the geodesic structure of high-dimensional data. Koho-
nen’s self-organizing maps (SOM) [7], [8] is a popular
dimensional reduction and visualization method that pre-
serves the topological structure of high-dimensional data
in a low-dimensional space. Recently, uniform manifold
approximation and projection (UMAP) [9], a manifold learn-
ing technique for dimensional reduction based on Rieman-
nian geometry, was proposed; it results in high-quality
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visualization with a scalable calculation time. All these meth-
ods execute unsupervised mapping primarily for visualizing
the application-relevant structure of high-dimensional data
but ignore the contexts (for example, labels) of the data. There
are also many supervised dimensional reduction algorithms
that take the context of the data into account. These methods
form low-dimensional representations of high-dimensional
data by preserving their inherent structures that are relevant to
their labels. Thus, the representation is not only structural but
also conceptual. Some examples of supervised dimensional
reduction methods are as follows. Neighborhood component
analysis (NCA) [10] forms low-dimensional representations
on which the classification accuracy of the k-nearest neigh-
bors is maximized. A semisupervised version of ISOMAP
was proposed in [11], and a combination of multidimensional
scaling (MDS) [12], [13] and SOMs that can either be super-
vised or unsupervised was proposed in [14].

While the methods above are able to achieve visualization
on high-dimensional data, they are either supervised or unsu-
pervised. However, data analysis sometimes requiresmultiple
perspectives to extract insightful information. Changing the
methods to learn different aspects of data is often prob-
lematic, since all the methods execute different criteria in
reducing the dimensions of the data.

This study proposes a new hierarchical neural network
that, during its learning process, builds a low-dimensional
and hence displayable topological representation in its
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hidden layer. Different from most dimensional reduction
methods, this neural network is able to execute supervised
learning, unsupervised learning or mixture of the two in one
learning framework by controlling a single coefficient in the
learning process. The proposed neural network is built based
on the previously proposed restricted radial basis function
(r-RBF) network [15], [16], which is a hierarchical supervised
neural network that generates a two-dimensional topological
representation in its hidden layer. Here, the output layer and
the learning process are modified so that the network can
be trained as an autoencoder, a classifier or a mix of both.
When the network is trained as an autoencoder, it forms a
low-dimensional representation that encodes a relevant topo-
logical structure to reconstruct the high-dimensional input
and thus allows visualization of the inherent structure of
the data. When it is trained as a classifier, the hidden rep-
resentation is constrained by the labels of the data; hence,
the visualization is not only structural but also conceptual in
that different labeling of the same data will produce different
representations. The network can also be trained by mixing
the autoencoder and classifier, resulting in flexible represen-
tations, where the difference between the inherent vectorial
characteristics and the characteristics conceptualized by the
labels of the data can be learned.

The supervised autoencoder was proposed in [17] to
improve the generalizations of neural networks across an
array of architectures. The proposed model differs from pre-
vious models in that it has the flexibility to be trained as
an autoencoder, a classifier, or a mix of both while also
being able to form a two-dimensional representation that is
visualizable and thus may help in understanding the inherent
characteristics of a problem.

In the past few years, new studies on autoencoders have
been proposed [18]–[20]. The proposed work differs from
those past studies in that it investigates the topological con-
straints in forming the hidden layers under different contexts.
Because the hidden layer here is visualizable, it offers an intu-
itive understanding of how neural networks embed concepts
attached to the data in its hidden representations.

Due to its learning flexibility, the neural network is named
the soft-supervised topological autoencoder (STA). The flex-
ibility of this new neural network allows the multilevel con-
cept visualization of high-dimensional data and thus enables
discoveries of deeper characteristics of the data that so
far have been difficult to achieve within a single learning
framework.

The primarily claim for the STA’s strength here is not in its
generalization ability but its ability in infusing the topological
signatures of high-dimensional data under various context
into its hidden layer, and thus allowing intuitive understand-
ing on the context-oriented data structure. This strength is
due to the topological constraint that intrinsically presents
in its hidden layer. Unlike many layered neural networks
that distribute the activations in unorganized manners, here
the activations are constrained, and thus forcing the hidden
representations to reflect the topological features of the data.

Further, the STA allows the context of the learning data to
interact with the formed topological organization under a
well-defined objective function, resulting in unique visual-
ization that gives intuitive understanding for recognizing the
context-oriented structure of high-dimensional data. The STA
offers a simple method for an initial attempt in contributing to
topological data analysis, a new concept in machine learning
community [21]–[23].

II. SOFT-SUPERVISED TOPOLOGICAL AUTOENCODER
The framework of the STA is illustrated in Fig. 1. Here,
a three-layered STA is presented, in which the hidden layer
is a topological layer, where the neurons are aligned in a
two-dimensional grid similar to Kohonen’s SOMs. The out-
put layer is composed of two parts: a decoder part that recon-
structs the encoded input and a classifier part that predicts
the labels of the input. In the training process, a mixing
coefficient is set to control the weightings of the decoder part
and the classifier part; hence, the STA can be trained as an
autoencoder, a classifier or a mixture of both.

FIGURE 1. Framework of soft-supervised topological autoencoder.

Here, similar to Kohonen’s SOMs, due to its low dimen-
sions, it is possible to visualize the topological representation
of the inputs and discover their characteristics. However, dif-
ferent from SOMs, which preserve the topological structures
of the high-dimensional inputs in their two-dimensional rep-
resentations, in the STA, the hidden representations are also
regulated by the error signals backpropagated from the output
layer. In the case where the STA is trained as an autoencoder,
the hidden topological representation is formed to encode a
topological structure that enables the STA to reconstruct the
inputs. In the case of a classifier, the topological structure is
further constrained by the requirement to predict the output.

The dynamics of the STA is explained as follows.

win = arg min
j
‖X −Wj‖ (1)

Hj = N (j,win, t)e−
‖X−Wj‖

2

2σ2 (2)
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FIGURE 2. Three clusters. The original data in (a) show that there are many overlapping points in the two clusters represented by
the •s and �s, while the remaining two clusters are identically labeled. Map in (b) visualizes the hidden representation of the STA
when it was trained as an autoencoder (κ = 0), while (c) visualizes the hidden representation of the STA when it was trained as a
classifier (κ = 1). Figure 2b visualizes the natural distribution of the data in their original high-dimensional space, in which many
instances, indicated by the •s and �s, overlap, while data points belonging to the same class, marked with a �, are separate.
In (c), the data points that originally overlapped are more distinctively separated, while the data originally separated into clusters
containing data points from the same class are merged. It can be seen from these two figures that the contexts of the data play
important roles in shaping the different topological representations. The STA’s setting for this experiment: Nhid = 10× 10,
N0 = 20,N∞ = 2, t∞ = 2000.

FIGURE 3. Four clusters. The data distribution is identical to that in the previous problem, but the identically labeled double
clusters in the previous problem are labeled differently, being indicated by the �s andFs in (a). (b) visualizes the hidden
representation of the STA as an autoencoder. Naturally, the structure of this representation as shown in is exactly the same as the
one in 2b, as the labels of the data do not play any role in the learning process. However, when the STA was trained as a classifier,
the context of the data changed from that of the previous problem, thus altering the distribution of the hidden representation. The
large cluster representing the two different normal distributions with the same labels is now replaced by two adjacent but
separated clusters with different labels as shown in (c). The STA’s setting for this experiment: Nhid = 10× 10,
N0 = 20,N∞ = 2, t∞ = 2000.

N (j,win, t) =
e−dist

2(win,j)

S(t)

S(t) = N∞ +
1
2
(N0 − N∞)(1+ cos

π t
t∞

) (3)

For a high-dimensional input X ∈ Rd , the STA selects
the best matching unit (BMU), win, among all the reference
vectors associated with the hidden units of the STA, as shown
in Eq. 1, where Wj ∈ Rd is the reference vector associated
with the j-th hidden unit. The output of the j-th hidden neuron,
Hj, is shown in Eq. 2, where N (j,win, t) is the neighborhood
function defined in Eq. 3, with an annealing function S(t).

Here, dist(win.j) is the Euclidean distance between the BMU
and the j-th neuron on the low-dimensional hidden layer,
N0 > N∞ > 0 are the initial and final values of the annealing
term, t is the current epoch, and t∞ is the termination epoch.

The values of the k-th decoder neuron, Odeck , and the l-th
label neuron, Oclsl , in the output layer are defined in Eq. 4,
where f (x) = 1

1+e−x :

Odeck = f ((V enc
k )>H )

Oclsl = f ((V cls
l )>H ) (4)

Here, V enc
k denotes the weight vector leading from the

hidden layer to the k-th decoder neuron, which also includes
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FIGURE 4. Low-dimensional representations: Iris data. The Iris data set is four-dimensional and comprises three
labels, where it is known that one of the classes, marked with a •, is linearly separable from the other two,
while those two, marked with a � and �, are not linearly separable. The low-dimensional representations of the
SOM are shown in (a), the representations of the t-SNE are shown in (b), the representation of the
MLP-autoencoder is shown in (c), and the two-dimensional supervised representation of the MLP-classifier is
presented in (d). Although with different visual appearances, all the representations indicate the intrinsic
separability of this problem, in which one of the classes has a large margin of separability relative to the two
other classes, while for those two, this is not necessarily so.

FIGURE 5. Iris data. From this experiment, it can be observed that the class represented by the •s is
linearly separable from the other two, as shown in (a) when κ = 0. By increasing κ , as observed in
(b)-(d), the two originally overlapping classes are gradually separated with a large margin, except for a
few outliers. The STA’s setting for this experiment: Nhid = 12× 12, N0 = 20,N∞ = 2, t∞ = 2000.

FIGURE 6. Low-dimensional representations: Bupa data. The low-dimensional representations of the (a) SOM, (b) t-SNE,
(c) MLP-encoder and (d) MLP-classifier. It can be observed from all the representations that there are many overlapping points for
the two contrasting classes.

bias toward the decoder neuron. V cls
l denotes the weight

vector leading from the hidden layer to the l-th class neuron
in the output layer, which also includes its bias, and H =
(H1,H2, · · · ,HNhid ,−1)

> is the hidden layer output vector,
in which Nhid is the number of hidden neurons.
The cost function is defined in Eq. 5, in which 0 ≤ κ ≤ 1 is

themixing coefficient. Here, κ = 0 generates an autoencoder,
while κ = 1 generates a classifier.

L =
(1− κ)
2d

∑
k

(Odeck − Xk )
2
+

κ

2dcls

∑
l

(Oclsl − Tl)
2 (5)

It has to be noted here that while many deep autoencoders
have symmetric structures between their encoder part and
their decoder part, the symmetry is not implemented in the
STA when it is trained as an autoencoder, as the input is
encoded in a topological process but the final output is gen-
erated by a sigmoidal perceptron.

In Eq. 5, d is the dimensions of the input, dcls is the
number of classes and thus the number of label neurons, and
Tl denotes the l-th component of the teacher signal.

Applying stochastic gradient descent, the modifications of
the connection weights from the hidden layer to the output
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FIGURE 7. Bupa data. In (a), it can be observed that the topological autoencoder representation of the STA for this problem agrees with the
other dimensional reduction methods in that there are many overlapping samples. Figures (b)-(d) show how the two conflicting classes are
disentangled with the increase in κ . The STA’s setting for this experiment: Nhid = 20× 20, N0 = 20,N∞ = 1, t∞ = 6000.

FIGURE 8. Low-dimensional representations: Activity recognition data. The low-dimensional representations of this problem obtained
by the SOM, t-SNE, MLP-encoder and MLP-classifier are shown in (a)-(d). It is interesting to note here that different dimensional
reduction methods generate noticeably different two-dimensional maps. This difference is due to the multiple inherent aspects
characterizing these data, which are partially captured by the different methods here, resulting in the different appearances of the maps.

FIGURE 9. Activity recognition data. The autoencoder representations for these data generate two large clusters, as shown in (a). Here, some
of the classes are included in those two different clusters. With the increase in the mixing coefficient κ , it is obvious that there are two
different forces, one working to merge samples belonging to the same class and another working to separate dissimilar samples. The
classifier representations in (d) indicate that there are overlapping areas that cannot be disentangled and thus likely to contribute to the
classification errors. The STA’s setting for this experiment: Nhid = 10× 10, N0 = 20,N∞ = 4, t∞ = 2000.

layers are calculated from the gradients as follows.

1V dec
k =

∂L

∂V dec
k

=
(1− κ)
d

(Odeck − Xk )O
dec
k (1− Odeck )H

= (1− κ)δdeck H (6)

δdeck =
1
d
(Odeck − Xk )O

dec
k (1− Odeck ) (7)

1V cls
l =

∂L

∂V cls
l

=
κ

dcls
(Oclsl − Tl)O

cls
l (1− Oclsl )H

= κδclsl H (8)

δclsl =
1
dcls

(Oclsl − Tl)O
cls
l (1− Oclsl ) (9)
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FIGURE 10. Low-dimensional representations: MNIST Here, the low-dimensional representations for these data are shown.
Although the appearances of the SOM representations (a), t-SNE representations (b), MLP-encoder (c) and MLP-classifier (d) differ,
overlapping areas are observable in all the representations. This is due to the natural ways in which digits are handwritten, in that
different digits may be written very similarly, while there are many different ways to express the same digit. The classifier internal
representations in (d) indicate that there are some overlapping areas, which, due to the structural similarities for a single digit, will
naturally contribute to the classification errors.

FIGURE 11. MNIST. The gradual effect of the infusions of context into the handwriting can be observed in (a)-(d).
Here, (a) shows the intrinsic characteristics of the handwriting of the digits. The intrinsic structure is then gradually
modified (b)-(d) with the increase in the mixing coefficient. The STA’s setting for this experiment: Nhid = 30× 30,
N0 = 100,N∞ = 2, t∞ = 2000.

In Eq. 7 and Eq. 9, δdeck and δclsl are the error sig-
nals backpropagated from the k-th decoder neuron and the
l-th label neuron, respectively.

The modifications to the reference vectors associated with
the
j-th hidden neuron can be calculated from the gradient as
follows.

∂L
∂Wj
=

∂L

∂Odeck

∂Odeck

∂Wj
+

∂L

∂Oclsk

∂Oclsk
∂Wj

= δhidj Hj(X −Wj) (10)

δhidj =
1
σ 2 {(1− κ)

∑
k

δdeck vdecjk

+ κ
∑
l

δclsl vclsjl } (11)

In Eq. 11, δhidj is the error signal backpropagated to the j-th
hidden layer.

The reference vector modification in Eq. 10 is similar to
that of SOM in that the difference between the input and
the reference vector drives the modification and, because
Hj includes the neighborhood function, the proximity of the
hidden neuron to the best matching unit win ensures the for-
mation of the topological structure. In SOM, the modification

is always directed toward the input X , while in the STA,
the direction is controlled by the sign of δhidj , where in the case
of a positive δhidj , the modification is identical to that of SOM,
while a negative δhidj repulses the reference vector away from
the input vector. Because δhidj is the error signal backpropa-
gated from the output layer, the two-dimensional hidden layer
in the STA is self-organized based not only on the topological
structure of the inputs but also on their contexts, which have
to be generated in the output layer. It is obvious that for
the same inputs, different contexts, such as labels, or cost
functions will generate different topological representations
in the hidden layer. Hence, unlike SOMs, the STA generates
maps that visualize the topological structure of the inputs in
their given context.

The training complexity of the proposed STA is similar
to that of r-RBF in [15], which is linearly scalable with that
of SOM.

III. EXPERIMENTS
In the preliminary experiment, the STA is tested against the
3-dimensional artificial problem shown in Fig. 2a, where four
normally distributed clusters are assigned to three classes
denoted by three different colors andmarkers, i.e., •,� and�.
The distribution of the original 3-dimensional data and the
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FIGURE 12. MNIST generalization. (a) The autoencoder’s internal representations of MNIST. Obviously, there are many overlapping samples due to the
similarity in the writing of different digits. (b) The classifier’s representations of MNIST, in which the STA attempts to disentangle the overlapping samples
belonging to different digits. Here, the clusters of particular digits are more distinctive. The structural similarities and the ways in which they are
handwritten are well expressed on the map. For example, area A on the map reflects the similarities between digits 7 and 9, area B reflects the similarities
between digits 0 and 6, and area C reflects the inherent similarities between 4 and 9. The generalization error for (a) is 88.05%, while for (b) is 9.49%.

resulting internal representations of the STA are explained
in Fig. 2.

The next experiment is conducted on the same data distri-
bution, but in this case, 4 classes are assigned for these data.
The class distributions of the data and the resulting internal
representations of the STA are shown in Fig. 3.

The two preliminary experiments indicate that the low-
dimensional representations of the STA are influenced by
the context of the data, enabling it to visualize not only the
topological structure of high-dimensional data, as in SOM,
but also their topological structure under various contexts.

For visualization clarity, in the two previous toy prob-
lems and the subsequent problems throughout this paper,
in displaying the internal representations of the STA, differ-
ent inputs sharing the same BMU are plotted separately by
adding small random noise to the coordinate of the BMU.
With these plotting styles, all the samples can be displayed
rather than just a few BMUs, thus not only better displaying
their distribution but also more clearly showing the conflict-
ing classes among similar samples.

To better illustrate the visualization characteristics of the
STA, it was trained on the well-known Iris data. Figure 4
shows various low-dimensional representations of these data
generated by SOM, a t-SNE and an MLP trained as a soft
autoencoder in the same way as for the STA, producing an
autoencoder (denoted with MLP-encoder) for κ = 0 and a
classifier (denoted with MLP-classifier) for κ = 1, in which

one of the hidden layers contains two neurons that are used
to generate a two-dimensional map, as used in [24]. The
resulting maps for the STA for various values of the mixing
coefficient κ are shown in Fig. 5

The next experiment is conducted on 6-dimensional
two-classed Bupa data, the various low-dimensional repre-
sentations of which are shown in Fig. 6, and their STA repre-
sentations for various mixing coefficients are shown in Fig. 7.
The next experiment is conducted on 561-dimensional,

six-classed activity recognition data, the low-dimensional
representations of which are shown in Fig. 8, while the STA
representations with regard to various values of the mixing
coefficient are shown in Fig. 9.

The data sets for the last three problems were obtained
from the UCI Machine Learning Repository [25].

For the final experiment, the STA is tested against MNIST,
a 28× 28 pixel handwritten digit classification problem [26].
Figure 10 shows different dimensional reduction representa-
tions for this problem. Figure 11 shows the representations of
the STA under different values of the mixing coefficient, and
Fig. 12 shows the representations of 10000 test data that were
not used during the training process.

To quantitatively evaluate the generated hidden represen-
tation, the class similarity index (CSI) is defined as follows.

Let R(j) = {X |∀X ,∀k|X − Wj| ≤ |X − Wk |} be a set of
inputs represented by the j-th hidden neuron and C(j, k) =
{X |∀X ∈ R(j), class(X ) = k}, in which class(X ) is the class
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FIGURE 13. Class similarity index. It can be observed here that the CSI for the respective problem increases as the value of the
mixing coefficient κ increases. For the first three problems, the increase in κ does not significantly increase their CSI values,
as their data distributions essentially match their class distributions. For the final three problems, the increase in κ has a stronger
influence on their CSI values. This indicates that the STA has attempted to embed the context of the data into their original
context-free topological structure.

FIGURE 14. Reconstruction error. It can be observed that the value of the reconstruction error for each problem increases with
increasing κ . However, it is obvious that the increase in the reconstruction error is not significant in the first three problems. As for
the CSI, this lack of impact is due to the similarities between the context-free structure and context-infused structure for these
problems. For the last three problems, the reconstruction errors increase more drastically as the mixing coefficient increases.

label of input X . The class ratio, which is the ratio of inputs
belonging to class k , represented by the j-th hidden neuron,
CR(j, k), is calculated as follows.

CR(j, k) =
|C(j, k)|
|R(j)|

(12)

When C̃R(j, k) is regarded as the average of the class ratio
of inputs belonging to class k contained in the j-th hidden
neuron and its nearest neighbors with a distance of 1, the class
similarity index of the STA over all inputs, CSI , is defined as
follows.

CSI =
1
N

∑
i

C̃R(win(X i), class(X i)) (13)

In Eq. 13,win(X i) is the best matching unit for the input X i,
and N is the size of the data.

Here, the CSI measures the relation between the topo-
logical proximity and the class similarity. The infusion of
contexts in the label part of the output layer influences this
relation, in that topological representations of inputs belong-
ing to the same class are organized in adjacent areas due to the
similar error signals received during the learning process. The
CSI values for the problems in the experiments for different
values of the mixing coefficient are shown in Fig. 13.

The reconstruction errors of the STA, defined in Eq. 14,
under different values of the mixing coefficient are shown
in Fig. 14, while the classification errors are shown in Fig. 15.

Errrecon =
1
N

1
d

∑
i

∑
k

(Oideck − X
i
k )

2 (14)

In Eq. 14, Oideck is the value of the k-th decoder neu-
ron for the i-th input, X ik is the k-th element of the
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FIGURE 15. Classification error. Here, the classification error for the respective problem is shown. As is obvious from the graph,
the classification error decreases as the mixing coefficient increases, as the STA transitions from an autoencoder to a classifier.

i-th input vector, N is the number of inputs and d is
the dimensionality of each input. The source code for
the research in this paper is published in Code Ocean:
https://codeocean.com/capsule/0392390/tree/v1.

IV. CONCLUSIONS
In this study, a neural network that is able to form a two-
dimensional topological map based not only on the high-
dimensional structure of the data but also on their contexts
is proposed. The ability to visualize high-dimensional data
under different contexts adds flexibility to the process of
discovering obscure characteristics of the data. As opposed
to many dimensional reduction and visualization methods,
which are either supervised or unsupervised, the STA can
be flexibly trained under different contexts. In this paper,
the STA is trained as an autoencoder, where the inherent
label-free characteristics of the data are captured, as a clas-
sifier, where the topological characteristics under the con-
textual relation of the labels are captured, or as a mixture
of the two. When the STA is trained as an autoencoder,
the hidden representation encodes the natural topological
structure of the data, which is required to reconstruct the
high-dimensional input in the output layer. When the STA
is trained as a classifier, the hidden representation encodes
a contextual topological structure that is needed to predict
the labels of the high-dimensional input. By controlling the
mixture coefficient, an intermediate representation is formed.
When the hidden representations are observed under different
training contexts, some insights into how the infusion of
contexts changes the internal representation can be learned.
For example, the degree of difficulty in training a classifier
can be intuitively understood. It is especially interesting here
to observe how the topological constraint shapes the internal
representations under different concepts. A quantitative index
to measure the class similarity in the topological hidden
representation is defined to complement the visualization
for discovering the inherent characteristics of various high-
dimensional data.

In this paper, the framework for context-flexible visualiza-
tion and some basic experiments are presented. The primary
strength of the proposed STA is in its ability to manifest
the topological signature of the high-dimensional data into
its internal representations under different context. The low-
dimensionality of the hidden representations allows intuitive
understand on the context-oriented structure of the data and
at the same time understanding on how the data are related to
the output of the neural network.

In future works, the STA will be utilized for multi-context
data visualization analysis and also for topological data anala-
ysis, a young field in machine learning communities. For
example, in an educational setting, where the learning char-
acteristics of students can be interpreted in different contexts,
the STA can be utilized to further support their learning
activities. As an analytical tool of explainable AI, a method
for explaining the topological map in a human-friendly form
will also be developed.
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