IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 2, 2020, accepted May 28, 2020, date of publication June 1, 2020, date of current version June 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999320

MSIC: Malware Spectrogram Image Classification

AHMAD AZAB ', (Member, IEEE), AND MAHMOUD KHASAWNEH ", (Member, IEEE)

College of Engineering and Technology, American University of the Middle East, Egaila 15453, Kuwait

Corresponding author: Ahmad Azab (ahmad.azab@aum.edu.kw)

This work was supported by the College of Engineering, American University of the Middle East, Kuwait.

ABSTRACT The heavy reliance on digital technology, by individuals and organizations, has reshaped the
traditional economy into a digital economy. In response, cybercriminals’ attention has shifted dramatically
from showing off skills and conducting individual attacks into high sophisticated attacks with financial gain
as the goal. This, inevitably, poses a challenge to the cybersecurity community as they strive to find solutions
to preserve the confidentiality, availability and integrity of the individual users’ and corporates’ private data
and services. Cybercriminals mainly deploy malware to achieve their goals, which could be in the form of
ransomware, botnets, etc. The use of encryption, packing and polymorphism techniques makes it harder to
detect the malware files, especially when these are created in great numbers every day. In this paper, a novel
framework, named Malware Spectrogram Image Classification (MSIC), is proposed. It employs spectrogram
images in conjunction with the convolution neural network to classify a malware file to its corresponding
family and to differentiate it from a benign file. Further, this research shares with the research community two
privately collected labeled malicious and benign datasets. The evaluation of MSIC showed its effectiveness
to be 91.6% F-measure and 92.8% accuracy in classifying malware files to their corresponding families,
in comparison to, respectively, 90.6% and 92.3% results produced by the grayscale image classification
approach. Likewise, in classifying files as malicious or benign, MSIC scored 96% F-measure and accuracy
results compared to 95.5% with the grayscale solution. Also, MSIC required less computational time in
converting and resizing the files than the grayscale framework.

INDEX TERMS CNN, cybersecurity, deep learning, malware, spectrogram.

I. INTRODUCTION
The rapid evolution of digital technology in various areas has
led to its integration in such personal and corporate activities
as personal banking and e-commerce. As a result, the tradi-
tional economy has transformed into an Internet economy.
Google and Temasek research program reported that South-
east Asia’s Internet economy reached US$100 billion [1].
Increasing reliance on digital technology and the recent
transformation of the economy have caught the attention of
cybercriminals and they have changed their intentions from
individual attacks into well-organized attacks with financial
gain as the objective. The total cost of cybercrime for each
company increased from US$11.7 million in 2017 to a new
high of US$13.0 million—a rise of 12% [2].

Malicious Software (Malware) is the primary tool that
attackers use to gain their end. The form of the malware
varies according to the purpose of the attack. It could be

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed Elhoseny

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

adware, worm, ransomware, spyware or botnets. A botnet
is the main platform used nowadays [3]. McAfee’s security
report found that, in the last quarter of 2018, more than
60 million new malware samples have been identified [4].
The creation of such a huge number of malicious executables
is mainly caused by the advancement in malware implemen-
tation that utilizes packing, polymorphic and metamorphic
techniques [5]. In addition, a large quantity of newly released
malware families are not coded from the scratch, whereas
they were rewritten to be a variant of a previous released fam-
ily [6]. Symantec found that the number of the new malware
families has dropped as the cybercriminals are modifying
existing ones [7]. For example, Fox IT found that Tilon
malware is linked to Spyeye and Zeus malware family [8].
These findings are posing a clear evident of the importance
in identifying malware files, classify them to their families
and prevent them from being executed at the victim’s device.

Motivated by this evident threat, information security soci-
ety has proposed security measures to detect malware and
prevent their attacks. Static based detection aims to find

102007

https://orcid.org/0000-0002-9807-1602
https://orcid.org/0000-0001-7849-7932
https://orcid.org/0000-0001-6347-8368

IEEE Access

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

a signature in the code by reverse engineering the exe-
cutable and match it with an updatable database to find a
match. Dynamic based detection aims to execute the malware
and identify malicious behavior, without the need to reverse
engineer the malware. Image based detection, which is a
recent approach in the literature, aims to detect malware
by converting it to an image and classifying the image as
malicious or benign. The latter approach, unlike static and
dynamic analyses, does not require domain knowledge for
malware detection.

This research was motivated by the need to identify the
huge number of malware files that cybercriminals create
and classify them to their corresponding families. Our paper
provides the following four contributions:

o We propose a novel framework named Malware Spectro-
gram Image Classification (MSIC) to distinguish mali-
cious files from benign files and classifying the malware
files to their corresponding families by utilizing voice
spectrogram analysis in conjunction with deep learning
algorithms.

o Evaluation analysis of MSIC is conducted for differ-
ent deep learning parameters to classify malware files
to their corresponding families and distinguish them
from benign files. The results are compared to the
grayscale classification framework that has been used by
researchers in the literature.

o The research provides the information security commu-
nity with a labeled malware dataset containing 11 mal-
ware families.

o The research provides the information security commu-
nity with a labeled malicious-benign dataset that has
been collected from the Internet at our private lab.

The rest of the paper is organized as follows. Section II
reviews the various classification models that have been
proposed by researchers in the literature. In section III,
the proposed framework, MSIC, is introduced, along with a
discussion of audio signals and Convolution Neural Network
(CNN). Section IV introduces the experimental environment
and the evaluation metrics used. Section V explains the mal-
ware dataset collection process and presents the results of
the evaluation of MSIC and the grayscale frameworks for
classifying the malware files to their corresponding fam-
ilies. Section VI describes the collected malicious-benign
dataset, along with the experimental evaluation of both
the MSIC and the grayscale frameworks for distinguish-
ing the malicious and benign files. Section VII concludes
the research and points to the directions of possible future
work.

Il. CLASSIFICATION MODELS

Researchers have been striving to frustrate the malicious
intentions of cybercriminals. The following subsections shed
light on the different techniques that have been proposed to
distinguish malicious-benign files and to classify malware to
their corresponding families.

102008

A. STATIC ANALYSIS TECHNIQUE

Static analysis detection works without the need to execute
the malware. The solution is to first reverse engineer the exe-
cutable. Thereafter, a signature is extracted from the malware
source code and compared with a database that is updated
periodically. This solution usually integrates machine learn-
ing algorithms in the classifier.

The authors in [9] were among the first researchers to use
machine learning in building static analysis classifier to detect
malware based on features such as program headers, strings
and byte sequence. Their work was improved upon by the
use of n-grams of byte codes as features of the classifier [10].
The researcher in [11] utilized opcode sequence with support
vector machine algorithm to identify malicious executables.
The Application Programming Interface (API) sequence in
the code was used in detecting malware and proved to be
effective and faster as compared to assembly analysis [12].
MalConv classifier detects malicious executables using their
raw bytes feature as input for a fully connected neural
network [13].

Static analysis suffers from many shortcomings. The solu-
tion requires domain knowledge of the executable architec-
ture to build the classifier. Further, the information like size of
data structures or variables gets lost thereby complicating the
malware code analysis [14]. In addition, static analysis per-
forms poorly in detecting unknown malware. Although some
static analysis techniques, such as byte n-gram, do not require
domain-level knowledge, they suffer from low performance
and high computational requirements [15].

B. DYNAMIC ANALYSIS TECHNIQUE

Unlike the static analysis, dynamic analysis addresses the
behavior of an executable by executing it and identifies the
features accordingly. Such features include registry changes,
memory writes, API and system calls. Usually, the dynamic
analysis takes place inside a virtual machine.

The work in [16] differentiated malicious binaries from
benign binaries by monitoring API calls and applying n-gram
technique. The authors in [17] extracted API calls using a
5-minute time window. Then, they utilized Recurrent Neural
Network (RNN) to build the classifier and CNN to evaluate
the classifier. This solution attained 96% for area under curve
accuracy measure. A solution to detect malware by monitor-
ing the network traffic was proposed by the authors in [18].
They were able to reduce the detection time by 67%, com-
pared to conventional methods. In [19] the authors combined
RNN and CNN to perform hierarchical feature extraction,
and used n-gram technique to select appropriate opcodes for
malware detection. In [20], the authors conducted a compre-
hensive comparison between static and dynamic analyses and
a hybrid solution using a large number of malware families.
They found that dynamic analysis achieved the most accurate
results.

Dynamic analysis is free from such drawbacks of
static analysis as in detecting unknown malware. However,

VOLUME 8, 2020

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

IEEE Access

it requires higher computational resources and more frequent
occurrence of false positive results.

C. IMAGE PROCESSING TECHNIQUE

The recent technique in classifying malicious files is the uti-
lization of image processing algorithms. Malware raw bytes
are converted into grayscale images and neural networks
are used to classify the image to its corresponding malware
family or to classify it as malicious or benign. This technique
is motivated by the fact that attackers generate many malware
variants from existed malware families, without the need to
write the code from the scratch, with the help of packing and
metamorphic techniques. The image processing technique
identifies and uses the layout and texture of malware to
classify it to its corresponding family and distinguish it from
benign executables.

The research conducted in [21], [22] addressed the
effectiveness in classifying malware to their correspond-
ing families by converting the malware into gray images.
The proposed frameworks, Signal Processing Approach to
Malware Analysis (SigMal) and Search and Retrieval of
Malware (SARVAM), gave very accurate results. In [23],
the researchers compared binary texture classification and
dynamic analysis classification. The two techniques showed
very similar results regarding accuracy. However, binary
texture solution was faster with classification. The authors
in [24] provided preliminary experimental results of the
image processing technique in classifying malware, achiev-
ing 98% accurate classification. The malware dataset
contained 9,458 samples under 25 different malware fam-
ilies. The researchers in [25]-[27] used image processing
techniques to classify malware files by unpacking mal-
ware files and then representing their assembly code and
opcode as images. The authors evaluated CNN, ResNet and
Googlenet algorithms to classify the images to their corre-
sponding classes. The drawback of this solution lies in the
necessity of the unpacking process to generate the images.
To overcome this limitation, the authors in [28] proposed a
hybrid method of malware visualization in a big data envi-
ronment and evaluated it against public and private malware
datasets and achieved high accuracy. The solution converts
raw bits of the files into grayscale images, which permits
the files to be classified without the need for unpacking
them. This image conversion overcomes the packing and
metamorphic evasion techniques. Ensemble CNN architec-
ture for malware grayscale image classification has been
addressed by the authors in [29]. They evaluated the results
of VGG16 and ResNet-50 algorithms, using the Malimg
dataset. Later, the authors provided another solution called
Image based Malware Classification using Fine-tuned Con-
volutional Neural Network Architecture (IMCFN), which
converts raw malware binaries into images that are used
by the fine-tuned CNN architecture to detect and identify
malware families [30].

Unlike static and dynamic analyses, implementing the
image processing solution does not require strong domain

VOLUME 8, 2020

knowledge. Further, it overcomes the packing and metamor-
phic evasion techniques by not requiring reverse engineering
of the file. It converts the raw malware binaries into images.
Also, it is fast and works on various malware irrespective of
the operating system.

MSIC framework is evaluated and compared against the
CNN grayscale image classification solution that has been
proposed by the researchers in the literature [28]. In the latter
technique, the grayscale images are prepared by converting
the raw bits of the files into bit strings and grouping each
8-bit as an unsigned number to represent a pixel color and
these are fed to CNN. Differing from the grayscale clas-
sification, the proposed MSIC framework converts the raw
bits of the files into spectrogram images using audio signals
fundamentals and feeds them to CNN. This avoids the need to
extract static features, which enables it to overcome evasion
techniques, such as packing, polymorphic and metamorphic.

Ill. MSIC FRAMEWORK

The proposed solution in this work aims to classify malware
files to their corresponding families and distinguish them
from benign files by utilizing an image processing technique.
Such a solution does not require domain knowledge and is fast
as compared to other solutions. MSIC is shown in Figure 1.
It is divided into two main stages, malware image preparation
and malware image classification. These two stages are con-
ducted with the use of audio signals fundamentals and neural
network algorithms.

An audio signal can be visualized as a time domain, fre-
quency domain or spectrogram. A time-domain visualizes an
audio signal in an x-y plane, showing the amplitude variations
of the signal against time. The frequency-domain visualizes
an audio signal in an x-y plane, showing the frequencies
in the signal with their magnitude. Fourier Transform (FT)
is a mathematical concept used to convert a signal from
time-domain to frequency-domain. Spectrogram visualiza-
tion represents an audio signal’s frequency with time in an x-y
plane. The x-axis represents time and the y-axis represents
frequencies. The third dimension in the spectrogram is the
magnitude of a frequency at a specific time, where it is rep-
resented as a colored heatmap. Spectrogram can be attained
by applying the short-time FT (STFT) on the time domain
signal. STFT breaks the signal into small windows and cal-
culates the FT for each window. The literature has shown
the effectiveness of using spectrogram images for speech
recognition [31]-[34]. FT and STFT functions are computed
using the following equations for continuous signals:

F () = foof(x) eTiO%)
STFT = X (1, w) = / - x@Owt — e @dr (2)

where x (¢) is the time-domain signal to be transformed, t is
the time, w is the frequency, w(¢) is the window function and
X (7, w) is the complex function representing the phase and
magnitude of the signal over time and frequency.

102009

IEEE Access

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

u 1 Sampling Rate__.‘
1 u Bit Depth—"

T
Window n .

Time Domain

Window 1 VT~fr1

Spectrogram

4

Spectrogram
Pixels Array

Predicted Class) 4——

O
O
O
O
O
O

N\~
000000

Output Layer Fully connected Layer Flatten Layer

Maximum
Pooling

Feature Filters I

Feature Maps

. J
e

Convolution and Pooling Layers

FIGURE 1. MSIC framework.

Analog audio signals are transformed into digital audio
signals to be processed by digital devices. To fulfill this,
two criteria must be met—sampling rate and bit depth. The
sampling rate is defined as the number of samples taken
from the analog signal to represent a digital signal, usually
measured as the number of samples per second or Hz. For
example, 8 KHz = 8000 samples/second. A higher sample
rate provides higher quality. Bit depth defines the number of
bits used to represent each sample’s amplitude. For example,
wav audio files usually use 44100 Hz sampling rate and
16 bits as bit depth.

Since signals are stored as numbers on computers, discrete
functions must be used. Discrete FT (DFT) is used to convert
a discrete signal from time-domain to frequency-domain. Fast
FT (FFT) algorithm is used to compute DFT. FFT reduces
the DFT computation complexity from O(N 2y to O(N logN).
Spectrogram can be attained using STFT, where the FFT
algorithm is computed over each window.

DFT and STFT equation for discrete signals are given
below:

N—1
j2rkn
Fi=Y xpe v A3)
n=0
oo .
STFT =X (m.w) = Y XyWp_me ™)
n=-—o00

where X (m, w) is the STFT of the time-domain sequence
(STFT {x,} (m,)), x, is the sequence of discretized
time-domain signal to be transformed, m is the time index,

102010

CNN

o is the frequency and w, is the sequence of the discretized
window function.

The first stage in MSIC framework aims to visualize the
file as a spectrogram image to be used as an input to the neural
network classifier. To achieve this, first, the file is converted
into raw data of Os and 1s bit string. Then, the sampling rate
and bit depth parameters are defined. Thereafter, the time
domain signal is generated by using the sampling rate and bit
depth values identified earlier. Subsequently, the generated
signal is segmented using symmetrical fixed window sizes
with overlaps between them. For each segmented signal, FFT
is calculated. The computed FFT over the segmented signals
is the process of STFT. The calculated FFT of the different
segments are constructed to provide the spectrogram image
of the file, which is the representation of how the frequency
content of a signal changes with time.

In the second stage, a classifier is built to classify the
spectrogram images. To fulfill this, CNN will be used because
its effectiveness is proved in the literature [35], [36]. CNN
is considered a deep learning algorithm that takes an image,
assigns importance to several aspects of the image and differ-
entiates the image from the rest. The CNN aims to reduce the
images to a form that is simpler to process and avoids the loss
of features that are important for achieving a good prediction.
To achieve this, the image is represented as a matrix of pixel
values and a filter matrix is identified. The filter slides from
the top left of the image to the right with a certain stride value,
extracting features at each stride move till it covers the entire
width. Then, it moves down and starts from the left of the

VOLUME 8, 2020

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

IEEE Access

TABLE 1. Pseudo code of MSIC framework.

Input: Malware Files
Output: CNN Training and Testing Classifiers
Begin

1. N: The total number of Malware samples

2. M: A Malware sample, where Miise= {M1, Mo, ...,

Mn}

3. ForJ=1toN
domain signals

a. By=raw bit string of My

b. Set sampling rate

c. Set bit depth

d. TD,= Time domain signal of B,
End for
SP: A spectrogram image
W: Number of windows
For J/=1to N //STFT computation and
spectrogram preparation

a. ForK=ltoW

i. Sk = Signal Segmentation of 7D;
ii. Calculate FFT of Sk
iii. Shift Window

b. Construct SP;

8. End for

// Produce raw bit strings and time

NNk

9. T=Number of training samples
10. E= Number of evaluation samples
11. FN= Number of feature filters
12. FS: A feature filter, where FSise = {FS1, F'S>, ...,
FSrn}
13. FM: The feature map resulted from applying FS
14. MP: The pooling layer with maximum parameter
15. ForJ=1toT //CNN Training
a. ForK=1to FN
i. Convolve FSk over SP;
ii. Apply MPk with FMk as an input
b. End for
c. Let Fybe the flatten data from MP;
d. Fyfed to fully connected Neural Network
16. End for
17. ForJ=1to E
a. ForK=1to FN
i. Convolve FSk over Ss
ii. Extract MPx from FMk
b. End for
c. Let Fbe the flatten data from MP,
d. Fyfed to fully connected Neural Network
18. End for
End

//CNN Testing

image with the same stride value. It repeats this process to
cover the entire image. The extracted features are set using
the defined filter to obtain a feature map. The optimal number
of filters and their size are usually identified by the param-
eter tuning approach. The filter uses Rectified Linear Units
(ReLU), a non-linear activation function, on each element.

After the convolution layer is processed, each feature map
is fed into the pooling layer. This layer aims to reduce the
spatial size of the convolved feature, thus reducing the com-
putational requirement to process the data. The pooling layer
utilizes maximum, average or minimum pooling techniques.
Maximum pooling was used since it selects the maximum
output from the image and suppresses noise. Finally, after
the output from the pooling layer is flattened, it is fed to a
fully connected neural network for the classification process.
The pseudo-code for MSIC is illustrated in Table 1, which
summarizes the steps of spectrogram preparation and CNN
building processes.

IV. EXPERIMENT ENVIRONMENT AND

EVALUATION METRICS

The data collection and experimental evaluation procedures
in this research have been conducted in an isolated environ-
ment to avoid any unintentional malware infection or spread.
To ensure the prevention or spread of malware, the following
measures were applied. First, the workstation used for data
collection and experimental evaluation were not connected to

VOLUME 8, 2020

any local network, which has a dedicated Internet connection.
Second, a Linux virtual machine was used to control the con-
nections. Third, all the outbound connections were blocked,
except to those pre-defined addresses that were necessary for
our experiment. The experiment’s workstation runs Ubuntu
19.10 (64-bit) with intel core i7 7th generation, 512 GB SSD,
16 GBRAM and 1 Gbps network card.

For evaluation purposes, four metrics have been identified:
accuracy, recall, precision and F-measure. Recall measures
the number of positive class predictions made from among
all the positive examples in the entire dataset. Precision mea-
sures how precise are the positive class predictions made
by the built model. F-measure is defined as the weighted
average of both recall and precision and its effectiveness in
an imbalanced dataset [37]. To measure these metrics, True
Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN) must be identified. TP is the outcome
of correctly identified number samples by the classifier as
a positive class. TN is the outcome of correctly identified
number samples by the classifier as a negative class. FP is
the outcome of incorrectly identified number samples by the
classifier as a positive class. FN is the outcome of incorrectly
identified number samples by the classifier as a negative
class. Accuracy, recall, precision and F-measure metrics are
given by the following equations:

(#TP 4 #1IN)
Accuracy = 5)
(#TP + #TN + #FP 4 #FN)

102011

IEEE Access

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

#TP
Recall = ————— (6)
#TP + #FN
o #TP
Precision = ——— @)
#TP + #FP

®)

Precision.Recall
F — measure = 2 x

Precision + Recall

V. MALWARE FAMILIES CLASSIFICATION EXPERIMENT

This experiment aims to build a multiclass classifier to clas-
sify malicious files to their corresponding families and evalu-
ate them against privately collected data. To achieve this, first,
a labeled dataset was required to be prepared. This was done
manually in our labs. Then, MSIC framework was built and
evaluated. Later, the raw byte grayscale image classification
framework was built and evaluated. The grayscale image
classification associates each raw byte of a file to a pixel
color. Black has a value of 0, white has a value of 255 and the
rest of the values represent intermediate shades of gray [38].

A. DATASET DESCRIPTION

Preparing a labeled malware dataset is not a trivial task. Fur-
ther, no single site provides a malware dataset with enough
labeled files. Although some sites provide public datasets,
such as Malimg, they are only grayscale images and cannot
be used for other types of analyses besides grayscale classi-
fication. Therefore, labeled malware files must be acquired,
so they can be converted into spectrogram images for the
MSIC framework. For collecting and labeling the data, an iso-
lated environment was created, in which the process illus-
trated in Figure 2 was followed. First, malware files were
downloaded from three main sources: Malshare,' Virusign®
and Dasmalware.? Second, the hash values of the collected
files were uploaded to Virustotal website. Third, the JSON
files of the uploaded hashes were downloaded from VirusTo-
tal. Fourth, AVClass tool [39] was used to label the malware
samples using the collected JSON files. Fifth, the obtained
labels were mapped to the malware files. The collected
dataset is summarized in Table 2 and has been shared publicly
for the research community [40]. In total, 9187 malware
files representing 11 malware families were collected. The
data were divided into datasets, namely, 60% train, 20%
validate and 20% test. The training dataset was used to build
the classifier. Validate dataset was used for selecting the
best parameters to be used during the building process. Test
dataset was used to evaluate the accuracy of the built classifier
in classifying unseen malware files to their corresponding
families.

B. MSIC RESULTS AND ANALYSIS
It was necessary to represent the collected files as spectro-
gram images to be fed to the CNN classifier as illustrated
in Figure 1. For that purpose, the files were first converted
into raw bit strings. Then the sampling rate and bit depth were
! https://www.malshare.com/
2 https://www.virusign.com/
3 https://dasmalwerk.eu/

102012

> virusTotal
T
3.J50N F\Ie‘DownIoad
2. File Hash Upload
i y
4. JSON File Input— —

1. File Download__, | AVClass

«—— 5, File Label

FIGURE 2. Malware families dataset collection and labelling process.

TABLE 2. Malware families dataset.

Family Train Validate Test Total
coinhive 243 81 81 405
emotet 545 181 181 907
fareit 950 317 317 1584
gafgyt 891 297 297 1485
gandcrab 234 78 78 390
icedid 275 92 92 459
lamer 416 138 138 692
mepaow 492 164 164 820
mirai 864 288 288 1440
ramnit 202 68 67 337
razy 400 134 134 668
Total 5512 1838 1837 9187

set to 44100 and 16-bit signed integer respectively. These
parameters were the same as the wav audio files. Thereafter,
spectrogram visualization of the files has been achieved using
discrete STFT with a Hanning window [41]. Figure 3 shows
a spectrogram sample of emotet malware. One expected
observation of the resulted spectrogram is the low periodicity
behavior. This is predictable as the nature of the audio files
have a higher periodicity compared to non-audio files. The
resultant spectrogram images had different dimensions in
terms of the pixels’ height and width. The reason for this was
the sizes of the files in the collected dataset ranged from bytes
to megabytes. Since the input of CNN must be symmetric
images, python resize functionality was used to have input
images of a standard size of 200%200 pixels.* The spectro-
grams of all malware files were obtained and used to build
and evaluate the CNN classifiers. Train and validate datasets
were used to build and select the most suitable parameters for
the built CNN classifiers. Data augmentation was applied to
the training dataset, such as zoom, crop and flip to reduce the
overfitting impact. The following parameters were tested to
select for building the best classifier:

4 https://github.com/Ahmad Azab/MSIC-Paper.git

VOLUME 8, 2020

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

IEEE Access

R L L R L LR

TIHIMINIH
TTL L RELAE

FIGURE 3. Spectrogram image of emotet malware.

e 200 x 200 x 3 input shape

o 16, 32 and 64 filters with filter length 3

o Maxpooling with length 2

¢ ReLU

o Adam optimizer learning rates 0.1, 0.01 and 0.001
« Sotmax activation function

« Categorical-cross entropy loss function

« 100 epochs

« Batch size of 10

« Adding and removing dropout layer

The various experiments showed learning rate value 0.001
as the effectiveness, compared to 0.1 and 0.01, regardless of
the number of the filters and the use of the dropout layer,
throughout the 100 epochs. Therefore, 0.001 was selected
for the rest of the experiment. 16 filters showed lower accu-
racy results with a high fluctuation loss pattern as compared
to 32 and 64 filters. With 32 and 64 filters, the results
showed similar accuracy and loss behavior. The number of
filters used in building our classifier for resources purposes
was 32. The validation results showed that the performance
with the dropout layer was better than without it, regardless
of the number of the filters and learning rates. Therefore,
the dropout layer was integrated into our classifier. As a
result, the best classifier’s parameters were 0.001 learning
rate, 32 filters and the presence of the dropout layer. This
classifier was used for the rest of the experiment.

The validate dataset was used to compare three network
structures, CNN_1, CNN_2 and CNN_3, using 1, 2 and
3 layers respectively. Table 3 summarizes the number of
parameters of the three structures. Figure 4 and Figure 5 show
the accuracy and loss behavior over the 100 epochs. Overall,
the three structures showed good accuracy results, where
CNN_I scored the lowest accuracy during the 100 epochs.
The accuracy of CNN_2 was comparable to CNN_3, with the
latter having a slightly better accuracy. The loss behavior of
the three structures showed a high loss pattern before reaching
epoch 20. Thereafter they stabilized. Two spikes were noticed
afterwards, specifically in epochs 81 and 90, where the latter
had the highest loss spike throughout the 100 epochs. By the

VOLUME 8, 2020

TABLE 3. CNN parameters of the malware families experiment.

Layer (type) | Output Shape | Param #
CNN_1
conv2d 1 (None, 198, 198, 32) 896
(Conv2D)
max_pooling2d_1 (MaxPooling2 (None, 99, 0
99, 32)
flatten 1 (Flatten) (None, 313632) 0
dense 1 (Dense) (None, 128) 40145024
dropout_1 (None, 128) 0
(Dropout)
dense 2 (Dense) (None, 2) 1419
Trainable params: 40,147,339
CNN_2
conv2d_1 (None, 198, 198, 32) 896
(Conv2D)
max_pooling2d 1 (MaxPooling2 (None, 99, 0
99, 32)
conv2d 2 (None, 97, 97, 32) 9248
(Conv2D)
max_pooling2d_2 (MaxPooling2 (None, 48, 0
48, 32)
flatten 1 (Flatten) (None, 73728) 0
dense 1 (Dense) (None, 128) 9437312
dropout_1 (None, 128) 0
(Dropout)
dense 2 (Dense) (None, 2) 1419
Trainable params: 9,448,875
CNN_3
conv2d_1 (None, 198, 198, 32) 896
(Conv2D)
max_pooling2d 1 (MaxPooling2 (None, 99, 0
99, 32)
conv2d_2 (None, 97, 97, 32) 9248
(Conv2D)
max_pooling2d 2 (MaxPooling2 (None, 48, 0
48, 32)
conv2d 3 (None, 46, 46, 32) 9248
(Conv2D)
max_pooling2d 3 (MaxPooling2 (None, 23, 0
23,32)
flatten 1 (Flatten) (None, 16928) 0
dense 1 (Dense) (None, 128) 2166912
dropout_1 (None, 128) 0
(Dropout)
dense_2 (Dense) (None, 2) 1419
Trainable params: 2,187,723

100t epoch, the three network structures showed low loss
results.

Test dataset has been used to evaluate the three built
structures in classifying unseen malware samples. Table 4
lists the levels of accuracy, precision, recall and F-measure
resulting from the three structures. CNN_1 attained 90.5%
recall and precision, 90.4% F-measure and 91.7% accuracy.
The lowest F-measure class result was in case of ramnit
malware, whereas the highest F-measure class result was
with icedid malware. CNN_2 at 90.2% scored less than
CNN_1 recall result but scored higher precision, F-measure
and accuracy with 91.1%, 90.6% and 92% results respec-
tively. Like CNN_1, the lowest F-measure class result in
CNN_2 was ramnit malware and the highest was icedid
malware. CNN_3 outperformed the other two classifiers,

102013

IEEE Access

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

TABLE 4. MSIC evaluation results of the malware families experiment.

Model Metric (%) coinhive | emotet fareit gafgyt gandcrab icedid lamer | mepaow mirai ramnit razy Average
Recall 100 95 90.2 99 88.5 98.9 89.9 91.5 91.3 71.6 79.1 90.5
Precision 96.4 88.7 96.9 91.9 93.2 98.9 89.9 91.5 94.3 73.8 80.3 90.5
CNN_1 F-measure 98.2 91.7 93.5 95.3 90.8 98.9 89.9 91.5 92.8 72.7 79.7 90.4
Accuracy 91.7
Recall 96.3 95 90.9 99 88.5 98.9 89.1 93.3 93.1 65.7 82.1 90.2
Precision 100 89.1 96.3 93 95.8 98.9 91.8 91.1 93.4 73.3 79.7 91.1
CNN_2 M Fmeasure | 98.1 92 935 | 959 92 989 | 904 | 922 932 | 693 | 809 | 906
Accuracy 92
Recall 100 96.1 92.4 99 88.5 98.9 89.9 93.3 93.1 76.1 79.1 91.5
Precision 100 92.6 93.6 93.3 93.2 98.9 93.2 91.6 96.1 73.9 84.1 91.9
CNN3 F-measure 100 943 93 96.1 90.8 989 | 915 | 924 945 75 | 815 91.6
Accuracy 92.8

TABLE 5. CNN_3 MSIC confusion matrix of the malware families experiment.

Predicted Classes
coinhive | emotet fareit gafgyt | gandcrab | icedid | lamer mepaow mirai | ramnit | razy
coinhive 81 0 0 0 0 0 0 0 0 0 0
emotet 0 174 3 0 1 0 0 0 2 0 1
fareit 0 4 293 0 1 1 1 0 4 4 9
§ gafgyt 0 0 0 294 1 0 0 0 2 0 0
é gandcrab 0 1 3 0 69 0 0 0 0 3 2
) icedid 0 1 0 0 0 91 0 0 0 0 0
; lamer 0 0 0 0 0 0 124 12 0 0 0
mepaow 0 0 1 0 0 0 8 153 0 1 1
mirai 0 0 1 19 0 0 0 268 0 0
ramnit 0 3 5 0 0 0 0 1 51 7
razy 0 5 7 2 2 0 0 2 10 106
4.0
— CONN_1
90 4 35 — ONN_2
—— CONN_3
3.0 1
80
2.5
&
% 70 é 2.0 4
® 1.5 A
60 i
— CNN_1 05 1
50 4 —— CNN_2
—— CNN_3 0.0 1
0 20 40 60 80 100 0 20 a0 60 80 100
epoch epoch

FIGURE 4. MSIC accuracy of the malware families experiment.

achieving 91.5%, 91.9%, 91.6% and 92.8% for recall, pre-
cision, F-measure, and accuracy, respectively. Ramnit class
scored the least evaluation metrics, where coinhive scored the
highest.

The confusion matrix of the CNN_3 structure is listed in
Table 5. For the least class accuracy result, that was with

102014

FIGURE 5. MSIC Loss of the malware families experiment.

ramnit, the classifier successfully classified 51 out of 67 files.
However, it misclassified 7 files as razy, 5 as fareit, 3 as
emotet and 1 as mirai. For the second least class, razy,
the classifier correctly classified 106 out of 134 files. How-
ever, it misclassified 10 files as ramnit, 7 as fareit, 5 as emotet,

VOLUME 8, 2020

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

IEEE Access

TABLE 6. Grayscale evaluation results of the malware families experiment.

Model Metric (%) coinhive | emotet fareit gafgyt gandcrab icedid lamer | mepaow mirai ramnit razy Average
Recall 100 96.1 92.1 97.3 83.3 98.9 85.5 90.9 92.4 269 76.1 85.4
Precision 90 82.5 92.7 923 95.6 98.9 90.8 88.7 933 81.8 71.3 88.9
CNN_1 F-measure 94.7 88.8 92.4 94.8 89 98.9 88.1 89.8 92.8 40.4 73.6 85.8
Accuracy 89.5
Recall 93.8 95.6 90.9 98.3 88.5 98.9 85.5 93.3 93.1 433 79.9 87.4
Precision 95 88.7 95 92.7 932 92.9 94.4 87.9 94.4 82.9 69.5 89.7
CNN2 T Fomeasure | 944 92 | 929 | 954 90.8 958 | 897 | 905 937 | 569 | 743 | 879
Accuracy 90.6
Recall 100 97.2 89.9 98.7 91 98.9 89.9 90.0 94.1 71.6 79.1 91
Precision 95.3 86.3 98.6 94.8 87.7 95.8 91.9 91.4 97.8 73.8 79.1 90.2
CNN_3 F-measure 97.6 91.4 94.1 96.7 89.3 97.3 90.8 91.1 95.9 72.7 79.1 90.6
Accuracy 92.3

2 as gafgyt, 2 as gandcrab and 2 as mirai. The results suggest
a spectrogram image similarity between the ramnit and razy
malware. Of the two best performing classes, CNN_3 cor-
rectly classified all coinhive files and 294 out of 297 files of
gafgyt malware.

C. GRAYSCALE RESULTS AND ANALYSIS

This experiment aims to evaluate the accuracy of the clas-
sification of the malware files to their corresponding fam-
ilies using the grayscale framework that has been used by
researchers in the literature, e.g., in [28]. For this, first, the
grayscale images were prepared by converting the files into
bit strings and grouped each 8-bit as an unsigned number to
represent a pixel color. As in the MSIC experiment, train and
validate datasets were used to build and select the best param-
eters. Thereafter, the test dataset was deployed to evaluate
the selected classifiers. The same CNN parameters mentioned
earlier were used, except for the input shape. In this experi-
ment, the shape used was 200 x 200 x 1 for the input. Python
resize functionality was used for the purpose.

After going through many experiments, the following
findings were observed. Learning rates 0.1 and 0.01 pro-
vided good accuracy and loss results for different numbers
of filters. However, the learning rate at 0.001 was the best
result among the three. With the use of the dropout layer,
fluctuation loss behavior was reduced as compared to when
not using it, regardless of the number of the filters used.
The utilization of 64 filters showed better accuracy and loss
results than the 32 and 16 filters across the 100 epochs. As a
result, learning rate 0.001, the addition of the dropout layer
and 64 filters were the parameters used for the rest of the
experiment.

For selecting the network structure, three models were
built and evaluated using the train and validate datasets
along with the identified best parameters. The models were
named CNN_1, CNN_2 and CNN_3 using 1, 2 and 3 lay-
ers respectively. Figure 6 and Figure 7 show the accuracy
and loss behavior of each structure, across 100 epochs.
CNN_3 showed the best accuracy, CNN_2 demonstrated

VOLUME 8, 2020

90+

o]
w
'

accuracy

o]
o
'

75 A

—— CNN_1
CNN 2

70 - —— CNN_3

0 20 40 60 80
epoch

T
100

FIGURE 6. Grayscale accuracy of the malware families experiment.

better accuracy behavior than CNN_1, although it showed a
drop in accuracy in epoch 97. In terms of the loss results,
CNN_3 gave the best outcome with the least fluctuation
behavior. On the other hand, CNN_1 showed the highest fluc-
tuation with the worst results. The loss pattern in CNN_2 was
comparable to that of CNN_3, although it had a spike in
epoch 90.

The three network structures have been evaluated against
unseen malware files, using the test dataset. Table 6 describes
the attained results. CNN_1 showed the least performance
at 85.4%, 88.9%, 85.8% and 89.5% for recall, precision,
F-measure and accuracy metrics, respectively. It is noticed
that ramnit class demonstrated the lowest results compared to
the other classes. CNN_2 showed better results with 87.4%
for recall, 89.7% for precision, 87.9% for F-measure and
90.6% for accuracy. As in the case of CNN_1, ramnit class
reflected the poorest performance. CNN_3 outperformed
CNN_1 and CNN_2 classifiers with 91% in recall, 90.2% in
precision, 90.6% in F-measure and 92.3 in accuracy. Ramnit
class’s performance was better as compared to CNN_1 and
CNN_2 but remained the lowest amongst the all the classes.

102015

IEEE Access

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

TABLE 7. CNN_3 Grayscale confusion matrix of the malware families experiment.

Predicted Classes
coinhive emotet fareit gafgyt gandcrab icedid | lamer mepaow mirai | ramnit | razy
coinhive 81 0 0 0 0 0 0 0 0 0 0
emotet 0 176 0 0 1 2 0 0 0 0 2
fareit 1 6 285 0 4 0 0 0 3 6 12
§ gafgyt 0 1 0 293 0 0 0 0 2 0 1
w2
8 gandcrab 0 3 0 0 71 1 0 0 0 0 3
g icedid 0 0 0 0 0 91 0 0 0 0 1
e lamer 0 0 0 0 0 0 124 14 0 0 0
mepaow 0 0 0 0 1 0 11 149 0 2 1
mirai 0 1 0 16 0 0 0 0 271 0 0
ramnit 0 8 1 0 1 1 0 0 48 8
razy 3 9 3 0 3 0 0 1 9 106
10 TABLE 8. Malicious-Benign dataset.
— CNN_1
CNN_2
—— CNN_3
8 Benign Malicious
6 4 ‘ Train 1566 1628
Validate 522 498
a Test 523 500
- 49 ‘ Total 2611 2626
2 «
VI. MALICIOUS-BENIGN CLASSIFICATION EXPERIMENT
This experiment aims to build a binary classifier that clas-
0 sifies benign and malicious files. First, MSIC was built and

epoch

FIGURE 7. Grayscale loss of the malware families experiment.

The confusion matrix of CNN_3 is illustrated in Table 7
for the 11 classes. CNN_3 correctly classified most of the
files to their corresponding families. The lowest class results,
48 out of 67 files correctly classified, was for ramnit. Of the
19 incorrectly classified files, 8 were classified as razy, 8 as
emotet, 1 as fareit, 1 as gandcrab and 1 as icedid. The next
in inaccuracy was razy with 106 files out of 134 identified
correctly. The incorrect predictions of it were 9 files as ramnit,
9 as emotet, 3 as coinhive, 3 as fareit, 3 gandcrab and 1 as
mirai. Those results indicate the similarity between razy,
ramnit and emotet malware, where they target windows OS.
On the other hand, the classifier successfully predicted all
coinhive files. Also, it was able to detect 91 out of 92 files
of iceid malware.

Malware families experiment proved the effectiveness of
MSIC in classifying malware files to their corresponding
families irrespective of the OS they work on or their type.
Further, MSIC outperformed the grayscale framework for the
used evaluation metrics.

102016

evaluated. Afterwards, the grayscale classification frame-
work has been built and evaluated.

A. DATASET DESCRIPTION

A dataset must be collected to build and evaluate MSIC
and the grayscale frameworks. The dataset should contain
both benign and malicious files. The collection process used
the environment and workstation’s specification explained
earlier. The sources of the collected files were Malshare,
Virusign and Dasmalware websites. The privately collected
dataset is described in Table 8 and has been publicly shared
to the research community [42]. The total number of the
benign files is 2611, where the total number of the malicious
files is 2626. The dataset was divided into 60% train, 20%
validate and 20% test datasets. Train dataset is used to build
the classifier, validate dataset is utilized to select the best
parameters during the building process. Test dataset is used
to evaluate the built classifier in classifying unseen malicious
and benign files.

B. MSIC RESULTS AND ANALYSIS

The collected files were converted into spectrogram images
to be fed to the CNN classifier. The same process in the
previous experiment was followed for the conversion into

VOLUME 8, 2020

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

IEEE Access

spectrogram images. Wav sampling rate and bit depth values
and Hanning window were used for the conversion purpose.
The resulting spectrograms of all the benign and malicious
files were used to build and evaluate the CNN classifiers.
Train and validate datasets were used to build and select the
most suitable parameters for the built CNN classifiers. Data
augmentation was applied to reduce the overfitting impact.
The same parameters listed in the previous experiment were
used to select the best classifier.

The following findings were arrived at after intensive
experiments. For learning rates 0.1 and 0.01, the accuracy
results were low and the loss results were high, for any
number of the filters or the use of the dropout layer. Learning
rate 0.001 provided the best accuracy and loss results for the
various conducted experiments. 16 filters with the dropout
layer achieved slightly more accurate results with lower fluc-
tuation loss behavior as compared to using 16 filters without
the dropout layer. Similarly, 32 filters with the dropout layer
showed better accuracy and less loss, compared to 32 fil-
ters without the dropout layer. Finally, 64 filters showed
a considerable fluctuation in the high losses, whether the
dropout layer was used or not. However, the accuracy results
were acceptable. Compared to 16 and 64 filters, the classifier
with 32 filters and with the dropout layer provided the best
accuracy and loss results along with the least fluctuation
throughout the 100 epochs. Therefore, these were selected as
the best parameters for the rest of the experiment.

To determine the network structure, three CNN models
have been evaluated through 100 epochs against the vali-
date dataset, using 1, 2 and 3 layers. The summaries of the
parameters for each model are shown in Table 9. The accu-
racy and loss behavior for CNN_1, CNN_2 and CNN_3 are
shown in Figure 8 and Figure 9. CNN_3 model showed
the most stable and highest accuracy results throughout the
100 epochs. CNN_1 and CNN_2 showed less accuracy and
stability results than CNN_3. On reaching the 100" epoch,
CNN_1 and CNN_2 gave similar accuracy results. The loss
figure reflects that CNN_1 had the most fluctuating behavior,
with high spikes during the 100 epochs. CNN_2 was the
most stable with the best loss pattern, starting from epoch
20. Although CNN_3 reflected higher fluctuation pattern than
CNN_2, it became stable with the same result as those of
CNN_2 by epoch 100.

The three classifiers have been evaluated against unseen
samples, using the test dataset. Table 10 shows the accu-
racy, recall, precision and F-measure results for benign and
malicious classes and their average. While all the classi-
fiers achieved good accuracy results, CNN_3 provided the
best performance. CNN_1 correctly identified 90.4% and
96.6% of the benign and malicious samples, respectively. The
predicted precision for benign and malicious samples was
96.5% and 90.6%, respectively. CNN_2 identified 93.5% of
the benign samples, with a precision of 95.3% and detected
95.2% of the malicious files with a precision of 93.3%.
CNN_3 detected 95.2% of the benign samples with a preci-
sion of 96.9% and identified 96.8% of the malicious samples

VOLUME 8, 2020

TABLE 9. CNN parameters of the malicious-benign experiment.

Layer (type) | Output Shape | Param #
CNN_1
conv2d 1 (None, 198, 198, 32) 896
(Conv2D)
max_pooling2d_1 (MaxPooling2 (None, 99, 0
99, 32)
flatten 1 (Flatten) (None, 313632) 0
dense 1 (Dense) (None, 128) 40145024
dropout_1 (None, 128) 0
(Dropout)
dense 2 (Dense) (None, 2) 258
Trainable params: 40,146,178
CNN_2
conv2d_1 (None, 198, 198, 32) 896
(Conv2D)
max_pooling2d 1 (MaxPooling2 (None, 99, 0
99, 32)
conv2d 2 (None, 97, 97, 32) 9248
(Conv2D)
max_pooling2d_2 (MaxPooling2 (None, 48, 0
48, 32)
flatten 1 (Flatten) (None, 73728) 0
dense 1 (Dense) (None, 128) 9437312
dropout 1 (None, 128) 0
(Dropout)
dense 2 (Dense) (None, 2) 258
Trainable params: 9,447,714
CNN_3
conv2d_1 (None, 198, 198, 32) 896
(Conv2D)
max_pooling2d 1 (MaxPooling2 (None, 99, 0
99, 32)
conv2d_2 (None, 97, 97, 32) 9248
(Conv2D)
max_pooling2d 2 (MaxPooling2 (None, 48, 0
48, 32)
conv2d 3 (None, 46, 46, 32) 9248
(Conv2D)
max_pooling2d 3 (MaxPooling2 (None, 23, 0
23,32)
flatten 1 (Flatten) (None, 16928) 0
dense 1 (Dense) (None, 128) 2166912
dropout_1 (None, 128) 0
(Dropout)
dense_2 (Dense) (None, 2) 258
Trainable params: 2,186,562

with a precision of 95.1%. CNN_3 outperformed the other
two classifiers, with an average recall precision, F-measure
and accuracy of 96%.

C. GRAYSCALE FRAMEWORK RESULTS AND ANALYSIS
The grayscale images of all the benign and malicious files
were used to build and evaluate the CNN classifiers. Train
and validate datasets were used in building and selecting the
most suitable parameters for the built CNN classifiers. Data
augmentation was used on the training dataset. The same
parameters as used in the previous experiment were used,
except that the input shape selected was 200 x 200 x 1.

The applied experiments showed the following findings.
The learning rates values of 0.1 and 0.01 achieved low accu-
racy and high loss results, whatever was the number of filters

102017

IEEE Access

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

100 A

90 1

80+

accuracy

70 A

60

0 20 40 60 80 100
epoch

FIGURE 8. MSIC accuracy of the malicious-benign experiment.

epoch

FIGURE 9. MSIC loss of the malicious-benign experiment.

TABLE 10. MSIC evaluation results of the malicious-benign experiment.

Model Class Recall | Precision F- Accuracy

(%) (%) measure (%)
(%)
Benign 90.4 96.5 93.4

CNN_1 | Malicious 96.6 90.6 93.5 93.5
Average 93.5 93.6 93.5
Benign 93.5 95.3 94.4

CNN_2 | Malicious 95.2 93.3 94.3 943
Average 94.3 94.3 94.3
Benign 95.2 96.9 96

CNN_3 | Malicious 96.8 95.1 95.9 96
Average 96 96 96

used. On the other hand, the learning rate 0.001 attained high
accuracy with low loss results. The experiments showed the
effectiveness of adding the dropout layer for 16, 32 and 64
filters. The addition of the layer raised the level of accuracy
and lowered the loss fluctuation. The deployment of 32 fil-
ters provided the best accuracy and loss results compared to

102018

=] w0 [1<]
v o v]
' L L

accuracy
@
o
'

~
v
I

-
(=
L

— CNN_1
- CNN_2
—— CNN_3

o
w
'

T
0 20 40 60 80 100
epoch

FIGURE 10. Grayscale accuracy of the malicious-benign experiment.

— CNN_1
64 — CNN 2
—— CNN_3

loss

T
0 20 40 60 80 100
epoch

FIGURE 11. Grayscale loss of the malicious-benign experiment.

16 and 64 filters. Amongst all the filters, a classifier with
64 filters showed the highest fluctuation loss pattern. As a
result, the best parameters for the classifier were learning rate
0.001, 32 filters with the addition of the dropout layer. These
were used for the remaining of the experiment.

Three network structures were built and evaluated using 1,
2 and 3 layers. The accuracy and loss results achieved are
shown in Figure 10 and Figure 11. The accuracy results of
CNN_1 were the lowest but improved by the end of the
100 epochs. On the other hand, CNN_1 achieved good loss
results, despite the spike in epoch 20. CNN_2 showed better
accuracy than CNN_1 throughout the 100 epochs but its accu-
racy dropped just before the 100" epoch. CNN_2 showed the
worst loss results with a high fluctuation pattern during the
100 epochs, especially right before the 100" epoch. Among
the three structures, CNN_3 achieved the best accuracy and
loss results all through the 100 epochs. The number of param-
eters for the three classifiers was the same as in the MSIC
experiment.

VOLUME 8, 2020

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

IEEE Access

TABLE 11. Grayscale evaluation results of the malicious-benign
experiment.

Model Class Recall | Precision F- Accuracy

(%) (%) measure (%)
(%)
Benign 88.1 94.7 91.3

CNN_1 | Malicious 94.8 88.4 91.5 91.4
Average 91.5 915 91.4
Benign 95.6 88.3 91.8

CNN_2 | Malicious 86.8 95 90.7 913
Average 91.2 91.7 913
Benign 94.1 97 95.5

CNN_3 | Malicious 97 94 95.5 95.5
Average 95.5 95.5 95.5

TABLE 12. MSIC and Grayscale frameworks best results comparison.

Experiment | Framework | Avg. Avg. Avg. F- | Accuracy
Recall | Precision | measure %
% % %
Malware MSIC 9L.5 91.9 91.6 92.8
Families Grayscale 91 90.2 90.6 92.3
Malicious- MSIC 96 96 96 96
Benign Grayscale 95.5 95.5 95.5 95.5

The three built structures were tested with the test dataset
to evaluate their effectiveness in classifying unseen files.
The test results are presented in Table 11. CNN_1 success-
fully identified 88.1% of the benign samples and 94.8% of
the malicious samples. The precision’s values of the benign
and malicious classes were 94.7% and 88.4% respectively.
CNN_2 detected 95.6% of the benign samples and 86.8%
of the malicious samples, that is, precision values of 88.3%
and 95%. CNN_3 outperformed the other two classifiers with
average recall, precision, F-measure and accuracy results of
95.5%. CNN_3 could detect 94.1% of the benign samples and
97% of the malicious samples. The precision was 97% for
benign samples and 94% for the malicious samples.

Table 12 illustrates the best results achieved with both
MSIC and grayscale frameworks in terms of classifying
malware families and distinguishing malicious-benign files.
MSIC is seen to have performed better on recall, precision,
F-measure and accuracy metrics on both tests.

The computational time of the different phases of MSIC
and grayscale frameworks are depicted in Table 13 for both
malware families and malicious-benign experiments. For the
malware families’ experiment, MSIC required 723.96 sec-
onds to convert the 9187 malware files into spectrogram
images, with an average of 0.079 seconds per file. On the
other hand, the grayscale framework spent 3837.58 seconds
to convert the malware files, with an average of 0.42 sec-
onds per file. The image resizing process of MSIC frame-
work required less time than the grayscale framework, with
148.74 seconds compared to 250.08 for all the images. The
classification time of the test dataset were almost identical

VOLUME 8, 2020

TABLE 13. Computational time comparison.

Required Time in Seconds
Phase MSIC Grayscale
Framework Framework
Malware Families
File Conversion 723.96 3837.58
Malware Families
Image Resizing 148.74 250.08
Malware Families
Image 50.39 52.04
Classification
Malicious-Benign
File Conversion 720.74 2424.28
Malicious-Benign
Image Resizing 90.64 200.56
Malicious-Benign
Image 12.17 11.54
Classification

for both frameworks. On average, a single image required
0.027 seconds to be classified.

For the malicious-benign experiment, MSIC required
720.74 seconds to convert the 5237 files into spectrogram
images, with an average of 0.14 seconds per file. On the con-
trary, grayscale converted the files in 2424.28 seconds, with
an average of 0.46 seconds per file. MSIC’s resizing process
time was less than the grayscale framework by 109.92 sec-
onds. The classification time of the test dataset were nearly
equal. On average, a single image needed.012 seconds to be
classified. It can be concluded that the image preparation
in MSIC framework, in terms of conversion and resizing,
needed less time than the grayscale framework. The classi-
fication times were almost equal since both have the same
CNN parameters and input shape.

VIl. CONCLUSION

The arms race between cybersecurity analysts and cybercrim-
inals is intensifying. The cybercriminals’ attacks increasingly
better organized as the financial rewards are great and cause
severe direct and indirect losses for individuals and corpora-
tions. The prevention of cybercriminals’ attacks is hampered
by polymorphism and packing, the techniques used by the
criminals to evade detection. Static analysis detects known
malware with great accuracy but fails to overcome the evasive
techniques of polymorphism and packing. Dynamic analysis
is effective against the evasion techniques but shows a high
frequency of false positive results. Image processing detec-
tion overcomes the limitations of the evasion techniques.
Its additional advantage is that it does not require domain
knowledge for implementation. Grayscale malware image
classification has been extensively studied and its effective-
ness in classifying malware to their corresponding families
and differentiate them from benign files has been proved.

102019

IEEE Access

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

This paper has introduced a novel framework, MSIC, that
classifies the malicious files to their corresponding families
and distinguishes them from benign files. The evaluation
experiments have proved the effectiveness of the proposed
solution and showed its performance to be better than that
of the grayscale framework used extensively in the past
research. MSIC’s highest F-measure and accuracy results
in classifying malware files to their corresponding families
were 91.6% and 92.8% respectively as compared to 90.6%
and 92.3% for grayscale image classification. Further, MSIC
scored 96% on F-measure and accuracy in distinguishing
malicious from benign files as compared to 95.5% achieved
with the grayscale solution. MSIC also proved to be faster
than grayscale framework in processing for file conversion
and resizing. This paper also offered the cybersecurity com-
munity a publicly labeled malware dataset that has been
privately compiled in our labs.

There are four possible directions in which this research
may proceed. First, the evaluation of new parameters during
the building process of the classifier. Second, deployment of
different sampling rates and bit depth for mutual comparison
of accuracy and loss results. Third, the evaluation of tech-
niques other than resizing, such as zero-padding for small
file sizes and converting a specific number of bytes for large
file sizes. The latter would help in reducing the requirement
of resources since not all the bits of the file are converted.
Fourth, the study of the effectiveness of the proposed solution
in other malware areas, especially in malware authorship
analysis [43].

REFERENCES

[1] S.S.S. Davis, R. Sipahimalani, F. Hoppe, W. Lee, I. M. Girona, C. Choi,
and W. Smittinet. (Feb. 2,2019). e-Conomy SEA 2019: Swipe up and to the
Right: Southeast Asia’s 100 Billion Internet Economy. [Online]. Available:
https://www.thinkwithgoogle.com/intl/en-apac/tools-resources/research-
studies/e-conomy-sea-2019-swipe-up-and-to-the-right-southeast-asias-
100-billion-internet-economy/

[2] Accenture. (2019). The Cost Of Cybercrime. Accessed: Feb. 2, 2020.
[Online]. Available: https://www.accenture.com/_acnmedia/pdf-96/
accenture-2019-cost-of-cybercrime-study-final.pdf

[3] A.Azab, M. Alazab, and M. Aiash, ‘““Machine learning based botnet iden-
tification traffic,” in Proc. IEEE Trustcom/BigDataSE/ISPA, Aug. 2016,
pp. 1788-1794.

[4] McAfee. (2018). McAfee Lab Threat Report. Accessed: Feb. 2, 2020.
[Online]. Available: https://www.mcafee.com/enterprise/en-us/assets/
reports/rp-quarterly-threats-dec-2018.pdf

[5] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, Deep Learning for
Classification of Malware System Call Sequences. Cham, Switzerland:
Springer, 2016, pp. 137-149.

[6] A. Azab, R. Layton, M. Alazab, and J. Oliver, “Mining malware to detect
variants,” in Proc. 5th Cybercrime Trustworthy Comput. Conf., Nov. 2014,
pp. 44-53.

[7]1 Symantec. (2018). Internet Threat Report. Accessed: Feb. 2, 2020.
[Online]. Available: https://www.symantec.com/content/dam/symantec/
docs/reports/istr-23-2018-en.pdf

[8] F.IT.(2014). Tilon/SpyEye2 Intelligence Report. Accessed: Feb. 2, 2020.
[Online]. Available: https://foxitsecurity.files.wordpress.com/2014/02/
spyeye2_tilon_20140225.pdf

[91 M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining methods

for detection of new malicious executables,” in Proc. IEEE Symp. Secur.

Privacy. S&P, May 2001, pp. 38—49.

J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables

in the wild,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data

Mining KDD, 2004, pp. 470478, doi: 10.1145/1014052.1014105.

[10]

102020

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

T. Singh, Support Vector Machines and Metamorphic Malware Detection.
San Jose, CA, USa: San Jose State Univ., 2015.

M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala,
“Malware detection using assembly and API call sequences,” J. Comput.
Virology, vol. 7, no. 2, pp. 107-119, May 2011.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. K. Nicholas, “Malware detection by eating a whole exe,” in Proc.
Workshops 32nd AAAI Conf. Artif. Intell., 2018, pp. 268-276.

M. Ijaz, M. H. Durad, and M. Ismail, *Static and dynamic malware analysis
using machine learning,” in Proc. 16th Int. Bhurban Conf. Appl. Sci.
Technol. (IBCAST), Jan. 2019, pp. 793-806.

E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,
M. McLean, and C. Nicholas, “An investigation of byte n-gram features for
malware classification,” J. Comput. Virol. Hacking Techn., vol. 14, no. 1,
pp. 1-20, Feb. 2018.

M. Eskandari, Z. Khorshidpur, and S. Hashemi, *“To incorporate sequential
dynamic features in malware detection engines,” in Proc. Eur. Intell. Secur.
Informat. Conf., Aug. 2012, pp. 46-52.

S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, “Malware
detection with deep neural network using process behavior,” in Proc.
IEEE 40th Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jun. 2016,
pp. 577-582.

T. Shibahara, T. Yagi, M. Akiyama, D. Chiba, and T. Yada, “Efficient
dynamic malware analysis based on network behavior using deep learn-
ing,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016,
pp. 1-7.

B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Advances in Artificial
Intelligence. Cham, Switzerland: Springer, 2016, pp. 137-149.

A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,
“A comparison of static, dynamic, and hybrid analysis for malware detec-
tion,” J. Comput. Virol. Hacking Techn., vol. 13, no. 1, pp. 1-12, Feb. 2017.
L. Nataraj, “A Signal Processing Approach To Malware Analysis,” Ph.D.
dissertation, Elect. Comput. Eng., Univ. California, Oakland, CA, USA,
2015.

L. Nataraj, D. Kirat, B. Manjunath, and G. Vigna, “Sarvam: Search and
retrieval of malware,” in Proc. Annu. Comput. Secur. Conf. (ACSAC)
Worshop Next Gener. Malware Attacks Defense (NGMAD), 2013, pp. 1-9.
L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A comparative
assessment of malware classification using binary texture analysis and
dynamic analysis,” in Proc. 4th ACM Workshop Secur. Artif. Intell. AlSec,
2011, pp. 21-30, doi: 10.1145/2046684.2046689.

L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Mal-
ware images: Visualization and automatic classification,” in Proc. 8th
Int. Symp. Visualizat. Cyber Secur. VizSec, 2011, pp. 1-7, doi: 10.1145/
2016904.2016908.

R. U. Khan, X. Zhang, and R. Kumar, “Analysis of resNet and GoogleNet
models for malware detection,” J. Comput. Virol. Hacking Techn., vol. 15,
no. 1, pp. 29-37, Mar. 2019.

R. U. Khan, X. Zhang, R. Kumar, and E. O. Aboagye, “Evaluating the
performance of ResNet model based on image recognition,” presented at
the Proc. Int. Conf. Comput. Artif. Intell., Chengdu, China, Mar. 2018, doi:
10.1145/3194452.3194461.

R. Kumar, Z. Xiaosong, R. U. Khan, I. Ahad, and J. Kumar, “Mali-
cious code detection based on image processing using deep learning,” in
Proc. Int. Conf. Comput. Artif. Intell. ICCAI, 2018, pp. 81-85, doi: 10.
1145/3194452.3194459.

R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and
S. Venkatraman, ‘“‘Robust intelligent malware detection using deep learn-
ing,” IEEE Access, vol. 7, pp. 4671746738, 2019.

D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng, “‘Image-based
malware classification using ensemble of CNN architectures (IMCEC),”
Comput. Secur., vol. 92, May 2020, Art. no. 101748.

D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng,
“IMCEFEN: Image-based malware classification using fine-tuned convolu-
tional neural network architecture,” Comput. Netw., vol. 171, Apr. 2020,
Art. no. 107138.

A. M. Badshah, J. Ahmad, N. Rahim, and S. W. Baik, “Speech emotion
recognition from spectrograms with deep convolutional neural network,”
in Proc. Int. Conf. Platform Technol. Service (PlatCon), Feb. 2017, pp. 1-5.
J. Dennis, H. D. Tran, and H. Li, “Spectrogram image feature for sound
event classification in mismatched conditions,” IEEE Signal Process. Lett.,
vol. 18, no. 2, pp. 130-133, Feb. 2011.

VOLUME 8, 2020

http://dx.doi.org/10.1145/1014052.1014105
http://dx.doi.org/10.1145/2046684.2046689
http://dx.doi.org/10.1145/2016904.2016908
http://dx.doi.org/10.1145/2016904.2016908
http://dx.doi.org/10.1145/3194452.3194461
http://dx.doi.org/10.1145/3194452.3194459
http://dx.doi.org/10.1145/3194452.3194459

A. Azab, M. Khasawneh: MSIC: Malware Spectrogram Image Classification

IEEE Access

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Q. Mao, M. Dong, Z. Huang, and Y. Zhan, “Learning salient features for
speech emotion recognition using convolutional neural networks,” IEEE
Trans. Multimedia, vol. 16, no. 8, pp. 2203-2213, Dec. 2014.

D. Yu, M. L. Seltzer, J. Li, J.-T. Huang, and F. Seide, “Feature learn-
ing in deep neural networks—studies on speech recognition tasks,” 2013,
arXiv:1301.3605. [Online]. Available: http://arxiv.org/abs/1301.3605

M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and
F. Igbal, “Malware classification with deep convolutional neural net-
works,” in Proc. 9th IFIP Int. Conf. New Technol., Mobility Secur. (NTMS),
Feb. 2018, pp. 1-5.

O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples
in malware detection,” in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2019, pp. 8-14.

A. Azab, O. Maruatona, and P. Watters, “AVOCAD: Adaptive terror-
ist comms surveillance and interception using machine learning,” in
Proc. 18th IEEE Int. Conf. Trust, Secur. Privacy Comput. Commun./13th
IEEE Int. Conf. Big Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2019,
pp. 85-94.

J. Fu, J. Xue, Y. Wang, Z. Liu, and C. Shan, ‘“Malware visualization for
fine-grained classification,” IEEE Access, vol. 6, pp. 14510-14523, 2018.
M. Sebastidn, R. Rivera, P. Kotzias, and J. Caballero, “AVclass: A tool
for massive Malware labeling,” in Research in Attacks, Intrusions, and
Defenses. Cham, Switzerland: Springer, 2016, pp. 230-253.

A. Azab and M. Khasawneh. Malware Dataset. Accessed: May 1, 2020.
[Online]. Available: http://doi.org/10.6084/m9.figshare.12034569

P. Podder, T. Zaman Khan, M. Haque Khan, and M. Muktadir Rahman,
“Comparative performance analysis of Hamming, hanning and blackman
window,” Int. J. Comput. Appl., vol. 96, no. 18, pp. 1-7, Jun. 2014.

A. Azab and M. Khasawneh. Malicious-Benign Dataset. Accessed: May 1,
2020. [Online]. Available: http://doi.org/10.6084/m9.figshare.12084915
R. Layton and A. Azab, “Authorship analysis of the zeus botnet source
code,” in Proc. 5th Cybercrime Trustworthy Comput. Conf., Nov. 2014,
pp. 38-43.

VOLUME 8, 2020

~ / 4
VN

AHMAD AZAB (Member, IEEE) received the
Ph.D. degree in information technology from the
School of Science, Information Technology and
Engineering, Federation University of Australia.
He is currently an Assistant Professor with the
College of Engineering, Computer Engineering
Department, American University of the Mid-
dle East (AUM), Kuwait. He works closely with
academia and industry on many projects. He has
more than ten years of academic and industrial

experience. He has worked on planning, implementing, and auditing cyber-
security solutions for various projects in Australia and the Middle East. His
research interests include cybersecurity, network analysis, artificial intelli-
gence, and digital forensics. He has published journal articles and conference
papers in the area of his research interest.

MAHMOUD KHASAWNEH (Member, IEEE)
received the bachelor’s degree in computer engi-
neering from the Jordan University of Science
and Technology (JUST), in 2010, and the M.Sc.
and Ph.D. degrees in electrical and computer
engineering from Concordia University, Canada,
in 2012 and 2017, respectively. He is currently
an Assistant Professor with the Department of
Computer Engineering, American University of
the Middle East, Kuwait. He has published many

journal articles, conference papers, and a book chapter. His current research
interests include wireless networks including security, authentication, and

route management.

102021

