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ABSTRACT Global quadratic stabilization in probability is considered for both switched linear certain
stochastic systems and switched linear uncertain stochastic systems where there are norm bounded uncer-
tainties. Under the assumption that every single subsystem is NOT globally quadratically stable in probability
(GQS-P), we propose both static and dynamic output based switching laws such that the switched system
on hand is GQS-P. In the case of static output based switching, the condition is expressed by a set of matrix
inequalities, while the design of dynamic output based switching is proposed with a convex combination
of subsystems and a robust Luenberger observer for each subsystem. Numerical examples are presented to
show validity of the design conditions and switching algorithms.

INDEX TERMS Switched linear certain stochastic systems (SLCSS), switched linear uncertain stochastic
systems (SLUSS), norm bounded uncertainties, convex combination, globally quadratically stable in prob-
ability (GQS-P), output based switching, LMIs.

I. INTRODUCTION
Switched systems consist of a set of subsystems, which
are continuous-time or discrete-time, and a switching law
(or, switching rule/strategy/signal) specifying one subsystem
which will be activated for any time instant. Since switched
systems can represent a wide class of dynamical systems in
real world and are applicable to intelligent system design with
the framework of switching control, there has been extensive
research interest in the last two decades [1]–[10]. Moreover,
the direct and indirect extensions of switched systems include
stochastic and LPV systems [11]–[13], network controlled
systems [14]–[16], Boolean networks control [17], [18], and
multi-agent systems [19].

It has been widely recognized [4], [7] that there are three
basic problems in the analysis and design of switched sys-
tems. One of them,whichwill be handled in the present paper,
is to design a stabilizing switching law (strategy) in the case
that there is no single asymptotically stable subsystem. More
specifically, we deal with switched systems which are com-
posed of continuous-time linear subsystems with stochastic
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noises, and suppose every single subsystem is NOT glob-
ally quadratically stable in probability (GQS-P). The control
problem is to study the existence condition and design pro-
cedure of a switching law under which the switched system
is GQS-P. When the subsystems are certain (without uncer-
tainties) deterministic (without stochastic noises), it has been
shown in [20] that a state based switching rule quadratically
stabilizes the switched system if a convex combination of
subsystem matrices is Hurwitz. Furthermore, an output based
switching algorithm is proposed in [21], which is constructed
by a switching Luenberger observer and a robust detectability
condition for all subsystems.

The state based switching algorithms in [20], [21] are
discussed for switched linear discrete-time systems in [22],
and to switched linear systems with polytopic uncertainties
(both continuous-time and discrete-time) in [23]. Moreover,
Ref. [25] extended the discussion to quadratic stabilization
for switched linear systems with norm bounded uncertainties.
In that context, it is claimed that if there exists a convex
combination of subsystems which is quadratically stable,
then it is possible to establish a state based (dependent)
switching law such that the switched system is GQS (globally
quadratically stable). Finally, the convex combination based
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switching algorithms are extended to switched affine systems
in [24]. It is noted that all the above mentioned references
only dealt with the deterministic system, while the GQS
problem for switched uncertain stochastic systems (SUSS)
remains open.

Motivated by the above mentioned observation, we here
aim to design output based switching laws for quadratic
stabilization of switched linear stochastic systems, under the
assumption that no single subsystem is GQS-P. The motiva-
tion of considering GQS-P is that quadratic stabilization has
strong capability of dealing with parametric uncertainty in the
system, which will be re-examined later. In the literature, Ref.
[23] has shown that quadratic stabilization is powerful when
there are polytopic uncertainties in switched systems. Ref.
[27] extended the discussion to uncertain switched linear sys-
tems with norm-bounded uncertainties, and [28] used KKT
condition in nonlinear programming to deal with quadratic
stabilization. Recently, [26] adapted the convex combina-
tion approach in [20], [21], [25] for quadratic stabilization
of the SLUSS with norm bounded uncertainties. And, [29]
extended the discussion to switched affine systems. How-
ever, the discussion in the above references is based on state
feedback or state-dependent switching. Therefore, when the
system state can not be obtained, the design condition and
the algorithm of output based switching laws is desired but
not solved. In addition, due to the existence of stochastic
process in the system, the stabilizing switching law can not
be separated from the Luenberger observer design.

In this paper, we first consider switched linear certain
stochastic systems (SLCSS), and propose a sufficient design
condition and an output based switching law such that the
resultant switched system is GQS-P. The obtained sufficient
condition requires that a convex combination of subsystems
should be GQS-P, and the switching law is implemented
by using the state of a robust Luenberger observer for each
subsystem. The discussion is also extended to switched linear
uncertain stochastic systems (SLUSS) with norm bounded
uncertainties, with the sufficient condition updated by dealing
with the uncertainty terms.

This remaining part of this paper is organized as follows.
We provide several preliminary lemmas concerning stochas-
tic systems and robust stability in Section II, and formulate
our control problem in Section III. Then, Section IV and V
establish the sufficient conditions of designing output based
switching laws for the SLCSS and the SLUSS, respectively.
Both static and dynamic output based switching laws are dis-
cussed, while the focus is on the latter. Two numerical exam-
ples are provided to show validity of the proposed design
conditions and switching algorithms. Finally, Section VI con-
cludes the paper.

Notations: Throughout this paper, we will use the super-
scripts ‘‘>’’ and ‘‘−1’’ to denote the transpose and the inverse
of a matrix with proper size, respectively. W � 0 (W ≺ 0)
means W is symmetric and positive (negative) definite, and
W1 � W2 if and only ifW1−W2 � 0. λM (·) and λm(·) denote
the largest and smallest eigenvalue of a symmetric matrix.

A matrix is Hurwitz if all its eigenvalues have negative real
parts. As used in most textbooks, P{·} denotes the probability
of a set and E[·] is the expectation value of a random variable.

II. PRELIMINARIES
First, several lemmas are stated, which will be used later.

Lemma 1: [30] The matrix inequality

G(s)+ U (s)XV (s)> + V (s)X>U (s)> � 0, (1)

with the vector s and the matrix X being variables, is feasible
if and only if

G(s)− σU (s)U (s)> � 0,

G(s)− σV (s)V (s)> � 0 (2)

are satisfied with some scalar σ ∈ R.
Lemma 2 [31] Given any constant matrices V ∈ Rn×m and
W ∈ Rp×n, the matrix inequality

VFW +W>F>V> � VV> +W>W (3)

holds for any uncertain F ∈ Rm×p satisfying ‖F‖ ≤ 1.
Lemma 3 (Markov’s Inequality) [32]) Consider a nonneg-
ative random variable Y : � → R. Then, for any positive
number a, the following is true.

P{Y ≥ a} ≤
E[Y ]
a

(4)

Next, we consider the stochastic system [32]

dx = h(x) dt + k(x) dw (5)

where x ∈ Rn is the system state, w is an r-dimensional
independent standard Wiener process on a probability space,
dx is the stochastic differential of x, and h : Rn

→ Rn and
k : Rn

→ Rn×r are locally Lipschitz functions satisfying
h(0) = 0, k(0) = 0.
Definition 1 The equilibrium x = 0 of the stochastic system
(5) is globally quadratically stable in probability (GQS-P) if
there is a positive definite quadratic function V (x) = x>Px
with P � 0 such that

E [V (x(t))] ≤ V (x(0))e−ηt (6)

holds for ∀t ≥ 0 and scalar η > 0 .
Remark 1 If (6) holds, by using Lemma 3, we obtain that for
any scalar ε ∈ (0, 1),

P

{
|x(t)| <

1
ε

√
λM (P)
λm(P)

|x(0)|e−
η
2 t

}
≥ 1− ε , (7)

which is defined as globally asymptotical stability in prob-
ability (GAS-P) in the literature [32]. Thus, the stability
concept ‘‘GQS-P’’ in Definition 1 implies ‘‘GAS-P’’. Such
a relation is well known in stability analysis of deterministic
systems, where we state ‘‘GQS’’ and ‘‘GAS’’ (without ‘‘in
probability’’).
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Lemma 4 For the stochastic system (5), suppose there exist a
C2 function V (x), two class K∞ functions α1 and α2, and a
class K function α3, satisfying

α1(|x|) ≤ V (x) ≤ α2(|x|) (8)

LV (x) =
∂V
∂x

h(x)+
1
2
Tr
(
k>
∂2V
∂x2

k
)
≤ −α3(|x|). (9)

Then, the equilibrium x = 0 of (5) is GAS-P.
Next, let us focus on the linear stochastic system

dx = Ax dt + Bx dw (10)

where A,B ∈ Rn×n are constant matrices. Then, by setting
h(x) = Ax, k(x) = Bx and V (x) = x>Px with P � 0 for
the above linear system in Lemma 4, we reach the following
lemma immediately.
Lemma 5 If the linear matrix inequality (LMI)

A>P+ PA+ B>PB ≺ 0 , (11)

is satisfied with a matrix P � 0, then the equilibrium x = 0
of (10) is GQS-P.

When there is uncertainty in the system matrix of the
stochastic system (10), we assume

dx = (A+ DF(t)E)x dt + Bx dw (12)

where D ∈ Rn×m,E ∈ Rp×n are known time-invariant
matrices and F(t) ∈ Rm×p denotes the system uncertainty
satisfying the norm bound ‖F(t)‖ ≤ 1 . Using Lemma 5,
we obtain that the equilibrium x = 0 of (12) is GQS-P if there
exists P � 0 such that the time-varying matrix inequality

[A+ DF(t)E]>P+ P[A+ DF(t)E]+ B>PB ≺ 0 (13)

holds for any ‖F(t)‖ ≤ 1. Then, using the Schur complement
and Lemma 2 for (13), we obtain the following lemma.
Lemma 6 If P � 0 exists satisfying the linear matrix
inequality (LMI)[

A>P+ PA+ B>PB+ E>E PD
D>P −Im

]
≺ 0 , (14)

then the equilibrium x = 0 of (12) is GQS-P.

III. PROBLEM FORMULATION
In this paper, we deal with two class of switched systems,
i.e., the switched linear certain stochastic system (SLCSS){

dx = Aσ x dt + Bx dw
y = Cσ x

(15)

and the switched linear uncertain stochastic system (SLUSS){
dx = (Aσ + DσF(t)Eσ )x dt + Bx dw

y = Cσ x.
(16)

In the above two systems, x ∈ Rn is the stochastic state,
y ∈ Rq is the measurement output, w and dx are the same as
in (5). The switching law (signal) σ (t) : [0,∞)→ I defines
the index of subsystem which is activated at time t , and I =

{1, 2, . . . ,N } is the index set of subsystems. Usually, σ (t) is
assumed to be continuous from the right. Thus, there are N
subsystems, and the i-th subsystem’s dynamics is described
by the triple (Ai,B,Ci) or the quadruple (Ai,B,Ci,Di,Ei),
i = 1, 2, . . . ,N , where the matrices Ai,B ∈ Rn×n, Ci ∈
Rq×n, Di ∈ Rn×m,Ei ∈ Rp×n are constant, and F(t) ∈
Rm×p satisfying ‖F(t)‖ ≤ 1 denotes the norm bounded
uncertainty term.

If there is one GQS-P subsystem in the switched system,
one stabilizing switching law (strategy) is to activate that
subsystem for all time (without activating other subsystems),
and the switched system is certainly GQS-P. Since this is a
trivial case, we assume from now on that there is no single
subsystem in (15) and (16) which is GQS-P.

With the above preparation, we formulate our control prob-
lem as follows:

For the SLCSS (15) and the SLUSS (16), design
the output based switching law σ (y), such that
the resultant switched systems are GQS-P.

IV. QUADRATIC STABILIZATION OF SLCSS
We first deal with quadratic stabilization of the SLCSS (15).
Since we have assumed that no single subsystem is GQS-P,
according to Lemma 5, there does NOT exist a matrix P � 0
satisfying the LMI [30]

A>i P+ PAi + B
>PB ≺ 0 . (17)

A. STATIC OUTPUT BASED SWITCHING LAW
We state the first switching law

SW1 : σ (y) = argmin
i∈I
{yTWiy} , (18)

where Wi’s are symmetric positive definite matrices to be
determined. To justify this switching law, let us consider the
situation when the following condition holds.
Condition 1: There exists P � 0 such that for ∀i ∈ I,
the inequality

x>(A>i P+ PAi + B
>PB)x < 0 (19)

holds whenever x 6= 0 and

y>Wiy ≤ min
j∈I,j 6=i

y>Wjy , (20)

or equivalently,

x>C>i WiCix ≤ x>C>j WjCjx , ∀j 6= i . (21)

If the above condition is satisfied, then the inequality

x>(A>σ P+ PAσ + B
>PB)x < 0 (22)

holds for x 6= 0 under the switching law defined by (18).
Moreover, for nonzero x, there exists a positive scalar η such
that

x>(A>σ P+ PAσ + B
>PB)x < −ηx>Px . (23)
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Then, the derivative of the Lyapunov function candidate
V (x) = x>Px along the solutions of (15) is computed as

dV (x) = LV (x) dt + x>
(
B>P+ PB

)
x dw,

LV (x) = x>
(
A>σ P+ PAσ + B

>PB
)
x . (24)

Due to (23), we have LV (x) ≤ −ηV (x),

dV (x) ≤ −ηV (x) dt + x>
(
B>P+ PB

)
x dw (25)

and thus

d
[
eηtV (x)

]
= ηeηtV (x) dt + eηt dV (x)

≤ x>eηt
(
B>P+ PB

)
x dw . (26)

Integrating and taking expectation of both sides of the above
inequality on the interval [0, t], together with the property of
Wiener process, E [ dw] = 0, results in

E [V (x)] ≤ V (x0)e−ηt . (27)

This implies that the switched system (15) under the switch-
ing law (18) is GQS-P with the Lyapunov candidate V (x) =
x>Px.
According to the S–Procedure [30], Condition 1 holds if

there exist nonnegative scalars βij, i, j ∈ I, j 6= i, such that

A>i P+ PAi + B
>PB+

∑
j∈I,j 6=i

βij(C>j WjCj − C>i WiCi) ≺ 0.

(28)

The above discussion is summarized in the following
theorem.
Theorem 1: If there are P � 0, Wi � 0, βij ≥ 0 satisfying
the matrix inequality (28) for all i ∈ I, then the SLCSS (15)
is GQS-P under the switching law (18) .

Since the condition (28) is not linear with respect to the
variables, it is not easy to obtain the solution globally effi-
ciently. One may try to set an interval for the nonnegative
parameters βij and then fix them temporarily by using a line
search method to solve (28) with respect to P and Wi’s.

Remark 2: Using the above approach, we can deal with some
robust stabilization problem for the switched system (15)
with parameter perturbations. For example, let us suppose the
typical polytopic perturbations in the system matrices Ai and
the control input matrix B as

[
Ai B

]
=

∑̀
k=1

µk
[
Aik Bk

]
µk ≥ 0 ,

∑̀
k=1

µk = 1, (29)

where Aik ,Bk , k = 1, 2, · · · , `, denote the extreme points of
the polytopes. Since the condition (28) is equivalent to

A>i P+ PAi+∑
j∈I,j 6=i

βij(C>j WjCj − C>i WiCi) B>P

PB −P

 ≺ 0 (30)

which is linear with respect to Ai and B, we obtain that the
condition (28) is reduced to

A>ikP+ PAik+∑
j∈I,j 6=i

βij(C>j WjCj − C>i WiCi) B>k P

PBk −P

 ≺ 0 (31)

for all k = 1, . . . , ` . In other words, if there are P � 0,
Wi � 0, βij ≥ 0 satisfying the matrix inequality (31)
for all i ∈ I and k = 1, . . . , `, then the SLCSS (15)
with the perturbation (29) is GQS-P under the switching
law (18).

B. DYNAMIC OUTPUT BASED SWITCHING LAW
Since the static output y(t) used in the switching law (18) does
not memorize the output history, it can only be adapted to a
limited class of switched systems, Here, we aim to propose a
dynamic output based switching law for the switched system
(15). For this purpose, we define a convex combination of
subsystem matrices as

Aλ =
N∑
i=1

λiAi, λi ≥ 0,
N∑
i=1

λi = 1. (32)

Next, to propose the dynamic output based switching law,
we construct the following full order Luenberger observer for
the system state x(t)

˙̂x(t) = Aσ x̂(t)+ Lσ (y(t)− Cσ x̂(t))

or dx̂(t) =
[
Aσ x̂(t)+ Lσ (y(t)− Cσ x̂(t))

]
dt , (33)

where x̂(t) ∈ Rn is the observer’s state and Li’s are observer
gain matrices which will be determined from now. Clearly, x̂
is dependent on the output measurement y. If we can design
a valid switching law based on the observer’s state x̂, then it
is an output based switching law we desire.

To proceed further, we propose the following assumption,
which is an integrated condition combining system stabi-
lization, Luenberger observer design and implementation of
switching law together.
Assumption 1: There are positive definite matrices Q , P and
matrices Li’s satisfyingA>λ P+ PAλ PLiCi B>Q

C>i L
>
i P 0i B>Q

QB QB −Q

 ≺ 0 (34)

for all i = 1, . . . ,N , where

0i = (Ai − LiCi)>Q+ Q(Ai − LiCi) . (35)

According to the Schur complement lemma, (34) is equiv-
alent to[

A>λ P+ PAλ + B
>QB PLiCi + B>QB

C>i L
>
i P+ B

>QB 0i + B>QB

]
≺ 0 . (36)
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When (34) or (36) is feasible, it is always possible to find a
constant η > 0 such that[
A>λ P+ PAλ + B

>QB PLiCi + B>QB
C>i L

>
i P+ B

>QB 0i + B>QB

]
≺ −η

[
P 0
0 Q

]
.

(37)

Remark 3 If we set P = Q in the condition (34) and focus
on the 1st and the 3rd rows and columns, we obtain A>λ P +
PAλ + B>PB ≺ 0 with P � 0. This implies that we require
that a combination of the subsystems in (15) is GQS-P.
Remark 4 The condition (34) requires0i ≺ 0, and thus covers
the robust detectability condition [21], [33] as special case.
Actually, focusing on the last two rows and columns of the
left side of (34), we have 0i + B>QB = (Ai − LiCi)>Q +
Q(Ai − LiCi) + B>QB ≺ 0, which can be regarded as the
robust detectability condition for linear stochastic systems.

Using the matrix P � 0 satisfying Assumption 1 and the
estimated state x̂(t) in the observer (33), we define the output
based switching law as

SW2 : σ (y) = argmin
i∈I

fi(x̂) (38)

fi(x̂) = x̂>
(
A>i P+ PAi

)
x̂ .

Here, since the observers’ state x̂ is generated by the output
y, the switching law in SW2 essentially only depends on
the output information, and thus we simply write it as σ (y).
Remark 5 In order to implement the switching law SW2
clearly, we need to deal with the case that several indexes of
subsystems satisfy (38) simultaneously. If the present subsys-
tem is included in the index, that is,

σ (y(t−)) ∈ argmin
i∈I

fi(x̂(t)) , (39)

we choose not to switch to other subsystems (staying at the
same subsystem), which definitely decreases the switching
frequency. Otherwise (the present subsystem is not included
in the index set satisfying (38)), we choose any subsystem
index generated by (38). This rule is also applied to another
switching law SW3 later.

With the switching law SW2, we have for any j ∈ I that

x̂>
(
A>σ P+ PAσ

)
x̂ ≤ x̂>

(
A>j P+ PAj

)
x̂ . (40)

Multiplying both sides of the above inequality by nonnegative
scalar λj and then summing up for j = 1, . . . ,N , we obtain

x̂>
(
A>σ P+ PAσ

)
x̂ ≤ x̂>

(
A>λ P+ PAλ

)
x̂ . (41)

Theorem 2 Under Assumption 1 and the switching law SW2,
the SLCSS (15) is GQS-P.

Proof: Define e = x − x̂, x̃ =
[
x̂> e>

]>, and write the
closed-loop system composed of (15) and (33) as

dx̃ = Ãσ x̃ dt + B̃x̃ dw , (42)

where

Ãσ =
[
Aσ LσCσ
0 Aσ − LσCσ

]
, B̃ =

[
0 0
B B

]
. (43)

To analyse quadratic stability of (42), we use the Lyapunov
function candidate V (x̃) = x̃>P̃x̃, where

P̃ =
[
P 0
0 Q

]
, (44)

P,Q are the positive definite matrices satisfying (34). Then,
the derivative of V (x̃) along the solutions of (42) is computed
as

dV (x̃) = LV (x̃) dt + x̃>
(
B̃>P̃+ P̃B̃

)
x̃ dw,

LV (x̃) = x̃>
(
Ã>σ P̃+ P̃Ãσ + B̃

>P̃B̃
)
x̃ , (45)

and

Ã>σ P̃+ P̃Ãσ + B̃
>P̃B̃

=

[
A>σ P+ PAσ + B

>QB PLσCσ + B>QB

∗ 0σ + B>QB

]
. (46)

Therefore,

LV (x̃) = x̂>
(
A>σ P+ PAσ + B

>QB
)
x̂

+ 2x̂>
(
PLσCσ + B>QB

)
e

+ e>
(
0σ + B>QB

)
e . (47)

Under the switching law SW2, (41) holds, and thus

x̂>
(
A>σ P+ PAσ + B

>QB
)
x̂

≤ x̂>
(
A>λ P+ PAλ + B

>QB
)
x̂ . (48)

Then, combining (47), (48) and (37), we obtain

LV (x̃) ≤ −ηV (x̃) (49)

and furthermore

dV (x̃) ≤ −ηV (x̃) dt + x̃>
(
B̃>P̃+ P̃B̃

)
x̃ dw . (50)

Using the above inequality, we reach

d
[
eηtV (x̃)

]
= ηeηtV (x̃) dt + eηt dV (x̃)

≤ x̃>eηt
(
B̃>P̃+ P̃B̃

)
x̃ dw . (51)

Integrating and taking expectation of both sides of the above
inequality on the interval [0, t], together with the property of
Wiener process, E [ dw] = 0, results in

E
[
V (x̃)

]
≤ V (x̃0)e−ηt . (52)

This completes the proof.
The condition (34) in Assumption 1 is a bilinear matrix

inequality (BMI) with respect to λi’s, Q � 0 , P � 0
and matrices Li’s, and it is not easy to solve general BMIs
efficiently. Here, we suggest an algorithm for solving (34)
with some trial and error.

[Algorithm 1]
1) Find a set of λi’s such that Aλ is Hurwitz.
2) Solve

(Ai − LiCi)>Q+ Q(Ai − LiCi)+ B>QB
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= A>i Q+ QAi −MiCi − (MiCi)> + B>QB ≺ 0

(53)

with respect to Q � 0 and Mi .
If feasible, set Li = Q−1Mi .

3) With the obtained λi’s, Q � 0 and Li’s, solve the
condition (34) with respect to P � 0.

C. NUMERICAL EXAMPLE
Example 1 Consider the SLCSS (15)whose coefficientmatri-
ces are

A1 =
[
−11 −16
−4 1

]
, A2 =

[
2 12
3 −7

]

B =
[
0.5 −0.5
0.5 0.75

]

C1 =
[
0 1

]
, C2 =

[
1 0.75

]
.

Firstly, both A1 and A2 are not Hurwitz, since they both have
positive real eigenvalues.

When setting λ1 = 2
5 , λ2 =

3
5 , we find that

Aλ =
2
5
A1 +

3
5
A2 =

[
−3.2 0.8
0.2 −3.8

]
is Hurwitz, whose eigenvalues are {−3.0,−4.0}.

Next, we solve the LMIs (53) with respect to Q � 0,
M1,M2 to obtain

Q =
[
0.1298 0.0373
0.0373 0.2244

]
M1 =

[
−3.2901
1.1068

]
, M2 =

[
1.8812
0.5754

]
.

Then, the observer’s gain matrices L1,L2 are computed by

L1 =

[
−28.1116

9.6034

]
, L2 =

[
14.4488

0.1645

]
.

Finally, solving the condition (34) with respect to P � 0,
we obtain a feasible solution

P =
[
0.0877 0.0461
0.0461 0.1861

]
.

Using the gain matrices L1,L2 in the observers (33) and
activating the switching law (38) for the SLCSS with the
initial states x(0) =

[
6 −3

]>, x̂(0) = [−1 1
]>, we obtain

the state trajectories of the switched system and the observers,
together with the tracking errors, depicted in Figure 1 with
several pattern of randomwhite noise. It is observed that good
convergence property has been achieved.

V. QUADRATIC STABILIZATION OF SLUSS
In this section, we deal with quadratic stabilization of the
SLUSS (16). Since we have assumed in the formulation that
there is no GQS-P subsystem, according to Lemma 6 and

FIGURE 1. Plot of the SLCSS under SW2 in Example 1.

Schur complement lemma, there is NO single subsystem
satisfying the matrix inequality

A>i P+ PAi + B
>PB+ PDiD>i P+ E

>
i Ei ≺ 0 (54)

with P � 0.

A. STATIC OUTPUT BASED SWITCHING LAW
For integrity, we consider the static output based switching
law (18) as for the SLCSS. Replace the systemmatrix Ai with
Ai + DiFEi in the condition (28) to reach

(Ai + DiFEi)>P+ P(Ai + DiFEi)+ B>PB

+

∑
j∈I,j 6=i

βij(C>j WjCj − C>i WiCi) ≺ 0 . (55)

Then, using Lemma 3 and the Schur complement lemma,
we obtain the condition

A>i P+ PAi + PDiD
>
i P+ E

>
i Ei + B

>PB

+

∑
j∈I,j 6=i

βij(C>j WjCj − C>i WiCi) ≺ 0 . (56)

This is not an LMI due to the product of βij’s andWi’s. Similar
to the comment in Section IV-A, one may try a kind of line
search method for βij and then transform the condition (56)
into an LMI with respect to P � 0 and Wi � 0.
The above discussion is summarized as a corollary to

Theorem 1.
Corollary 1: If there are P � 0, Wi � 0, βij ≥ 0 satisfying
the matrix inequality (56) for all i ∈ I, then the SLUSS (16)
is GQS-P under the switching law (18).

B. DYNAMIC OUTPUT BASED SWITCHING LAW
Similarly to the discussion in the previous section, the static
output based switching law (18) can only be adapted to
a limited class of switched systems, and thus we proceed
to design a dynamic output based switching law for the
SLUSS (16).
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In addition to Aλ in (32), we define the convex combination
involving the uncertainty terms as

DλD>λ =
N∑
i=1

λiDiD>i , E>λ Eλ =
N∑
i=1

λiE>i Ei , (57)

where the coefficients λi’s are the same as in (32).
Remark 6 The matrices Dλ and Eλ satisfying (57) for given
Di’s, Ei’s and λi’s, can be computed by using the Cholesky
decomposition method, which is numerically and efficiently
tractable in MATLAB.

Due to the uncertainty term DiF(t)Ei in the subsystem
matrix, we update Assumption 1 to the following assumption.

Assumption 2: There exist positive definite matrices Q , P and
matrices Li’s satisfying

A>λ P+ PAλ + E
>
λ Eλ PDλ PLiCi B>Q

D>λ P −Im 0 0

C>i L
>
i P 0 0i B>Q

QB 0 QB −Q

 ≺ 0

(58)

for all i = 1, . . . ,N , where 0i is the same as in Assumption
1.
Remark 7 If we set P = Q in the condition (58) as a special
case and use Schur complement lemma for the first two and
the 4th rows and columns, we obtain

N∑
i=1

λi

(
A>i P+ PAi + B

>PB+ PDiD>i P+ E
>
i Ei

)
≺ 0 ,

(59)

which is exactly a convex combination of (54). Therefore,
although every subsystem in the SLUSS is NOT GQS-P,
the condition in Assumption 2 requires that a convex com-
bination of the subsystems should be GQS-P.
We use the matrix P satisfying Assumption 2 to define the

dynamic output based switching law

SW3 : σ (y) = argmin
i∈I

gi(x̂)

gi(x̂) = x̂>(A>i P+ PAi + PDiD
>
i P+ E

>
i Ei)x̂ , (60)

under which

x̂>(A>σ P+ PAσ + PDσD
>
σ P+ E

>
σ Eσ )x̂

≤ x̂>(A>i P+ PAi + PDiD
>
i P+ E

>
i Ei)x̂ , (61)

holds for any x̂. Multiplying both sides of the above inequality
by nonnegative scalars λi and then adding them for all i’s,
we obtain

x̂>(A>σ P+ PAσ + PDσD
>
σ P+ E

>
σ Eσ )x̂

≤

N∑
i=1

λix̂>(A>i P+ PAi + PDiD
>
i P+ E

>
i Ei)x̂

= x̂>(A>λ P+ PAλ + PDλD
>
λ P+ E

>
λ Eλ)x̂ . (62)

On the other hand, the condition (58) in Assumption 2 is
equivalent to

(
A>λ P+ PAλ+

PDλD>λ P+ E
>
λ Eλ

)
PLiCi B>Q

C>i L
>
i P 0i B>Q

QB QB −Q

 ≺ 0 (63)

which has the same form as the condition (34) but incorpo-
rates the uncertainty matrices Dλ,Eλ.

The remaining discussion of proving quadratic stability of
the closed-loop switched system with the Lyapunov function
candidate P̃ in (44) is similar to that in Theorem 2, and is thus
omitted here.
Theorem 3 Under Assumption 2 and the switching law SW3,
the SLUSS (16) is GQS-P.

Similar to (34), the condition (58) in Assumption 2 is a
bilinear matrix inequality (BMI) with respect to λi’s, Q �
0 , P � 0 and matrices Li’s. However, we observe several
necessary conditions for (58), which help us understand the
meaning of the condition and then solve it step by step. First,
according to (63), (58) requires

A>λ P+ PAλ + PDλD
>
λ P+ E

>
λ Eλ ≺ 0 , (64)

which implies that the combination system

ẋ = (Aλ + DλF(t)Eλ) x (65)

is quadratically stable for any ‖F(t)‖ ≤ 1 . And, it is well
known [35] that (64) holds if and only if Aλ is Hurwitz and
theH∞ norm of the transfer functionmatrixEλ(sI−Aλ)−1Dλ
is smaller than 1. Secondly, the 3rd and the 4th rows and
columns of (58) implies the matrix inequality (53), which
is the robust detectability condition for designing the Luen-
berger observers.

Based on the above observation, we suggest the following
algorithm for solving (58) with some trial and error.

[Algorithm 2]
1) Find a set of λi’s such that Aλ is Hurwitz, and ‖Eλ(sI−

Aλ)−1Dλ‖∞ < 1 .
2) Solve (53) with respect to Q � 0 and Mi.

If feasible, set Li = Q−1Mi .
3) With the obtained λi’s, Q � 0 and Li’s, solve the

condition (58) with respect to P � 0.
Remark 8 It is noted that a common quadratic Lyapunov
function V (x) = x>Px or V (x̃) = x̃>P̃x̃ has been used for
the static and dynamic output based switching laws in our
switched systems design up to now. Themain reason is to take
advantage of the convex combination of subsystems, which
is expressed by the subsystem matrices and the coefficients.
However, if we generalize the convex combination by includ-
ing the Lyapunov-like matrices for each subsystems, less
conservative conditions could be obtained while the design
condition may be more complicated.
Remark 9 It is noted that the switching laws (38) and (60) are
called the minimum (energy) rule [36], and theoretically the
so-called ‘‘chattering’’ or ‘‘Zeno’’ phenomena (switchings
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FIGURE 2. Plot of the SLUSS under SW3 in Example 2.

occur infinite number of times on a finite time interval) may
occur, which are not desired in any real application. To get
rid of the possibility of this trouble, we may adopt a kind of
hybrid switching rule for our switched system. Assuming the
present activated subsystem index is i0 (σ (t) = i0), we do not
switch to other subsystems until

fi0(x̂) ≤ x̂>
(
A>λ P+ PAλ

)
x̂ , or

gi0(x̂) ≤ x̂>(A>λ P+ PAλ + PDλD
>
λ P+ E

>
λ Eλ)x̂ (66)

is violated. This is based on the observation that the above
inequality holds on a nonzero time interval, since the function
fi(x̂), gi(x̂) are continuous with respect to the state x̂ (and thus
time t).

Furthermore, for the purpose of real applications, we may
set a small enough lower bound ρoff for ‖x̂‖ such that switch-
ing is stopped when ‖x̂‖ ≤ ρoff , if necessary.

C. NUMERICAL EXAMPLE
Example 2 Consider the SLUSS (16) where

D1 =

[
0.4 −0.3
−0.2 0.5

]
, D2 =

[
0.3 −1.0
0.2 −0.5

]
E1 =

[
0.2 0
0.2 0.2

]
, E2 =

[
0.3 −0.3
0.3 0.3

]
F(t) =

[
0.5 sin t − 0.1 cos t −0.2 sin t − 0.3 cos t
−0.3 sin t − 0.2 cos t 0.1 sin t − 0.4 cos t

]
,

and all the other matrices are the same as in Example 1.
We can confirm ‖F(t)‖ ≤ 1 , and with the same λ1, λ2 as
in Example 1,

Dλ =
[
0.8683 0
0.2810 0.4594

]
, Eλ =

[
0.3742 0.0428

0 0.3495

]
and furthermore, ‖Eλ(sI − Aλ)−1Dλ‖∞ < 1 .
With the matrices Q � 0, M1,M2 and L1,L2 obtained in

Example 1, we proceed to solve (58) with respect to P � 0,
and obtain

P =
[
0.1030 0.1652
0.1652 0.8849

]
.

Finally, we activate the switching law (60) for the SLUSS
with the same initial states as in Example 1. Figure 2 shows
the state trajectories of the switched system and the observers,
together with the tracking errors, for several patterns of
random white noise. It is observed that good convergence
property has been achieved.

VI. CONCLUSION
We have analyzed the GQS-P property for switched linear
certain and uncertain stochastic systems, under the assump-
tion that no single subsystem is GQS-P, and out main focus
is to design the dynamic output based switching laws such
that the entire switched system is GQS-P. It turns out that the
approach of adopting a convex combination of subsystems
(for both certain and uncertain switched systems) together
with a robust Luenberger observer for each subsystem is
efficient. Since the design conditions are expressed by matrix
inequalities which are not linear in the variables, we have
presented two algorithms for solving them efficiently.
As also mentioned in Remark 8, it is possible to adopt a

kind of piecewise Lyapunov-like functions together with the
convex combination of subsystems forGQS-P of the switched
stochastic systems, which is in the line of our future work.
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