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ABSTRACT Clustering exceptionally large data sets is becoming amajor challenge in data analytics with the
continuous increase in their size. Summary-based clustering methods and distributed computing frameworks
such as MapReduce can efficiently handle this challenge. These methods include BIRCH and its extension
CF+-ERC. CF+-ERC can reduce the clustering time of large data sets by utilizing the structure of a CF+

tree. However, CF+-ERC is a sequential clustering method, so it cannot be used with multiple machines to
reduce the clustering time. In this study, we propose a novel MapReduce-based distributed clustering method
called CF+-ERC on MapReduce (CF+ERC_MR). It builds a CF+ tree for clustering an exceptionally large
data set with a given threshold and finds the final clusters using MapReduce, which significantly reduces
the clustering time. Further, our method is scalable with respect to the number of machines. The efficacy
of this method is validated through not only its theoretical analysis but also in-depth experimental analysis
of exceptionally large synthetic and real data sets. The experimental results demonstrate that the clustering
speed of our approach is far superior to that of the existing clustering methods.

INDEX TERMS Clustering, BIRCH, CF+ tree, range query, very large data sets, MapReduce.

I. INTRODUCTION
Owing to the rapid advancement of the Internet and online
technologies, exceptionally large collections of data con-
taining digital traces from users and devices can be gen-
erated. Such large data sets can be generated by Twitter,
Google, Yahoo, and Facebook [1]. Processing and analyzing
such large data can provide valuable insights on the activity
patterns and preferences of users or customers, which can
strongly impact decision making in data-driven businesses.
Clustering is a popular technique for analyzing large data sets
in which the data set is divided into clusters based on some
measure of similarity or distance.

Clustering methods are widely used in a variety of fields
such as data science, machine learning, pattern recognition,
and artificial intelligence [1]–[4]. These methods can be
classified into three main categories: sampling-based, dimen-
sionality reduction-based, and summary-based methods [5].
However, it is difficult to derive appropriate samples with
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sampling-based methods. Further, dimensionality reduction-
based methods cannot extract the precise dimensions that
maintain the key properties of the data sets. Therefore,
summary-based clustering methods are more suitable for the
analysis of large data sets.

BIRCH [6] is a popular summary-based clustering method
that is used to solve real-world problems owing to its wide
applicability and high-level scalability with respect to the data
size [7]–[10]. In BIRCH, a clustering feature (CF) tree is built
by using a threshold value, which is used to obtain a suitable
data summary.When the threshold value is not given, BIRCH
uses the computer’s memory to estimate the threshold value,
following which the existing clustering methods are used as
the global clustering method. In some real-world problems,
a threshold value is often given as a criterion of clustering
[11]–[17]. This criterion is similar to t in a distance-t stopping
condition [18], where two clusters within t are grouped into
the same cluster.

Recently, CF+-ERC [5] has been proposed as an extension
of BIRCH by incorporating the global clustering method
ERC (effective multiple range queries-based clustering).
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ERC reduces the number of computations by using range
queries based on the threshold value, which cluster rapidly.
However, CF+-ERC is a sequential clustering method, which
consumes a significant amount of computation time to
cluster exceptionally large data sets. Further, it cannot be
implemented in a distributed computing environment, which
implies that it cannot be used with multiple machines for
rapid clustering.

Distributed computing algorithms such as MapReduce are
an efficient alternative for handling large data sets [19]. Dis-
tributed clustering methods based on MapReduce have been
useful in analyzing data sets. PKMeans [20] and mrk-means
[21] can implement K-means in parallel using MapReduce.
Such distributed clustering methods can be used as the global
clustering method of BIRCH. However, these methods do not
use the threshold value, which makes them unsuitable for
clustering large data sets in which the threshold values are
estimated. In addition, BIRCH that uses distributed clustering
methods as the global clustering method cannot build the CF
tree in a distributed parallel manner.

In this study, we propose a novel distributed clustering
method CF+ERC_MR, which is an extension of CF+-ERC
based on MapReduce. The CF+ tree is built by using a
given threshold value of a data set in the distributed com-
puting environment. Note that our proposed method assumes
data sets with given threshold values. Subsequently, ERC is
invoked to cluster the data summary in a parallel way. The
two key advantages of CF+ERC_MR are the reduction in the
clustering time and the utilization of the threshold value.

There are three main challenges for extending CF+-ERC
to the MapReduce programming paradigm as follows.
• The workload should be evenly distributed to multiple
reduce tasks.

• Each reduce task should receive similar objects.
• The results of the reduce tasks should be refined.
The region centroid set is used to avoid unbalanced data

distribution and collect similar data with the same reduce
task. Because the clustering of a divided data set might not
find the cluster based on the threshold, the refinement step
merges the results of the multiple reduce tasks.

CF+ERC_MR rapidly clusters the data sets compared to
the existing clustering methods because it runs a MapReduce
job using the data summary. Since CF+ERC_MR uses the
threshold value, it appropriately clusters the data sets of
some domains that use their corresponding threshold values.
We have compared the performance of our method with
that of PKMeans, mrk-means, and BIRCH-based distributed
clustering methods on MapReduce. Our method is scalable,
i.e., it can work across many machines in a distributed
computing environment. Further, it can analyze a large data
set more rapidly and accurately than the existing clustering
methods.

The remainder of the paper is organized as follows.
CF+-ERC andMapReduce are briefly described in Section II.
The extension of CF+-ERC to the MapReduce programming
paradigm is discussed in Section III. Section IV discusses

the theoretical and experimental performance analyses of
our proposed method. Finally, the study is concluded in
Section V.

II. RELATED WORKS
CF+-ERC [5] is a state-of-the-art clustering method for ana-
lyzing large data sets. MapReduce [19] is a suitable pro-
gramming paradigm to handle large data in a distributed
computing environment. In this section, we have focused on
a detailed description of CF+-ERC because CF+ERC_MR
is an extension of CF+-ERC to deal with data sets in a
distributed parallel manner.

A. CF+-ERC
CF+-ERC builds a CF+ tree and conducts multiple range
queries on this tree, which drastically reduces the clustering
time. A node is split if it overflows. The first step in the
node split is to choose the farthest entry pair of the overflow
node as the seeds. Two new entry sets are created, and the
seeds are separated into these sets. The remaining entries are
redistributed in the two new entry sets by considering the
centroids of the current entry sets that contain several entries
during the node split.

CF+-ERC shares the definitions of the CF vector and CF
tree along with the CF additivity theorem of BIRCH [6].
Definition 1: Given N d-dimensional objects in a cluster

C: E{Xi}, where i = 1, 2, . . . ,N , the CF vector of C is defined
as CF = (N , ELS, SS), where N is the number of objects in C,
ELS is the linear sum of the N data, that is, ELS =

∑N
i=1
EXi, and

SS is the sum of the N squared data, that is, SS =
∑N

i=1
EXi
2
.

Definition 2: The CF+ tree exhibits the following
properties:

1) Each non-leaf node contains at most C entries in the
form [CFi, childi, ri], where i = 1, 2, . . . ,C .CFi is the
CF vector of the i-th child entry, childi is a pointer to
the i-th child node, and ri is the radius covering all the
descendant microclusters. The i-th entry of the non-leaf
node is called a subcluster SCi.

2) Each leaf node contains at most L entries in the form
[CFi], where i = 1, 2 . . . ,L and CFi is the CF vector
of the i-th child entry. The i-th entry of the leaf node is
called a microclusterMCi.

3) For efficient sequential scanning, all leaf nodes are
linearly chained by the ‘‘prev’’ and ‘‘next’’ pointers.

Figure 1 shows the CF+ tree constructed by using
50 objects. The CF+ tree is built starting from the root node.
Each data instance p recursively descends through the CF+

tree by choosing the closest child node in accordance with the
distance metric. When p reaches the leaf node, it is absorbed
into the microcluster of the node if the threshold requirement
is satisfied. Otherwise, a new entry is generated and p is
included in that entry. If the node has room for the new entry,
the new entry is inserted in the node. Otherwise, the node
splits. Splitting of the leaf node causes the insertion of a new
non-leaf entry into the parent node. The parent node splits if
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FIGURE 1. CF+ tree constructed by using 50 objects.

it overflows. The node split can be propagated up to the root
node. When the root node splits, the height of the CF tree
increases by one. If the propagation of the node split ceases
at a non-leaf node, merging refinement is attempted to reduce
the number of nodes.

Subsequently, the threshold value is used as the criterion
for global clustering. The inter-microcluster distance (IMD)
is used to compute the distance between two microclusters.
IMD between two microclusters is the Euclidean distance
between their centroids minus the sum of their radii. If IMD
between two microclusters is less than the threshold value,
they reside in the same final cluster. Note that the term
‘‘final cluster’’ refers to the cluster obtained by the clustering
methods.

ERC is conducted by utilizing the structure of the CF+

tree and the threshold value T. It can be divided into two
steps: partition and refinement steps. In the partition step,
the linearly adjacent microclusters within T are grouped
into a segment called microcluster segment (MCS) using
the microcluster linearization property of CF+ tree. For
instance, in Figure 1, the CF+ tree has eleven microclus-
ters (MC1,MC2, · · · ,MC11) that are linearly adjacent.
Because IMD (MC2,MC3) (IMD betweenMC2 andMC3)
is less than T, MC2 and MC3 are grouped into MCS2.
Similarly, the partition step finds six microcluster segments
MCS1,MCS2, · · · ,MCS6.
In the refinement step, the effective refinement step (ERS)

of ERC is employed to gather a set of MCSs into the set of
final clusters using multiple range queries. For each MCS ,
ERS employs an effective range query (ERQ) to find the
connections between that MCS and other MCSs without
having redundant query computation by using the structure
of the CF+ tree. A connection between two microcluster
segments MCS i and MCS j implies that at least one IMD
betweenMCx andMCy is less than T, whereMCx ∈MCS i
andMCy ∈MCS j. This indicates thatMCS i andMCS j are
in the same final cluster.

In Figure 1, IMD (MC2, MC4) and IMD (MC2, MC6)
are less than T. However, both microcluster pairs are not
linearly adjacent, so they are not grouped into the same
microcluster segment in the partition step. In the refine-
ment step, ERS conducts ERQ for each MCS to find the

connections to otherMCSs. ERQ forMCS2 checks whether
IMD (MC2, MC4) and IMD (MC2, MC6) are less than
T, and then finds two connections 〈MCS2,MCS3〉 and
〈MCS2,MCS4〉, respectively. Subsequently, ERS merges
MCS2, MCS3, and MCS4 into the final cluster C2. ERQs
for other MCSs (i.e., MCS1, MCS3, and MCS4) find no
connection between them. Thus, ERC returns the four final
clusters C1, C2, C3, and C4 shown at the bottom of Figure 1.
The four final clusters are as follows: C1 = {MC1}, C2 =
{MC2,MC3,MC4,MC5,MC6}, C3 = {MC7}, and C4 =
{MC8,MC9,MC10,MC11}.

B. MapReduce
MapReduce is a programming paradigm for distributed and
scalable computation of large data. For example, Facebook
employs MapReduce running on Hadoop to deal with a large
part of their data-processing applications [22]. Hadoop [23]
is a widely used open-source implementation of MapReduce.
Figure 2 shows the overall procedure of a MapReduce job.
While conducting a MapReduce job, the inputs and outputs
are treated as a form of 〈key, value〉-pair. The machine per-
forming a map task is called a mapper, while the machine
performing a reduce task is called a reducer. The number of
mappers and reducers depends on the number of machines in
the system and the user configuration.

FIGURE 2. Overall implementation of a MapReduce job.

A MapReduce job consists of the five phases: the input,
map, sort and shuffle, reduce, and output phases. In the
input phase, the input data set is divided into m splits
and all splits are distributed to all the mappers. In the
map phase, each mapper receives several splits. For each
split, the map task is performed to generate an interme-
diate result, which is then utilized in the sort and shuffle
phase. In the sort and shuffle phase, the intermediate results
are partitioned based on their key and sent to the reducer that
manages the key. In the reduce phase, each reducer receives
the 〈key, list of values〉-pair and performs the reduce task to
deal with this pair. Finally, the results of the reduce task are
gathered and written in the distributed file system, which is
the result of the MapReduce job.

The user only defines the map and reduce tasks to deal with
input data set in a parallel way on MapReduce. Meanwhile,
the user must consider the characteristics of MapReduce.
In particular, since MapReduce exhibits a shared-nothing
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architecture, the map and reduce tasks cannot read the data
sent to other map and reduce tasks. Thus, all map and reduce
tasks can only use their input data to generate the results.

III. CF+ERC_MR: CF+-ERC ON MapReduce
In this section, we discuss the problems encountered while
conducting CF+-ERC on MapReduce, which includes build-
ing the CF+ tree and performing ERC in a parallel manner,
and our solutions for these problems.

A. PROCESS FLOW OF CF+ERC_MR
The proposed method, i.e., CF+ERC_MR, can be broadly
divided into three steps: space-partitioning, clustering, and
refining. Figure 3 shows the overall process flow of this
method. CF+ERC_MR must perform an additional task of
merging the results of the reduce tasks to obtain the final
result on the refining step at the refinement phase (see
Section III-D). In the space-partitioning step, a region cen-
troid set V for the map tasks is obtained in a sequential
manner. V is used to guide the intermediate result of the map
task to its proper reduce task. This is discussed in detail in
Section III-B.

FIGURE 3. Process flow of CF+ERC_MR.

In the clustering step, the local final clusters are determined
using MapReduce in parallel. Note that the term ‘‘local final
clusters’’ refers to the final clusters obtained by ERC in
the reduce phase. Each map task receives its corresponding
split data and V. In each map task, a CF+ tree is first
built by using a given threshold value and then a set of
microclusters of this tree is determined. All the microclusters
are sent to their proper reduce tasks through the sort and
shuffle phase in accordance with V. The reduce task receives
the 〈key, (list of values)〉-pair and then assembles the local
final clusters.

For example, the map task M1 in Figure 3 only reads the
〈key, value〉-pairs of split 1 and uses it to build a CF+ tree.
A set of microclusters of the CF+ tree is the intermediate
result I1, which is sent to reduce tasks Ri(1 ≤ i ≤ r) through
sort and shuffle phase in the form of the 〈i,MC〉-pair. The
reduce task Ri(1 ≤ i ≤ r) receives the 〈i, list of MCs〉-
pair and then builds a CF+ tree using the list of MCs. After
completely building the tree, Ri(1 ≤ i ≤ r) finds the local

final clusters. A set of local final clusters represents the result
Oi, which is discussed in Section III-C.

In the refining step, the local final clusters are sequentially
merged into the global final clusters. Note that the term
‘‘global final cluster’’ refers to the final clusters merged from
the local final clusters at the refinement phase. Because a
reduce task finds the local final clusters consisting of the
microclusters in that reduce task only, the global final clusters
based on those local final clusters must be determined; this is
explained in Section III-D.

B. SPACE PARTITIONING STEP OF CF+ERC_MR
All the reduce tasks are simultaneously conducted in isolation
in the clustering step. The reducer performing the ‘‘strag-
gler’’ reduce task may continue to run even after the other
reducers have already finished their reduce tasks. In such a
case, MapReduce cannot finish the reduce phase, which is
a major factor that contributes to the computation time of a
MapReduce job [24]. Thus, it is necessary to send an equal
workload to every reduce task.

If the intermediate results of map tasks are randomly and
evenly distributed to the reduce tasks, every reduce task
receives the intermediate results that are spread in the entire
data space. In each reduce task, the local final clusters in the
entire data space are determined. This implies that the local
final clusters obtained from different reduce tasks overlap
with each other. Thus, assembling the global final clusters by
combining all the local final clusters can be time-consuming.

However, collecting similar objects corresponding to the
same reduce task may be useful for multiple reduce tasks.
This is because if the entire data space is divided into exclu-
sive regions and each reduce task oversees microcluster in the
respective region, the local final clusters of different reduce
tasks do not overlap. In addition, each reduce task can find
the local final clusters that might become the global final
clusters. This, in turn, leads to a decrease in the workload of
the refining step. In other words, the intermediate results of
the map tasks should be evenly distributed to every reduce
task and the input microclusters of each reduce task should
be similar. We now compute the region centroid sets to satisfy
these conditions.

A map task cannot read the split data sent to other map
tasks. The map task must receive the region centroid set V in
advance, which is then used to evenly and similarly distribute
the microclusters. The distribution of all the objects should be
known for distributing the microclusters to the r reduce tasks.
Sampling facilitates the determination of the entire object
distribution, so only the samples obtained by applying the
reservoir sampling technique [25] are used.

Algorithm 1 describes the space-partitioning function for
generating a region centroid set V. The K-means++ method
is conducted using the sample set D, where K is set to r.
In the K-means++ approach, the centroid of each cluster
is considered as a region centroid because it represents the
center of that cluster. A setV of r region centroids is broadcast
to all the map and reduce tasks.
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Algorithm 1 Space-Partitioning(D, r)
INPUT D: A set of samples,

r: Number of reduce tasks
OUTPUT V: A set of region centroids
1: K ← r , S← ∅, V← ∅
2: S← K -means++(D)
3: for each Cj ∈ S do
4: Compute the centroid vj of Cj
5: V← V ∪ vj

C. CLUSTERING STEP OF CF+ERC_MR
The map and reduce tasks are described in this subsection.
Algorithm 2 shows the map task of the clustering step. Here,
ED(MC, vj) is the Euclidean distance between amicrocluster
MC and a region centroid vj. Each map task receives an input
split S, a setV of region centroids, and a given threshold value
T of the data set. Note that each map function uses the same
threshold value T, which is assumed to be given for data sets
of application domains. It first creates a CF+ tree (tree) with
T. Subsequently, all the objects of S are inserted into tree.
Then, for each microclusterMC of tree,MC, whose closest
region centroid is vi, is sent to the reduce task Ri.

Algorithm 2 Map(S,V,T )
INPUT S: A split of input data,

V: A set of region centroids,
T : Threshold value

OUTPUT i: Reduce task index,
MC: A microcluster

1: Build CF+ tree tree using S and T
2: M← A set of microclusters of tree
3: forMC ∈M do
4: min←∞, i← 0
5: for vj ∈ V do F vj is a region centroid
6: if min > ED(MC, vj) then
7: min← ED(MC, vj), i← j

8: return 〈i,MC〉-pair

However, occasionally these microclusters do not satisfy
the threshold requirement. In Figure 3, the entire input data
is divided into m splits, which are processed by the cor-
responding m map tasks. Figure 4 shows an example of the
intermediate results obtained from four map tasks M1, M2, M3,
and M4. All the map tasks handle the objects in the same data
space, so that the intermediate results may be overlapped. If
the distance between the centroids of any two microclusters
(i.e., o1 and o2 in Figure 4) is less than the threshold value T,
they must be merged into the same microcluster.

The validity of the threshold requirement among themicro-
clusters must be rechecked in the reduce task by building
a tree. While building the tree, each microcluster MC is
inserted into the tree and then routed to its proper leaf entry el
in the tree based on the closest criteria. If MC is closer to el
than T,MC is absorbed in el . Thus, the threshold requirement

FIGURE 4. Example of intermediate results obtained from four map tasks.

of all the microclusters can be rechecked when the tree is built
by using these microclusters. After completely building the
tree, the reduce task implements ERC for finding the local
final clusters.

Figure 5 illustrates the example of the microclusters of the
CF+ trees in three reduce tasks R1, R2, and R3. R1-3 have
built their CF+ trees after sending the intermediate results of
four map tasks to the all reduce tasks based on the region
centroids v1-v3. Here, each of the smallest circles represents
a microcluster. The pattern of each of the smallest circles
indicates the label of the global final clusters (C1, C2, · · · ,
C5). The microclusters in the same global final cluster are
covered by a thick solid circle. A set of microclusters that are
connected via the dotted line indicates the local final clusters
determined by ERC during the reduce task. The local final
cluster is covered by a dashed circle in this figure. Each region
separated by solid lines in the data space indicates the local
region managed by reduce task such as R1, R2, and R3.
For the reduce taskR1, four microclusters are generated and
three local final clusters are obtained. Thus, there are five

FIGURE 5. Partitioning of the data space.
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global final clusters, nine local final clusters, and fourteen
microclusters in this figure.

This figure demonstrates why the local final clusters must
be refined. Because of dividing the data space based on V,
some global final clusters (i.e., C2 and C5) are the same as
the local final clusters. Contrarily, other global final clusters
(i.e., C1, C3, and C4) cannot be established by the reduce
tasks which cannot read the microclusters sent to other reduce
tasks. Here, the local final clusters consisting of all objects
in each region are the subsets of the global final clusters
separated by the solid line, as shown in Figure 5. Therefore,
the additional connections between the local final clusters of
the different regions must be obtained to assemble the three
global final clusters C1, C3, and C4 after the clustering step.
The border between the regions handled by the two reduce

tasks is used as the baseline to discern microclusters that
are likely to merge into the same global final cluster. If a
microcluster is closer to the border than T, it can be merged
with the microclusters in another reduce task. The region that
is closer than T from the border is called the border region BR.
For example, the solid line in Figure 5 represents the border,
and the region between the dashed lines including the solid
line represents BR.
Let B be a set of microclusters overlapped with BR. A

scalar projection is used to determine B. Let Ri and Rj be the
two reduce tasks. To check whether a microclusterMC of Ri
is included in B, the following approach must be used. Let
vi, vj ∈ V be the two region centroids in the two regions
managed by Ri and Rj, respectively. dc is the sum of the
average radius ofMC and the scalar projection of the centroid
ofMC onto the line between vi and vj, while dh is the distance
between vi and vj divided by two. If the difference between
dc and dh is less than T, MC is included in B. We name all
MCs in B as border microclusters.
Figure 6 shows an example of the scalar projection ofMC1

onto the line between v1 and v2. If the difference between dc
and dh is less than T, there is a possibility that MC1 may
be connected to one or more microclusters in R2 (MC2 in
this figure). SoMC1 becomes the border microcluster and is
added to B.
The function isOverlap (i,V,MC,T ) returns true if MC

of Ri is overlapped with BR. If it returns true, MC is added
to B. After finding all border microclusters, B is stored

FIGURE 6. An example of the scalar projection of MC1.

into the distributed file system (DFS) such as HDFS [26].
Subsequently, B is rechecked in the refining step to obtain
the global final clusters.

Algorithm 3 shows the reduce task of the clustering step.
The reduce task receives the 〈i,M〉-pair generated during the
shuffle phase, the threshold value T, and a setV of region cen-
troids. It builds a CF+ tree, called tree, using the microclus-
ters ofM to recheck the validity of the threshold requirement.
After completely building tree, the reduce task Ri performs
ERC(tree,T ) for finding the local final cluster set Li by
utilizing the structure of tree in a parallel manner. Assume
that Li consists of n local final clusters {Li1,L

i
2, · · ·L

i
n} and

each local final cluster Lil is a set of microclusters.

Algorithm 3 Reduce(i,M,V,T )
INPUT i: Reduce task index,

M: A list of microclusters,
V: A set of region centroids,
T : Threshold value

OUTPUT Li: A set of local final clusters of Ri,
Ii: A set of indices of the local final clusters

in Li,
Bi: A set of border microclusters of Ri

1: Build CF+ tree tree usingM and T
F Li = {Li1,L

i
2, · · ·L

i
n}

F Lil : l-th local final cluster of Li
2: Li← ERC(tree,T )
F Bi: A set of border microclusters of Ri

3: Bi← ∅, Ii← ∅
4: for Lil ∈ Li do
5: for MC ∈ Lil do FMC: Microcluster

F Check if MC is overlapped with BR
6: if isOverlap (i,V,MC,T ) then
7: Bi← Bi ∪ (l,MC)
8: Ii← Ii ∪ l
F Bi and Ii will be used to obtain global final clusters

9: Store Bi and Ii to DFS
10: return Li

For each MC in every Lil in Li, if MC is overlapped with
BR, (l,MC) is added to a border microcluster set Bi, where
l is the local final cluster index. In the refining step, the local
final clusters resulting from different reduce tasks are merged
using the border microclusters maintaining both the indices
of the local final clusters and the reduce tasks. An index set Ii
consists of the indices of the local final clusters of the reduce
task Ri. Then, Bi and Ii are stored into DFS. Finally, Li is
returned as the results of Ri. Bi and Ii are used in the refining
step to obtain the global final clusters.

For example, in Figure 5, R1 obtains three local final
clusters L1

1 = {MC1, MC3}, L1
2 = {MC7}, and L1

3 =

{MC10}. It also obtains an index set of the local final clusters
I1 = {1, 2, 3}. Similarly, R2 and R3 obtain the six local
final clusters L2

1 = {MC2}, L2
2 = {MC4, MC5, MC6},

L2
3 = {MC8}, L3

1 = {MC9}, L3
2 = {MC11, MC12},
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and L3
3 = {MC13, MC14} as the result of all reduce tasks.

They obtain the two index sets of the local final clusters
I2 = {1, 2, 3} and I3 = {1, 2, 3}.

The clustering step also finds the three border microcluster
sets B1, B2, and B3, including the seven border microclusters
as follows B1

= {(1,MC1), (2,MC7), (3,MC10)}, B2
=

{(1,MC2), (3,MC8)}, and B3
= {(1,MC9), (2,MC11)}.

Finally, {B1, B2, B3
} and {I1, I2, I3} are stored in DFS.

D. REFINING STEP OF CF+ERC_MR
All the reduce tasks stored the border microcluster sets
into DFS. The local final cluster sets resulting from all the
reduce tasks were written to DFS. After the reduce phase of
MapReduce, the refining step reads these border microcluster
sets and local final cluster sets during the refinement phase,
as shown in Figure 3. It merges the local final cluster sets
into the global final clusters using the border microcluster
sets.

Let Lil be the l-th local final cluster resulting from the
reduce task Ri. Two border microclusters MCx ∈ Lil and
MCy ∈ Ljm are given. If IMD (MCx ,MCy) is less than T,
MCx and MCy are connected and then two local final clus-
ters Lil and Ljm are also connected.
Then, the global final clusters are assembled by sequen-

tially combining the connected local final clusters. The con-
nected local final clusters can be efficiently obtained by
calling ERC if the CF+ tree is composed of the border
microclusters. However, one border microcluster MCx can
be absorbed into another by the threshold requirement when
building the CF+ tree. This indicates that the connected local
final clusters by using MCx cannot be found.
We propose a refining CF+ tree consisting of the border

microclusterswhere each border microclustermaintains both
the reduce task index and the local final cluster index. While
building the refining CF+ tree, we do not allow all bor-
der microclusters to be absorbed into the existing leaf node
entries. Thus, each border microcluster becomes a new entry
of a leaf node in the tree. After building the refining CF+ tree,
the execution of ERC over the refining CF+ tree gives a set
of connected local final clusters. Thus, the connected local
final clusters are merged into the same global final cluster. In
contrast, the local final cluster that is not merged into another
local final cluster becomes the global final cluster.

Algorithm 4 is used to determine the global final clusters
by using a set B of border microclusters. Here, the list of
local final cluster index sets I = {I1, I2, · · · , Ir } and the list
of border microcluster sets B = {B1,B2, · · · ,Br } are read
from DFS. The refining CF+ tree tree is built by inserting
the border microclusters of B. The connection set of the local
final clusters P = {P1,P2, · · ·Pp} is obtained by performing
ERC in a sequential way.

Since Pk (1 ≤ k ≤ n) consists of the connected border
microclusters, the local final clusters containing the border
microclusters of Pk are also connected. Thus, these local
final clusters are merged into the same global final cluster.
Subsequently, the remaining local final clusters are moved

Algorithm 4 Refine(T )
INPUT T : Threshold value
OUTPUT G: A list of global final cluster index sets
1: Read I = {I1, I2, · · · , Ir } from DFS
2: Read B = {B1,B2, · · · ,Br } from DFS
F Build a refining CF+ tree using B incrementally

3: tree← ∅ F tree: Refining the CF+ tree
4: for Bi ∈ B do
5: for (l,MC) ∈ Bi do FMC: Microcluster
6: Insert (i, l,MC) into tree
F P = {P1,P2, · · ·Pp}
F Pk consists of the connected border microclusters

7: P← ERC(tree,T )
8: List G← ∅
FMerge the indices of the connected local final clusters

9: for Pk ∈ P do
F Find indices of the local final clusters using Pk

10: E← ∅
11: for (i, l,MC) ∈ Pk do
12: Ii ∈ I

F l: Index of the l-th local final cluster of Ri
13: if l ∈ Ii then

F Remove l from Ii and insert (i, l) to E
14: Ii← Ii \ l
15: E← E ∪ (i, l)
16: Add E to G
F Add the index of remaining local final clusters to G

17: for Ii ∈ I do
18: for Iil ∈ Ii do
19: Add {(i, l)} to G
20: return G

FIGURE 7. Process flow of the refining step using the example in Figure 5.

into the global final clusters because they are not connected
to others. Consequently, Algorithm 4 refines a set of local
final clusters to obtain the desired global final clusters.

Figure 7 shows the process flow of the refining step using
the fourteen microclusters in Figure 5. In this figure, Algo-
rithm 4 reads the list of the local final cluster index sets
I = {I1, I2, I3} and the three border microcluster sets
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B1
= {(1,MC1), (2,MC7), (3,MC10)}, B2

= {(1,MC2),
(3,MC8)}, and B3

= {(1,MC9), (2,MC11)}. The micro-
cluster covered by the dotted circle in the dashed rectangle of
‘‘Local final cluster index set’’ is referred to as the border
microcluster. Each local final cluster of every local final
cluster set ismergedwith other local final clusters to assemble
the global final cluster (represented by the dashed arrow)
or becomes a global final cluster (represented by the solid
arrow).

Algorithm 4 then builds a refining CF+ tree by using
B = {(1, 1,MC1), (1, 2,MC7), (1, 3,MC10), (2, 1,MC2),
(2, 3,MC8), (3, 1,MC9), (3, 2,MC11)}. Next, ERC finds
three connection sets P1 = {(1, 1,MC1), (2, 1,MC2)},
P2 = {(1, 2,MC7), (2, 3,MC8), (3, 1,MC9)}, and P3 =

{(1, 3,MC10), (3, 2,MC11)} because IMD (MC1, MC2),
IMD (MC7, MC8), IMD (MC7, MC9), and IMD (MC10,
MC11) are less than T.
By using P1, (1, 1) and (2, 1) are first merged thus giving

E = {(1, 1), (2, 1)}, which requires that I11 = {MC1,
MC3} and I21 = {MC2} should also be merged into the
global final cluster ({I11, I

2
1} = {MC1, MC3, MC2}). This

global final cluster is the same as C1. Thus, Algorithm 4 finds
the final cluster C1. Next,E is added to the global final cluster
set G giving G = {{(1, 1), (2, 1)}}. Similarly, Algorithm 4
obtains the four final clusters C2 = {MC4, MC5, MC6},
C3 = {MC7, MC8, MC9}, C4 = {MC10, MC11, MC12},
and C5 = {MC13, MC14}. Consequently, the refining step
returns G = {{(1, 1), (2, 1)}, {(2, 2)}, {(1, 2), (2, 3), (3, 1)},
{(1, 3), (3, 2)}, {(3, 3)}} that is the same as a set of the five
final clusters C1, C2, C3, C4, and C5.

IV. PERFORMANCE ANALYSIS
The effectiveness of the proposed clustering method,
CF+ERC_MR, was validated through theoretical and exper-
imental analyses.

A. THEORETICAL ANALYSIS
The time complexities of our proposed clustering method are
analyzed. CF+ERC_MR is divided into three steps: space
partitioning, clustering, and refining. The clustering step is
also divided into two tasks: map and reduce.MapReduce runs
on n nodes (one NameNode and (n− 1) workers). Since each
worker normally performs either the map tasks or the reduce
tasks, (n − 1) workers consist of µ mappers and ν reducers,
thus giving n = µ+ ν + 1.
Table 1 summarizes the symbolic notations frequently

used in this section. We discuss the time complexities of
the construction CF+ tree and ERC. We assume that each
leaf entry of the CF+ tree absorbs a objects, on aver-
age. The time complexity of the construction CF+ tree is
O(N · L · d · logL

N
a ) [5].

Let W be the number of microcluster segments and w
be the average number of microclusters resulting from the
multiple range queries. The time complexity of ERC is O(d ·
(L · L

h
−1

L−1 +
N
a + W · w · L · logL

N
a ) + W · p) where h

TABLE 1. Summary of symbolic notations.

is the height of the CF+ tree and p is the average number
of indices in po lists [5]. O(L · d · L

h
−1

L−1 ) and O(
N
a · d) are

the time complexities of all radii computations of the CF+

tree and the partition step of ERC, respectively. Since all
radii computations and the partition step are performed only
once, both are negligible. Further, p is usually very small.
Therefore, ERC takes O(W · w · L · d · logL

N
a ).

The space partitioning step takes O(s · d · (r + i)) where s
is the number of samples and i is the number of iterations of
K-means++. Let A = O(s · d · (r + i)).
The map task of the clustering step receives N/m objects,

on average. The construction CF+ tree takes O(Nm · L · d ·
logL

N
m·α ). Distributing N/(m · α) microclusters to r reduce

tasks takesO( N
m·α ·d ·r). Let B = O(Nm ·L ·d · logL

N
m·α +

N
m·α ·

d · r). Since µmappers run mmap tasks, the time complexity
of each mapper is

O(
m · B
µ

).

In the reduce task of the clustering step, since all the map
tasks produce N/α microclusters, each reduce task receives
N/(α · r) microclusters, on average. The construction CF+

tree takes O( N
α·r ·L · d · logL

N
α·β·r ). ERC takes O(κ · λ ·L · d ·

logL
N

α·β·r ). Finding bordermicroclusters takesO( N
α·β·r ·d ·r

2).
Let C = O(( N

α·r + κ · λ) · L · d · logL
N

α·β·r +
N

α·β·r · d · r
2).

Because (n − µ − 1) reducers run r reduce tasks, the time
complexity of each reducer is

O(
r · C

n− µ− 1
).
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The refinement step reads the border microclusters and the
indices of the local final clusters. The construction CF+ tree
takes O(η · L · d · logL η). ERC takes O(ψ ·ω · L · d · logL η).
Merging the local final clusters to the global final clusters
takes O(η+ δ). Let D = O((η+ψ ·ω) ·L ·d · logL η+η+ δ).
Combining the above time complexities, the total time

complexity of our proposed clustering method is

O(A+
m · B
µ
+

r · C
n− µ− 1

+ D).

Note that an increase in the number of reduce tasks expands
the border region, which can increase the number of border
microclusters. This, in turn, increases the time complexity
of the refinement step. Further, the entire data space was
finely partitioned for the higher number of reduce tasks. Thus,
it is more difficult to find the local final clusters that might
become the global final clusters. Therefore, a small value
of the number of reduce tasks is sufficient for our proposed
method.

B. EXPERIMENTAL SETUP
A diverse range of synthetic data sets and two real data
sets were used to compare the performance of our method
with that of existing clustering methods including parallel
K-means (PKMeans) [20], mrk-means [21], BIRCH-based
distributed clustering methods, and distributed BIRCH.

BIRCH-based distributed clustering methods build a CF
tree on the NameNode and then implement distributed clus-
tering using a set of microclusters of the tree. Since PKMeans
and mrk-means are used as the global clustering method of
BIRCH, they are referred to as BIRCH-PKM and BIRCH-
MRK, respectively.

Distributed BIRCH is a simple extension of BIRCH to the
MapReduce programming paradigm with a single reducer.
Every map task locally builds a CF tree and then sends a
set of microclusters of the tree to the single reduce task.
The reducer uses the input microclusters to build the CF
tree. Since this tree covers all the microclusters generated by
all the map tasks, an existing partitional clustering method,
such as K-means, is applied to all the microclusters of the
CF tree to obtain the final clusters. The distributed BIRCH
whose global clustering method is K-means++ [27] is called
BIRCH-MR_KM++.
PKMeans,mrk-means, andK-means++ are also called the

extensions of K-means because they share the stopping crite-
ria. The maximum number of iterations for these methods is
set to 50 except for PKMeans for which it is set to 10. The
reason for this selection is discussed in the later subsection.

The split size for mrk-means is set to
√
K · n proposed

in [21], where n is the number of objects. The number of
true clusters in our synthetic and real data sets is provided
to the K-means extensions. Note that CF+ERC_MR does
not require the number of final clusters for clustering. In
addition, the same threshold value is used to build the CF and
CF+ trees. The proper threshold values were obtained for all

synthetic and real data sets by conducting the experiments
with various threshold values.

The average purity, inverse purity, and execution time of
these clustering methods are used as the primary performance
metrics. They were obtained by repeating the experiment five
times with different seeds on the same data set. The purity
and inverse purity metrics are formally described in [28]. The
purity of the clustering method evaluates the frequency of the
most similar objects of each cluster, while the inverse purity
of the clustering method evaluates similar objects placed in
the same cluster. The execution times of CF+ERC_MR and
the other methods include the time required to build the CF+

and CF trees.
All the experiments were conducted onAmazon EMR. The

MapReduce system consisted of ten nodes (one NameNode
and nine workers). All the nodes used the Intel Xeon Platinum
8000 series (Skylake-SP) processor with a sustained all core
Turbo CPU having a clock speed of up to 3.1 GHz. The
NameNode used four cores with two threads, 64 GBmemory,
and EBS storage. The workers used two cores with two
threads, 32 GB memory, and EBS storage. The basic size
of EBS storage was 1 GiB, which could be extended up to
16 TiB if a task required additional storage. In addition, we set
C = 50, L = 50 for the CF+ and CF trees, which are the same
parameter values used in [5]. We set the number of reduce
tasks, r , to 4 because we experimentally found out that a small
value of r (i.e., 4) was good enough for our proposed method.

C. SYNTHETIC DATA SETS
A collection of synthetic data sets was used in our experi-
ments. These data sets were obtained by employing a syn-
thetic data generator based on the parameters used in [6].
Table 2 shows the parameters used in our generator.

TABLE 2. Parameters used to generate the synthetic data sets.

All the synthetic data sets consist of K clusters with
d-dimensional data. Each cluster in the data set has nmin to
nmax objects within a radius of rmin to rmax . The centroids of
all the clusters are placed in the data space according to the
cluster patterns in Table 2. All centroids of the grid pattern
data set are placed on a

√
K ×
√
K grid, where the distance

between the centroids of adjacent clusters is kg
rmin+rmax

2 . All
the centroids of the random pattern data set are randomly
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placed in the data space. Further, all the centroids of the sine
pattern data set are partitioned into nc groups, and then the
centroids of each group are placed at the curve of a different
cycle of the nc sine function.

The three default data sets used in our experiments were
generated by the synthetic data generator with the parameter
values shown in Table 3. These data sets are named with
respect to the cluster pattern, i.e., grid pattern cluster (GPC),
random pattern cluster (RPC), and sine pattern cluster (SPC).
All the data sets consisted of approximately 4, 000, 000
objects each.

TABLE 3. Default data sets for experiments.

D. PARAMETRIC ANALYSIS OF CF+ERC_MR
In this subsection, we analyze the performance of
CF+ERC_MR in terms of the sample size, speedup, and
workload balance of multiple reduce tasks. These analyses
reveal that CF+ERC_MR performs exceptionally well in a
distributed computing environment.

1) EFFECT OF THE SAMPLE SIZE
The effect of the sample size on the performance of
CF+ERC_MR using GPC and RPC was analyzed, while the
number of clusters K was set to 400. Each experiment was
repeated five times, while the sample size was increased from
100 to 6,400. The average execution time and its standard
deviation obtained from all experiments indicated the effect
of the sample size.

Figure 8 shows the average execution time and its stan-
dard deviation as a function of the sample size. The purity
and inverse purity were not affected by the variation in the
sample size; therefore, they are not shown in this figure.
A larger sample size increased the time consumed in the
space-partitioning step because more objects were gathered
into the NameNode from the workers on the MapReduce
framework. However, CF+ERC_MRwith a large sample size
was occasionally faster than that with a small sample size.
For example, in Figure 8a, CF+ERC_MR with 800 samples
is faster than that with smaller sample size. This is because a
small number of samples does not capture the overall data dis-
tribution accurately, which can increase the time consumed in
the clustering and refining steps.

CF+ERC_MR exhibits a stable execution time and low
standard deviation without strong fluctuations, despite the
randomness of the reservoir sampling and K-means++ in the
space-partitioning step. CF+ERC_MR with 200 samples is
relatively faster than the other methods when GPC and RPC
are considered. This experiment also indicates that a small
sample size is sufficient to obtain a good region centroid

FIGURE 8. Effect of the sample size on the performance of CF+ERC_MR.

set V. Thus, the sample size was set to 200 in all the sub-
sequent experiments.

2) SPEEDUP OF CF+ERC_MR
Experiments were conducted regarding the speedup of
CF+ERC_MR by increasing the number of nodes on the
MapReduce framework using three GPC data sets: G32M,
G64M, and G128M. G32M is GPC with 800 clusters. It has
32 million objects because the number of clusters is 800 and
the number of objects in each cluster is 40,000. Similarly,
G64M has 64 million objects and G128M has 128 million
objects.

The experiments were conducted using the MapReduce
framework in which the number of nodes was increased from
2 to 12 for each data set.

Figure 9 shows the speedup of CF+ERC_MR. CF+

ERC_MRwith an increase in the number of nodes performed
more rapidly because the clustering step was performed on all
nodes in a distributed manner. All n nodes of the MapReduce

FIGURE 9. Speedup of CF+ERC_MR on GPC.
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system were composed of one NameNode, µ mappers, and
ν reducers, thus giving n = µ + ν + 1. The mapper takes
O(m·A

µ
) and the reducer takes O( r ·B

n−µ−1 ). Thus, the speedup
of CF+ERC_MR is increased as n increases.

However, in this figure, it is clear that the speedup for all
the data sets does not linearly increase with the increase in
the number of nodes. The network cost of the method was
analogous for all the experiments on the same data set, but
an increase in the number of nodes reduced the workload
per node. Since the network cost portion of the total cost is
higher for a higher number of nodes, the speedup difference
decreases with the increase in the number of nodes.

The speedup of the method on larger data set is higher than
that on smaller data set because the workload of larger data
set is more than that of the smaller data set. From Figure 9,
we can also infer that every reduce task deals with similar-
sized workload. If each reduce task deals with workloads of
different sizes, the speedup is dependent on the performance
of any straggler node, which can cause fluctuations in the
speedup. Figure 9 shows no fluctuations, which implies that
CF+ERC_MR deals with the data set in an evenly distributed
manner. We now need to show that the reduce tasks of the
method deal with data sets in an evenly distributed manner.

Figure 10 shows the workload balance of all the reduce
tasks obtained by CF+ERC_MR on the three data sets: GPC,
RPC, and SPC. Here, the error bars represent the standard
deviation of the average size of microclusters (Figure 10a)
and average execution time (Figure 10b). The heights of
all the error bars are small compared to the average value,
so the workloads of all the reduce tasks are even. Therefore,
CF+ERC_MR exhibits a good speedup performance because
it avoids the straggler reducer, which is considered to be
one of the major factors that degrade the performance of
MapReduce jobs.

FIGURE 10. Workload balance of CF+ERC_MR.

Next, by using three GPC data sets, we compare the exe-
cution times of CF+ERC_MR having two nodes and CF+-
ERC. We conducted this experiment, since Figure 9 shows
the speedup of CF+ERC_MRwith respect to two nodes. Note
that CF+ERC_MR requires at least two nodes to perform,
while CF+-ERC is a sequential clustering method. Through
this experiment, we show how CF+ERC_MRwith two nodes
performs over a sequential clustering method CF+-ERC.

Table 4 shows the clustering times of CF+-ERC and
CF+ERC_MR with two nodes. The purity and inverse purity
are omitted because they are the same in both methods.

TABLE 4. Clustering time of CF+ERC_MR and CF+-ERC.

CF+-ERC is shown to be faster than CF+ERC_MR for
all the experiments summarized in this table. This is
because CF+ERC_MR included extra steps, such as space-
partitioning and refining steps, and performed additional
tasks for running aMapReduce job. In view of CF+ERC_MR
with these overheads, the difference between the clustering
times is negligible. In addition, CF+ERC_MR with more
nodes can reduce the clustering time, as shown in Figure 9.

E. EXPERIMENTAL ANALYSIS WITH SYNTHETIC
DATA SETS
Experiments on the synthetic data sets were performed to
compare the effects of the cluster patterns, number of clusters
K, data set size n, and the number of dimensions d on the per-
formance of CF+ERC_MR, PKMeans, mrk-means, BIRCH-
based distributed clusteringmethods, and distributed BIRCH.

1) EFFECT OF THE CLUSTER PATTERN OF DATA SETS
The effect of cluster patterns on the performance of
CF+ERC_MR and other clustering methods using the default
data sets (GPC, RPC, and SPC) in Table 3 was analyzed.
Figure 11 shows that CF+ERC_MR exhibits the best per-

formance in terms of average purity and inverse purity for all
the cluster patterns in the data sets. Further, CF+ERC_MR
is faster than other methods in most cases. It may be noted
that CF+ERC_MR performs additional work in the sampling
step. Only 200 objects need to be read, so the effect of
additional work on the total execution time is negligible. For
all the cluster patterns, the average purity and inverse purity of
CF+ERC_MR are always better than those of other clustering
methods. This indicates that CF+ERC_MR is suitable for the
data set whose threshold value is given by the user.

Figure 11c shows the execution times of all the cluster-
ing methods. The maximum value of the vertical axis is
intentionally restricted to 100 s because the execution time

FIGURE 11. Effect of cluster patterns on the performance of different
methods.
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of some methods was much higher than 100 s. For example,
PKMeans consumed 309 s forGPC, 316 s for RPC, and 298 s
for SPC.
Because the maximum number of iterations in PKMeans

is less than that in BIRCH-PKM, PKMeans is faster than
BIRCH-PKM. PKMeans is considerably slower than the
other methods because it repeatedly runs MapReduce jobs
in each iteration. A MapReduce job requires additional
input/outputs (I/Os) and tasks for distributed computing.
Although the computational complexity of K-means is
reduced in PKMeans because the distance computations
and centroid update step are parallelly implemented in
PKMeans, clustering is slowed down due to the overhead
of several MapReduce jobs. It consumed a longer time than
CF+ERC_MR while its purity and inverse purity were less
than those of CF+ERC_MR in Figure 11c. When increasing
the maximum number of iterations from 10 to 50, PKMeans
consumed much longer time (approximately 1,400 s), but its
purity and inverse purity were not only significantly increased
but also always less than those of CF+ERC_MR.

For analyzing the performance of CF+ERC_MR and
PKMeans within the comparable difference of execution
times, the maximum number of iterations in PKMeans was
set to 10 in all experiments. The performance of the clus-
tering methods based on SPC is excluded in the subsequent
experiments because it lies between the performances of the
methods based on GPC and RPC.

2) EFFECT OF THE NUMBER OF CLUSTERS
The effect of the increase in the number of clusters on the
performance of CF+ERC_MR and other methods was inves-
tigated by increasing the size of the data sets, while main-
taining the data densities of the clusters. For this experiment,
GPC and RPC with K ranging from 100 to 1,600 (Table 3)
were used.

The results are shown in Figures 12 and 13. BIRCH-PKM
and BIRCH-MRK are not shown in this figure because they
were not able to cluster the data sets with K = 1, 600 due to
the shortage of main memory. The BIRCH-based distributed
clustering methods build the CF tree on the NameNode,
so they usually require a lot of memory, which indicates that
they cannot cluster an exceptionally large data set.

FIGURE 12. Effect of the number of clusters (K) on GPC.

FIGURE 13. Effect of the number of clusters (K) on RPC.

The purity and inverse purity of CF+ERC_MR are always
higher than those of other clustering methods. CF+ERC_MR
is extremely faster than PKMeans and mrk-means, whereas
it is slightly faster than BIRCH-based distributed clustering
methods and distributed BIRCH. However, as the number
of clusters increases, the difference in the execution time
between CF+ERC_MR and other clustering methods using
microclusters also increases. This indicates that for excep-
tionally large data sets, ERC that utilizes the structure of
the CF+ tree by using range queries is more suitable than
other clustering methods. An increase in the number of clus-
ters increases the number of microclusters, which in turn
increases the number of distance computations for cluster-
ing. Since ERC avoids unnecessary distance computations,
the clustering time for several microclusters is reduced.

3) EFFECT OF THE SIZE OF DATA SETS
The effect of the increase in the size of data sets on the
performance of CF+ERC_MR and other methods was exper-
imentally analyzed by using GPC and RPC with an increase
in nmin and nmax (Table 3). The size of the data sets was
approximately increased from 4 M (4 × 106) to 20 M
(20 × 106). With K fixed to 100, increasing the size of the
data sets causes increasing the data density of all clusters.

Figures 14 and 15 show that an increase in the data set size
rarely affected the purities and inverse purities of the cluster-
ing methods. However, the execution times of the clustering

FIGURE 14. Effect of the size of clusters on GPC.
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FIGURE 15. Effect of the size of clusters on RPC.

methods were reduced when increasing the size of the data
sets in Figures 14c and 15c. The reason for this is that more
objects required many more distance computations.

The performance of CF+ERC_MR is the best if all the
primary performance metrics are considered. However, it is
slightly slower than BIRCH-MR_KM++ for smaller data
sets. This is because a small data set generates small-sized
summary data, but a large data set generates large-sized
summary data, which increases the global clustering time.
BIRCH-MR_KM++ that performs global clustering on the
NameNode is inefficient in clustering exceptionally large
data sets. Therefore, CF+ERC_MR clusters a large data set
in a much shorter time than BIRCH-MR_KM++.

4) EFFECT OF THE DATA DIMENSIONALITY
In this subsection, the effect of the dimensionality of the data
set on the performance of CF+ERC_MR and other methods
is analyzed. GPC and RPC with d increasing from 2 to 10
(Table 3) are used in this experiment.

It is clear in Figures 16 and 17 that CF+ERC_MR exhibits
a high performance in all data sets even if the dimension-
ality increases. An increase in the number of dimensions
reduced the standard deviation of distances of all object
pairs due to the ‘‘curse of dimensionality.’’ This deterio-
rated the purity and inverse purity of K-means extensions
because similar objects were assigned to the different final
clusters except formrk-means and BIRCH-MRK. Contrarily,
the object pair within Twas assigned to the same final cluster
in CF+ERC_MR that had used the threshold value as the
clustering criteria.
mrk-means was much slower than CF+ERC_MR, and

its purity and inverse purity were lower than those of
CF+ERC_MR. The reasons were that CF+ERC_MRhandled
microclusters and used the threshold value as the global
clustering criteria. Figure 17b shows that the inverse puri-
ties of BIRCH-PKM and BIRCH-MRK decrease because
BIRCH does not obtain appropriate microclusters when
the number of dimensions is increased. Thus, we can
infer that CF+ERC_MR is more suitable for clustering
high-dimensional data sets than BIRCH-MRK which was
often comparable to CF+ERC_MR regarding execution
time.

FIGURE 16. Effect of the dimensionality d on GPC.

FIGURE 17. Effect of the dimensionality d on RPC.

F. PERFORMANCE ANALYSIS WITH REAL DATA SETS
In this subsection, we compare the performance of
CF+ERC_MR with that of PKMeans, mrk-means, BIRCH-
based distributed clustering, and distributed BIRCH using
real data sets. The Sensorless Drive Diagnosis data set
(SDD) and the Amsterdam Library of Object Images data
set (ALOI) were used for this experiment. SDD and ALOI
were provided by UCI Machine Learning Repository1 and
OpenML,2 respectively. Kobren et al. [29] used the ALOI
data set to evaluate the K-means extensions and hierarchical
clustering methods. In this study, WEKA,3 a popular data
mining application, was used to normalize the data. The
parameters used are shown in Table 5.

TABLE 5. Parameters for the real data sets.

Figure 18a shows the purity, inverse purity, and execution
time of all the methods used in the experiment. For the SDD
data set, CF+ERC_MR outperforms the other methods in
terms of purity and inverse purity. BIRCH-PKM is noticeably
slower than the other methods because it runs a MapReduce

1https://archive.ics.uci.edu/ml/
2https://www.openml.org/
3https://www.cs.waikato.ac.nz/ml/weka/
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FIGURE 18. Performance of CF+ERC_MR on real data sets.

job repeatedly. The clustering times of CF+ERC_MR and
BIRCH-MRK are similar, but the purity and inverse purity
of BIRCH-MRK are lower than those of CF+ERC_MR. This
is because BIRCH-MRK cannot use the threshold value in
the global clustering method. For the ALOI data set, the per-
formance of CF+ERC_MR is much better than that of the
other methods. The clustering time of BIRCH-MR_KM++
exhibits a much stronger increase for the experiment con-
ducted using the SDD data set as compared to that using the
ALOI data set. This confirms that global clustering on a single
machine is not suitable for clustering exceptionally large data
sets, even though it deals with the summary data such as
microclusters.

Overall, the experiments based on real data sets indi-
cate that CF+ERC_MR provides a better performance
than PKMeans, mrk-means, BIRCH-based distributed clus-
tering methods, and distributed BIRCH. Consequently,
CF+ERC_MR is more suitable for clustering real data sets.

V. CONCLUSIONS
Summary-based clustering and distributed clustering are
a vital component of effective data analysis techniques
for exceptionally large data sets. Here, we proposed
CF+ERC_MR, which is an extension of CF+-ERC to the
MapReduce framework, for clustering exceptionally large
data sets with given thresholds. Our method was run par-
allelly on multiple reducers. The CF+ trees were built on
multiple reducers, and multiple range queries were called
to find the local final clusters by utilizing the structures
of these CF+ trees in a parallel manner. In the refining
step, the connections between these local final clusters were
examined to sequentially determine the global final clusters.

Consequently, the CF+ERC_MR method efficiently yielded
the final clusters based on MapReduce.

The theoretical analysis of CF+ERC_MR was first dis-
cussed. The efficiency of CF+ERC_MR was then demon-
strated by comparing its performance with that of the existing
clustering methods for large synthetic and real data sets. A
variety of experiments indicated that the proposed approach
was significantly faster and more accurate than existing clus-
tering methods. It also showed the robustness of our approach
to various patterns, the number of clusters, the density of
clusters, and the number of dimensions. Overall, our method
is extremely useful for clustering exceptionally large data sets
with given threshold values. In the future, we aim to extend
the proposed clustering method to other types of data sets,
such as categorical or mixed-type data sets.
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