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ABSTRACT In high-density wireless sensor networks, the quality of service in terms of sensing coverage,
connectivity, lifetime, energy consumption and cost is closely linked to the position of the nodes in the
network. Consequently, the placement of a large number of nodes while simultaneously optimizing several
measurements is considered to be an NP-difficult problem. In this article, we propose a new approach to
optimizing the problem of node placement. To achieve this objective, we started by studying the main
approaches existing in the literature in order to identify their limits. In order to have accurate solutions,
existing physical models are studied, improved, and validated with real measurements. Then, we proposed
a new formulation of the deployment optimization problem as a constrained multi-objective optimization
problem. This allowed us to develop an optimizer, based on the multi-objective genetic algorithm and the
weighted sum optimization method, which we called MOONGA (multi-objective wireless network opti-
mization using the genetic algorithm). This optimizer makes it possible to generate an optimal deployment
according to the topology, the environment, the specifications of different applications and the preferences of
the network designer users. The algorithms that we have developed and implemented within the framework
of experiments carried out on test data in order to prove the effectiveness of our approach. The analysis of
the results found confirm well the interest and the superiority of our proposed approach compared to main
studied approaches.

INDEX TERMS WSN, deployment, multi-objective optimization, sensing coverage, connectivity, cost,
genetic algorithm.

I. INTRODUCTION
Nowadays, wireless sensor networks (WSNs) represent the

and conflict with each other [6]. The improvement of one
can degrade the others, and for this reason, this problem

most used solution in applications dedicated to intelli-
gent environments, notably military, agricultural, health,
surveillance, domestic, and lighting [1]-[4]. All of these
applications require an optimal deployment of hundreds of
wireless interconnected sensor nodes to maintain quality of
service (QoS) [5]. This high density makes it difficult to find
optimal node locations. In addition, depending on the type
of application, WSN requires different measures to achieve
its satisfaction. Generally, these metrics are counterbalanced
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cannot be solved as a single-objective optimization problem.
Consequently, the optimal placement of this massive number
of nodes requires to carry out many measurements what
becomes a complicated problem which had turned out to be
an NP-difficult problem [7]. Various works have dealt with
this problem, the majority of which have been interested in
outdoor environments. However, most of them have certain
limits. Indoor studies often simplify deployment problems
either because they do not take into account real constraints
or because they use simplified models. Some approaches
choose a metric to optimize, while the other metrics will be
defined as constraints where some metrics will be neglected
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at the detriment of others. To overcome these limits, precise
modelling of physical phenomena and a rigorous mathemat-
ical formulation will be necessary to set up a new approach
solving this problem.

In this article, we propose a new approach to optimize the
placement of nodes that we have called MOONGA (Multi-
Objective optimization of wireless Network Approach based
on Genetic Algorithm). In our approach, we considered an
exhaustive list made up of five metrics: (i) sensing coverage,
(ii) k-coverage, (iii) redundancy of sensing coverage, (iv)
connectivity, (v) m-connectivity and (vi) cost.

The main contributions in this article are:

e Modelling and formulation of original problems: To
have a holistic approach, we have modelled the deploy-
ment space in a flexible way that manages different
forms and specificities of the deployment space (walls,
doors, obstacles, etc.). Thus, we consider user prefer-
ences (available budget) and existing nodes (preferred or
unauthorized positions). The importance of each metric
is defined according to the nature of the application. The
connectivity assessment is formulated according to the
network topology. Mesh, star and infrastructure topolo-
gies are taken into account. In addition, sensing coverage
is assessed based on the degree of sensing coverage k
and the probability of sensing required. Likewise, con-
nectivity is assessed based on radio propagations and the
degree of connectivity m required

o Development and implementation of a new deployment
algorithm: the algorithm that we have developed and
implemented is based on a multi-objective genetic algo-
rithm and a weighted sum method.

The rest of this article is organized as follows: Section II,
discusses the main approaches in the literature and exposes
existing physical models. The third section presents the
approach proposed within the framework of this work.
The choice of physical models, the used terminologies
and the mathematical formulation of the problem are pre-
sented. Moreover, the proposed GA algorithm is elucidated.
Section IV is reserved for experiments carried out, compar-
isons made between our approach and the approaches studied,
as well as an analysis of the obtained results, followed by a
discussion. In the last section, we summarize the work and
present some future work.

Il. RELATED WORKS

Recently, many approaches of WSN deployment problem
with different assumptions, objectives and models have
been proposed. Main studied approaches are summarized
in Table. 2, in terms of objectives, constraints, used models
and methods. Furthermore, the limitations of each approach
are drawn. More detailed reviews of WSN deployment prob-
lems can be found in [6], [8]-[12]. The list of acronyms
used in this paper is displayed in Table. 1. Most this kind
of problems is often solved using meta-heuristic approaches
[6], [29]-[32] and more precisely using nature-inspired algo-
rithms. As can be seen from Table. 2, among these algorithms,
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TABLE 1. List of acronyms.

Acronym Description
Multi-Objective Optimization of Wireless
MOONGA Network using Genetic Algorithm
CMOOP Constrained Multi-Objective optimization Problem
QoS Quality of Service
WSNs Wireless sensor networks
PSO Particle swarm optimization
GA Genetic algorithm
ACO Ant colony optimization
FPA Flower pollination algorithm
MOEA Multi-objective Evolutionary Algorithms
MMSE Minimum mean square error
NSGA-II Elitist Non-dominated Sorting Genetic Algorithm 2
SPEA-II Strength Pareto Evolutionary Algorithm 2
MOFPA Multi-Objective Flower Pollination Algorithm
FSPL Free Space Propagation Loss model
1SM One-Slope model
MWF Multi-Wall-Floor
MOLFB Multi-Objective algorithms and Levy Flight Bee
BFS Breadth-First Search
GA-BPSO  Genetic Algorithm and Binary Particle Swarm optimization

GA was frequently used. It has been proven to be a perfect
method to solve this kind of problems [33], [34].

Although several studies have done in this field, many
limitations remain to be overcome. Some studies are spe-
cific to either the WSN application or to the deployment
environment. The majority deal with outdoor environments
[35]-[37]. Most often, studies in indoor environments do not
consider real constraints like obstacles (walls, appliances,
furniture, etc.) [19], [28], [38]. Frequently, rectangle environ-
ment shapes are modelled [20], [21]. Several works optimize
placements of either sinks or sensors. Some others consider
a fixed number of nodes. Other approaches are considering
metrics separately [22], [39]-[41].

As can be seen from the Table 2, in terms of used models,
most of the studies simplify the problem by using simplified
models [16], [20], [21], [26]-[28], [39]-[41]. Whereas reduc-
ing problem complexity, by neglecting obstacles or using
simplified models for sensing and connectivity, leads to inac-
curate results. With the aim to obtain reliable and optimal
deployment, models that describe physical phenomenons are
studied in the next part of this section.

Sensing coverage of the network is an important criterion
indicating its performance [6], [42]. It measures the ability of
the network to control physical events and useful information.
This metric depends mainly on sensing capacity of nodes.
Sensing models are classified into two categories: binary
sensing models and probabilistic sensing models. These two
types are illustrated in Fig. 1. Most know models are summa-
rized in Table. 3.

Let D and X be, respectively, the random variable that
designs distance between the sensor and the event and the
random variable, which is worth 1 if there is detection and
0 if not. We denote by p(d) = P(X = 1|D = d) the
probability that an event is detected knowing that it occurred
at a distance d from the sensor. Let R™" and R be respec-
tively the sensing radius of the certainty zone (Zone 1 in

VOLUME 8, 2020



S. E. Bouzid et al.: MOONGA: Multi-Objective Optimization of Wireless Network Approach Based on Genetic Algorithm

IEEE Access

TABLE 2. Summary of WSN deployment optimization approaches.

Approach  Objective Constraints Models Methods Limits
Min power Sensing coverage Gaussian sensing 1-D space
[13] . . . : MMSE L
consumption Sensing distortion model Mono optimization
Min Cost . .
[14] Min Transmission - Number of nodes MOEA Only LoS is considered
- Homogeneous nodes
failure
. Binary sensing
[15] Max sensing coverage and connectivity NSGA-II Unreal models
Max connectivity Homogeneous nodes
model
Max sensing coverage . .
Min cost Binary sensing model Improved Unreal models
[16] . - Sum of working sensor
Min energy . . NSGA-II Homogeneous nodes
3 sensing radius by Aol
consumption
Max sensing coverage . Binary connectivity G.A combined Unreal models
[17] M . Node failures and sensing with a local on
ax connectivity . . Homogeneous nodes
model line algorithm
Max sensing coverage Unreal sensing and
[18] Max connectivity - Binary Models PSO and fuzzy  connectivity models
Max lifetime Homogeneous nodes
Max sensing coverage Binary connectivity Unreal sensing and
[19] Min energy Connectivity and sensing FPA connectivity models
consumption model Homogeneous nodes
. Binary connectivity
Max sensing coverage . NSGA-II R
[20] Max lifetime Connectivity and sensing SPEA-II Simplified Models
. models Homogeneous nodes
Min cost ACO
Number of nodes
Max sensing coverage
Max connectivity Binary sensing model GA N
(21] Min over-coverage ) Number of nodes NSGA-II Simplified Models
Min cost
. Binary sensing model A .
[22] Max sensing coverage Over-coverage One-slope GA Simplified sensing
ax connectivity - Homogeneous nodes
connectivity model
[23][24]  Min nodes k-coverage ~ ~  Binary sensing GA Simplified models
and m-connectivity  and connectivity
[25] Min nodes kecoverage Binary sensing GA-BPSO Simplified models
and m-connectivity  and connectivity
Min un-covered Binary sensing R
26] Min disconnection ) and connectivity MOLFB Simplified models
Min sensor movement Binary sensin
[27] to cover target - ry ng GA/PSO Simplified models
. and connectivity
and sink
[28] Max sensing coverage ~ Number of nodes Homogeneous nodes Modified PSO Simplified models

No obstacles in Aol

Any event within Ry Is detected

*

Zone (1)

Sensor node

(a) Probabilistic model (b) Binary model

FIGURE 1. Sensing models.

Fig. 1a) and the maximum sensing radius. For probabilistic
models, an event that occurs at a location in zone 1 is certainly
detected. In the second zone, events sensing is described in
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probabilistic law as described in Table. 3. Whereas, all events
in the third zone are not detected.

Network connectivity, as its capacity to transmit
information [6], [48], depends on the topology of the net-
work and the radio propagation. In any environment, radio
propagation depends on the transmission power, transceiver
sensibility, used antenna, frequency as well as the deployment
environment. Although radio propagation in indoor envi-
ronments is similar to outdoor environments, indoor prop-
agation has some specificities and is more critical. Several
obstacles are present in such environments (walls, furniture,
etc.) which intensify attenuations. Indoor spaces are usually
smaller. However, higher computational effort per spatial unit
is required.

Radio propagation models are mainly classified into three
types: deterministic, stochastic and empirical models. As for
sensing models, the most used model in literature is the binary
model because it facilitates analysis [49]. Deterministic
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TABLE 3. Summary of sensing models.

Models Equations Parameters Remarks
] - Simple and ideal
Binary model (d) = 1 if d<R™™ = R™A® d: Dist - The most used model
[20, 21, 43] pla) = 0 else - ¢ Listance - Do not represent the
real sensing capacity
Pol ial model L ifd<Rmm
olynomial mode p(d) =< 75 elseif R™™ < d<R™O® - d: Distance - Consider sensor hardware
0 else - o sensor hardware configuration
- ; - B sensing quality:
. 1 if ngm”_L 1<B<a.

Exponential model p(d) = { el=2d) elseif R™" < d<RMaw

0 else

1 if d< RN Consid ) '

_ 107 10g (ra) ] ) D - Consider environmenta

Shadow-Fading model  P(@) = | Q(—27F52) elseif R7in < d<Rmer - EDsance | congitions (empirically)
[44, 45, 46] 0 else P P - Shadowing effects

2
avec Q(z) = %ﬂf;ﬂx} e<Ty)dy

- o shadowing parameter

(obstacles)

1

if d<R™

Elfes model ) - d: Distance - Realistic sensing capacity
(46, 47] p(d) = e—V(d—R™™PB  jee if RMin < d<Rmaw -~y and 3 sensor - Can express binary model
’ 0 else parameters - Considers uncertainty
TABLE 4. Summary of radio propagation models.
Models Equations Parameters Remarks
PL(d) = 20 logio(d _
@ @) - d: Distance between the 2 antennas Fundamental model
FSPL + 20 log1o(f . - Ideal model
910 fF
- f: Frequency ] .

[52, 56] An - ¢ Speed of licht Considers only

+20 loglo(?) - oP = Line of Sight

. - Power decreases
1SM PL(d) = PL(do) -do: Reference distance (1m) logarithmically
57] - d: Distance between the 2 antennas Does not consider
L +10.n.log(d) - n: Environment path loss exponent i-n dggi pﬁerfgrrfenz
PL(d) = PL(do) - do: Reference distance (1m)
-d: Distance between the 2 antennas Considers th
+10.n.log(d) - n: path loss exponent ;Cc(l)lﬁiﬂztrisotn Zf
I Ky - L;;;“: attenuation of the k*" wall of type 4. attenuation due to
1[\;[;’;/1: + Z Z L3y -L ik attenuation of the k4" floor of type j. walls and floors
i=1 k=1 - I, J: respectively the numbers of penetrations.
J Ky ; wall and floor types. - Simple to
+ Z Z Ly -K¥, K Jf : respectively the number be implemented
j=1k=1 the i*" and j*" type of walls and floor.

models are the most accurate ones. They simulate the real
phenomenon of radio wave propagation. Although their
high accuracy, they are greedy in terms of computing time.
Ray-Tracing [50] and Ray Launching [51] models are the
most widely known ones [52]. In these models, environment
complexity highly influences the computation time. Empir-
ical models are based on statistics and measurements. They
are usually constructed after measurements in some typical
environments. Regarding stochastic models use one or more
random variables to model the random aspects of radio chan-
nels. They are easy to implement. Nevertheless, they have a
low precision level. Rayleigh and Rice models are commonly
used models [53], [54].

In literature, the most used propagation models are empir-
ical ones more precisely the FSPL, the 1SM and the MWF
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model [55]. We denote by PL(d) the path loss for a distance
d separating the sender and the receiver. These described
models are summarized in Table. 4.

ill. PROPOSED APPROACH
In order to propose an efficient approach that solves WSN
deployment optimization, precise modelling of physical phe-
nomena and rigorous mathematical formulation are required.
For this purpose, we start by defining the deployment space
and modelling the WSN. Then, we perform a mathematical
formulation of different metrics to be optimized.
A list of symbols used in this paper is displayed in Table. 5.
Notation 1: Let X be a set, and A is one of its subsets. The
characteristic function of A is the function 14 : X — {0, 1}
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TABLE 5. List of Notations.

Notation Designation
1Al Number of elements of
the set A
1 The characteristic function
A of the set A
P(A) Subset of A
o Cell with centroid at (i.j)
©J in the 2D plan
N j A node installed in ¢; ;
s Sensor node
sk Sink node
Rmin Sensing radius of the certainty
RMa® Sensing radius of the uncertainty
RX Sensitivity
TX Transmission power
Sk Set of sink nodes
S Set of sensor nodes
O k" Obstacle
Qo Set of obstacles
RSS Received Signal Strength
d(ni j,nir 1) Euclidean distanc.e between
R Y node n; j and point n;/
Tij Installation cost at the position (4, 7)
Ts Cost of a sensor node
Tsk Cost of a sink node
PL(n; j,ny jr) Signal path loss between
n;,j and ngr g
P A population (set of individuals)
defined by:
1 ifxeA
o=t Y ()
0 else

Notation 2: We denote by Oy (n;j, ny j) the function that
evaluates if the line between the node n;j and the node ny j
is obstructed by the k™ obstacle.

1 if Obstructed
0 i, Ny i) = 2
k(”z,] n; ,]) 0 else 2

A. PHYSICAL MODELS AND PROBLEM FORMULATION
1) SPACE AND NETWORK MODELLING
Real environment is divided into 1m? squares called cells.
The deployment space, denoted by C, is modelled as a set
of cells. A cell, denoted by c; j, represents the elementary
entity of space. We assume that nodes can be installed at
the centre of these squares (i, j). In a heterogeneous network,
each node has its characteristics. We distinguish two types of
nodes: sensor nodes, denoted by s; ;, and sink nodes, denoted
by sk; ;. sk;; are defined by the triplet (RX;j, TX; ;, 7; ;) and
s; j are defined by (Rl’.t’]?", R;’f;’x ,RX; j, TX; j, Tij). Any cell ¢;
of the deployment space C can contain a sink node and/or
a sensor node. So, formally, cell occupation is be defined by
the following four possibilities:
e c¢;j =< sk;j, sij >, when the cell contains the sink sk; ;
and the sensor s; ;.
e ¢;j =< sk;j,null >, when the cell contains only the
sink node sk; ;.
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FIGURE 2. Example of deployment space.

e ¢;j =< null,s;; >, when the cell contains only the
sensor node s; ;.

o c;j =< null, null >, when the cell does not contain any
node.

From cells occupation, we build the set of sensors S and the
set of sinks Sk. Formally, Sk and S are defined as follows:

oSk = {Sk,"j where < Ski’j,* > € C}
oS = {Si,j where < *,s;;> € C} 3)

These two sets form our WSN. So, the network, denoted by N,
installed in C, is formally defined by N = Sk U S.

2) EXAMPLE

Fig. 2 illustrates an example of a simplified deployment
space. We consider that our space is 3 x 2 meters space
and we have two sensors and one sink node installed. The
deployment space in Fig. 2 is modelled as follows:

e ci1 =22 =c3,1 =< null, null >
e c1o=<null,S1 >
e 32 =<null,S2 >
e 1 =< Sk, null >

The deployment space may contain different obstacles.
These obstacles affect radio propagation and sensing capac-
ity. An obstacle can be any object that can lead to an attenu-
ation of the radio propagation or sensing blocking when it is
crossed. Formally, an obstacle, denoted by O, is characterised
by its 2D coordinates in the deployment space, its geometric
shape and its attenuation in dB.

3) NETWORK SENSING COVERAGE

Network sensing coverage metric is based on the physical
sensing model. In this part, physical models are discussed
to choose the most precise one. Different model parameters
will be determined through experimentations in order to meet
up the real sensing phenomena of the used sensor. Once the
model is configured, it will be used to formulate the network
sensing coverage.
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FIGURE 3. VMA314 PIR sensor.

TABLE 6. Sensing models evaluation.

d (m) Real sensing probability  Elfes Model
[0-4] 1 1

4.5 1 0.99
5 0.9 0.905
55 0.8 0.783
6 0.6 0.632
6.5 0.5 0.472
7 0.3 0.326
7.5 0.2 0.207
8 0.1 0.121
8.5 0.1 0.065
[9 - +00] 0 0.088

a: STUDY AND CHOICE OF SENSING MODEL

From the models summarized in Table 3, the binary model
does not represent the real sensing capacity of sensors. Real
sensors do not provide the same sensing capacity in every
direction. For this reason, the probabilistic models are more
accurate. From probabilistic models, we choose the Elfes
model. This latter represents a more realistic sensing capacity
as it takes into consideration sensing degradation in terms of
distance and hardware parameters of the sensor. Moreover,
itintroduces the sensing uncertainty. Sensing probabilities are
calculated for different distances to determine the certainty
radius R™", maximum sensing radius R and the hardware
parameters y and S of the sensor. The used motion sensor is
a VMA314 PIR sensor (Fig. 3).

We varied the distance between the sensor and the events
to be detected (motion) from 0.5m until the sensor becomes
unable to detect the events with as a step of 0.5m. 20 measure-
ments are taken for each distance to estimate the sensing prob-
ability determined. Table. 6 illustrates real measurements.

Referring to Table 6, which illustrates real measurements,
we record the following values: R™" = 4 and R"™* = 8.5.
In order to match real measurements, y must be equal to
0.1 and B = 2.2. Therefore, the sensing probability for Elfes
models becomes:

1 if d<R™Min
e—041(11—4)2'2 else if Rmin < demaX (4)

0 else

pd) =

b: SENSING COVERAGE FORMULATION

To make our solution adaptable and more flexible to applica-
tion specifications, we evaluate sensing coverage according
to network designer preferences. A cell in the deployment
space C is supposed to be covered if its centre is covered by
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at least one sensor node. Let peoy, p(d(cij, sy j7)) be respec-
tively the acceptable sensing probability fixed by the network
designer and the sensing probability of a cell ¢; j by a sensor
sy y based on equation (4). €2 is the set of obstacles present
in the environment and O is an obstacle in 2. Formally,
we evaluate the capacity of the sensor s y to cover the cell ¢; j,
based on the sensing model, as follows:

1 ifp(d(ci,j: Si’,j’) = Pcov
and O(cij, sy j) =0
YO, € Q

0 else

&)

a(cij, sy j) =

According to equation (5), we evaluate the set of covered
cells by the sensor s; j, denoted by ¢(s; ;). Formally, ¢(s; ;) is
given by the following function:

¢:S — 20)
Si,j — {Ci’,j’ € C,C((C,'/’j/, Si,j) = 1} (6)

Respectively, we define the set of sensors covering a given
cell ¢; j denoted by ¥ (c; ;).

v C = PS)
cij = {sij €S, alcij,sij) =1} @)

The sensing coverage of the entire space C, denoted by %,
is the ratio between the number of covered cells to all cells.
Let C and N be respectively the set of cells and the set of all
nodes where N = Sk U S and ¥ is given by the following
equation:

E(N) = % U oG ®)
i j€S

A cell can be covered by more than one sensor. In this case,
we have redundant sensing coverage. Generally, this coverage
redundancy must be minimised to avoid energy waste and
decrease WSN cost. Keeping in mind that the sensor nodes
are prone to failure, and some applications require redundant
sensing coverage such as volcanic monitoring, we need to
cover cells by k-sensor nodes. k is called sensing coverage
degree. By ensuring a k-coverage degree, the deployment
space remains covered even if k — 1 nodes fail. Let C, k be
respectively the set of cells and the required sensing coverage

degree. Formally, k-coverage is evaluated as follows:

QO = o ¥ Tssat (90 ©)
C,',.,'GC

If k = 1, ¢x = €. If cells are covered by more than
k sensor nodes, we have unnecessary sensing coverage or
sensing coverage redundancy. For that, we evaluate sensing
coverage redundancy. Let C and k be respectively the set
of cells and the required sensing coverage degree. Sensing
coverage redundancy, denoted by Zx(C), is calculated as

follows:

1
ZC) = > rteipl — k| (10)

c,-,jeC
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FIGURE 4. ESP32 development kits.

4) NETWORK CONNECTIVITY

Network connectivity metric depends on the radio propaga-
tion model. Accordingly, the most used models in the liter-
ature are studied via real measurements. The most precise
one will be chosen and adapted, after real measurements and
evaluation. The selected model will be then used for network
connectivity formulation.

a: STUDY AND CHOICE OF RADIO PROPAGATION MODEL
From already presented radio propagation models in
section II, we retain the most used ones in literature (FSPL,
1SM, MWF). First, real measurements of RSS and theoretical
values for the retained models are carried out and compared.
Experimentations are done using ESP32 development Kkits.
This module has a Wi-Fi transceiver with 2.4 GHz frequency.
It provides a transmission power of 0 dBm, and reception
sensitivity equals to —92 dBm. The hardware component is
depicted in Fig. 4.

Fig. 5 illustrates the 13 tested positions and installation
environment. Point A is defined as the transmitter node, and
all other nodes are receivers. We fixed our transmitter at the
point: (1, 4). Then, we acquired the RSS values for different
tested positions.

The MWF model is modified to consider not only existing
walls and floors but also crossed obstacles. The path loss
between n; j and ny y, denoted by PL(n; j, ny j), is calculated
as follows:

PL(n;j, ny jy) = PLo + 10 n log(d(n; j, ny j))

120
+ ZA(Ok). Ok(ny, n2)
k=1
— Gry — Gpy (11)

where:

e PLy: the attenuation at reference distance dy = 1 meter.

e 1: the path loss exponent.

e A(Oy): attenuation due to k™ obstacle. It is built empir-

ically (See Table 7.).

e Gry, Gg, : transmitter and receiver antenna gains.

It can be seen that our space contains many obstacles.
In order to have more accurate results, we measured different
attenuation values caused by present obstacles. In figure 5,
different lines represent different walls. Bolded lines repre-
sent thick walls and circles are glass obstacles. The obtained
attenuation values are given by Table. 7.

For FSPL path loss exponent 7 is equal to 2. In the same
floor, 1SM assumes a value of 1 equals 4.56. For our modified
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FIGURE 5. Tested positions.

TABLE 7. Obstacles attenuation.

Obstacle Thickness (cm)  Attenuation (dBm)

Wall 20 2

Bolded wall 30 4

Glass 4 6

TABLE 8. Path loss evaluation.
Location d (m) Measurements Error (%)
RSS(dBm) FSPL 1SM our modified MWF
Ref 1 -34,05 0 0 0

B 3 =554 21,31 0,46 12,22
C 6 -55,9 11,25 23,97 3,30
D 8 -55,35 5,85 35,41 1,71
E 8,94 -65,95 19,51 16,98 1,18
F 11,31 -66,75 17,42 22,50 0,38
G 13,6 -70,05 19,02 21,91 1,99
H 17 -64,35 8,85 39,51 10,62
1 18,78 -78,55 24,22 16,80 8,37
J 20,61 -79.,45 24,06 17,78 0,31
K 22,47 -79,35 23,02 20,06 1,28
L 24,51 -83,8 26,21 15,73 3,28
M 28,16 -81,35 22,50 22,56 0,95
N 32,01 -75.9 15,48 34,70 9,53

MWF model, we suppose an exponent equal to 1.8. Table. 8
illustrates the mean error (%) of tested models for each loca-
tion. Fig. 6 depicts predictions of the RSS (dBm) according
to models versus real measured RSS.

Referring to Table. 8 and Fig. 6, we conclude that FSPL
assumes propagation in an ideal environment without consid-
ering obstacles which explain the high error values comparing
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FIGURE 6. Models predictions vs. Measured values.

to real RSS measurements. 1SM is adjusted according to
empirical data, but it fails to predict the RSS. The modified
MWEF model presents better RSS predictions and so, it was
chosen. We denote that 5 values are determined according to
[59] recommendations to fit indoor and outdoor environment
characteristics.

b: CONNECTIVITY FORMULATION

WSN should ensure an efficient and reliable transmission
of detected data. To avoid losing information, it is neces-
sary to connect nodes according to network topology [48].
Connectivity is evaluated according to Received Signal
Strength (RSS) calculated at the receiving node. In our study,
as this measure depends on the Path Loss (PL), it will be
calculated based on the modified MWF radio propagation
model. Two nodes are connected if the RSS calculated at the
receiver is greater than its reception sensitivity.

Let n; j and ny j be respectively the sender and the receiver
nodes from N (sensor or sink). 7X;; and RXy j are respec-
tively the transmission power of n; ; and the reception sensi-
tivity of ny . PL(n;j, ny j) is the path loss between n; ; and
ny j. The RSS calculated at ny y and sent by n; j, denoted by
RSS(ny j, ni ), is calculated as follows:

RSS(ny . nij) = TXij — PL(nijonzy) — (12)

Based on RSS values evaluated between different nodes,
we represented our WSN as a graph G = (N, E) where:

N =S8kUS
{n,-,j, ni/’j/} € P5(N) where:
RSS(n,'/,j/, ni’j) > RX,'/J'/
and RSS(n;j, ,ny j) > RX;

E= (13)

Accordingly, we define for each node its neighbours.
Nodes’ neighbours are the nodes present within its
transmission range. Let N be our WSN and #; ; is a node in N
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FIGURE 7. Mesh topology.

(can be either a sensor or a sink). Formally, ; ;’s neighbours,
denoted by n(n; ;), can be defined as follows:

n:N — P(N)

nij — {n,‘/,j/ EN, {n,;j, n,-/,j/} [S E} (14)
¢: TOPOLOGY FORMULATION
In order to propose a generic solution, WSN connectivity
evaluation will be calculated depending on the network topol-
ogy expected by the WSN designer. Mesh, star and tree
infrastructure topology are supported. We define A as the
evaluation function of connectivity. A is formulated accord-
ing to the expected topology. In a mesh topology, each node
must have at least two neighbours. Moreover, every pair of
distinct nodes has a path between them. Mesh topology is
illustrated in Fig. 7.

The connectivity function for mesh topology is evaluated
as follows:

A:N — [0O,N —1]
B(G. n)
AN) = > U (i)

|N| n,-.jeN

15)
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FIGURE 8. Star topology.

FIGURE 9. Infrastructure topology.

In a mesh topology, it is possible to have more than one
path from a node to another. This characteristic enables fault
tolerance and allows decreasing WSN’s loading. For that,
we define, k-Mesh connectivity. k-Mesh connectivity func-
tion is as follows:

1
AN = g5 22 L] (@) (16)
n; ;€N

Likewise, we evaluate connectivity in a star topology.
As can be seen in Fig. 8, each sensor node must be connected
to the sink node. Only the sink has more than one neighbour.

Let N be the set of all nodes where N = Sk U S, and n;
be a node in N. The corresponding connectivity function for
star topology becomes as follows:

1
A(N) = 5 > ]1[1,\Sk|[ (InGsij) N Sk) (17)
i j€ES

In infrastructure topology, each sensor is connected to at
least one sink and, sinks must be connected. Fig. 9 shows an
example of nodes organisation in this topology.

Let N be the set of all nodes where N = SkUS. n; jis anode
in N. The function evaluating connectivity in an infrastructure
topology is described in equation (18).

1
AN) = W[ Z ]l[l,ISkl] (n(sij) N Sk)

S,‘JES

+ > U sel] (n(sk,-,,-)mSk)] (18)

Skl"jESk

5) COST
Cost is an important metric that should be reduced as low as
possible while deploying WSN [60]. Reducing the number of
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nodes leads to maintaining the cost-effectiveness of the WSN.
Each node has a cost, including its production, deployment
and maintenance. The deployment cost is calculated as the
sum of purchase and installation cost of all sensors and sinks.
Node cost depends on node placement and its type. The cost
of the WSN is calculated by the following equation:

TNy =Y (uj+z)+ > (tj+za) (19

i j€ES sk; jeSk

With this formulation, the heterogeneity of nodes is con-
sidered. 7; ; depends on the node placement. Some positions
are difficult to access compared to others. For example,
7;; can be expressed in term of the height of placement
position.

6) CMOOP FORMALIZATION

Already modelled metrics allow evaluating QoS of WSN.
In order to find optimal WSN, our problem is formulated as
a maximization and minimization problem of these metrics.
In our formalization, we define a constraint related to the
available budget, which is specified by the network designer.
The cost of the provided solution should not exceed the
specified budget. Similarly, we define constraints related to
k-coverage and m-connectivity degrees. Another constraint
related to graph connectivity is defined. To ensure the graph
connectivity, we used the BFS algorithm [61] for exploring
our graph. This function, called BF'S, takes as input an arbi-
trary node n and the graph G = (N, E). It returns a set
of all visited nodes. We denote by S(G, n) the function that
evaluates if a given graph G is connected or not. Formally,
B(G, n) is calculated as follows:

1 if BFS(G,n) = |N|

p(G.n) = 0 else 20)

Our CMOOP is formalised as follows:

Max A(N) ,equation (15 — 18)
Max €(N) ,equation (8)
Objectives { Max 6x(C) , equation(9)
Min Z(C) ,equation (10)
Min T'(N) ,equation (19)
['(N) < Budget_Max
k = required k-coverage degree
Constraints . o 21
m = required m-connectivity degree
B(G,n) =1

These defined objectives are counterbalanced. Increas-
ing sensing coverage requires more nodes [60]. Moreover,
decreasing the sensing coverage redundancy can lead to con-
nectivity holes. In order to address this counterbalance issue,
we combine the multi-objective optimization with a second
fitness function based on the weighted-sum method, which
allows us to set the importance degree of each objective.
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FIGURE 10. Genetic algorithm flowchart.

A weighted-sum fitness function (equation 22) indicates how
a solution can satisfy all objectives.

F(S) = wi.AN) + wr.E(N) + w3.%x(C)
—w4.Zi(C) —ws.T'(N) (22)

S is the set of solutions, and w; is the weight of i objective.
This weight depends on user preferences which vary from
one application to another. It indicates the importance of each
objective in the evaluation of the final solutions.

In our approach, we combine these two optimization meth-
ods in order to have a more flexible and holistic solution.

B. PROPOSED OPTIMIZATION ALGORITHM

After validating models to be used and formulating the WSN
deployment problem, the next step consists of finding the
optimal solution. The algorithm that we propose is based
on the genetic algorithm which has proven to be the most
effective means for solving problems for which there is no
exact method, or that the solution is unknown, for the res-
olution within a reasonable time [33], [34]. It relies on the
bio-inspired processes of natural evolution. In this algorithm,
possible solutions are called individuals. The set of individu-
als, denoted by P, forms a population. Fig. 10 illustrates the
genetic algorithm process.

Initially, we start with a set of randomly created individu-
als. Then, we evaluate individuals, and we identify the best
ones. With this approach, the best individuals survive. They
are crossed and mutated to create a new generation. Old
generation and the new one are challenged to have a place
in the next generation. By replacing the weakest individuals,
we improve the average performance level. We iterate for a
defined number of generations. In a CMOOP, finding a global
optimal solution is very less probable than one objective opti-
mization problem. For that, we combine sum-weighted objec-
tive function and NSGA-II selection operator [62]. To be
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FIGURE 11. Individual representation.

able to apply the genetic process, we must adapt individual
representation to our problem.

1) INDIVIDUAL CODING

We represent an individual as a vector with size equals to the
number of cells |C|. If we consider the deployment space
illustrated in Fig. 2, the individual corresponding is to this
example is represented as in Fig. 11. Each element of this
vector is a gene, and it represents a cell of the deployment
space C.

2) DIFFERENT OPERATORS

a: INITIALISATION

In GA, the first step is to initialise the first population Py.
A population P is defined as follows:

P = {Indivy, Indiv,, ..., Indiv) } (23)

Py is created randomly. In our proposed solution, initial-
isation consists of deploying some nodes arbitrary in the
deployment space.

b: SELECTION

Selection operator consists of choosing individuals that will
participate in the reproduction. Several operators exist (ran-
dom selection, best selection, worst selection, roulette wheel
selection, etc.). In a multi-objective problem in which we try
to optimize several contradictory objectives, we will use two
selection operators. NSGA-II selection operator [62] is used
to select parents from the Pareto front that well participate
in the next generation. These parents participate in the repro-
duction phase. Moreover, we used the elitist selection to find
the best individual according to equation (22).

c: CROSSOVER

The general idea of the crossover process is the exchange of
some genes between parents. This process helps to explore a
new area of research. In our approach, we adopt the one-point
and two-point crossover strategy (Fig. 12). The crossover
points are chosen arbitrarily. We select R..|P| best individ-
uals from P where R, is the crossover rate. These individu-
als are crossed. Two crossed parents generate two children.
In Fig. 12, we illustrate the one-point crossover process.

d: MUTATION

Mutation consists of modifying some genes. This operator
helps to maintain diversity, but it can also disrupt algorithm
convergence. We mutate individuals with a mutation rate Ry,.
R,,.|P| best individuals are mutated. A gene of each selected
individual can be mutated with a probability P,,. We have
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TABLE 9. Impact of Rc and R on fitness values.

Rm N Re 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9

0.1 0.853 0908 0908 0989 1005 0935 0946 0946 0978
0.2 0.859 0.880 0935 0.880 0.880 0951 0978 0951 0.967
0.3 0.848 0962 0946 0940 0967 0973 0946 1.016 1.000
0.4 0.821 0929 0902 0864 0913 1071 0940 0897 0.984
0.5 0.821 0.897 0897 0946 0967 0918 0940 0978 0.940
0.6 0940 0946 1.043 0946 0929 0913 0962 0962  1.000
0.7 0772 0918 0918 0913 0891 1.005 108 1.000 0.984
0.8 0.837 0918 0870 1.000 1.054 0967 0940 0913  1.000
0.9 0.810 0935 0913 0978 0940 1065 0967 0957 0.989
11 G 31 1.2 22 32 Impact of R_and R_, on fitness values
'nullnull Sk, null [null, nul [S,nutl ffnutt, nuit [S,, nunl | i s
Parent 1 Crossover point
's'unull [null, null [null, null [nuibnul s, nutl [nuil, nuil |
Parent 2
Crossover
'nullnull | Sk, null |null, null [S,,null [§75, null | null, null | g
Child 1 =
'S'.null [null, null [null, null [nullaull | nuil, null [S,, nuil | _
Child 2 v 05 &
ol o 03 &
FIGURE 12. Example of the crossover process. Crossoye. ™ 05 o, ’ &\0“
e"ﬂatem:) ® 01 gy s 01 S
. Randzp,.. LRand>P.... Rand>P,, FIGURE 14. Impact of crossover and mutation rates on fitness values.
Enullnull ;| Sk, null [ null, null §S,null i [null, null |8, null i

...............

i g -

Add node Remove node Move node (A=-1)

'S.null [Sky, null [null, null [null,null Sy, null [null, null |

FIGURE 13. Example of the mutation process.

developed two mutation operators. The first add/remove
node randomly. The second mutation operator changes the
position of a deployed node by adding or subtracting a
random value A. Proposed mutation operators are illustrated
in Fig. 13

3) HYPER-PARAMETERS OF THE PROPOSED GA

After presenting different operators, genetic parameters of
the proposed algorithm must be studied in order to find the
optimal solution and minimising the execution time.

a: CROSSOVER AND MUTATION RATES

The choice of R, and R, critically affect the performance
and the behaviour of the algorithm. To choose the fittest
probabilities, we vary R, and R, from 0 to 1 with a step of 0.1.
For each couple (R., R;), we save the mean fitness value
and the mean execution time of ten executions (10-Cross-
Validation). Studied deployment space and input parameters
are the same for different simulations. We run the algorithm
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TABLE 10. Impact of Rc and Ry on execution time.

(Re, Rin)
Time (s)

0.3,0.6)
363.283

(0.5,0.8)
628.992

(0.6,0.4)
687.738

(0.6,0.9)
761.264

(0.7,0.7)
832.318

for 300 generations. Table. 9 summarizes the obtained fitness
values of the best solution.

Fig. 14 presents the impact of crossover and mutation rates
on fitness values.

According to Table. 9 and Fig. 14, we have some alter-
natives as high with near values (Bold-formatted couples).
To choose the best couple, we compare execution time.
Table. 10 shows the execution time for these couples. Accord-
ingly, the couple (0.3, 0.6) has the lowest execution time. So,
it will be chosen as it represents a trade-off between fitness
value and execution time.

b: MUTATION PROBABILITY
From each population, 60% of the population P is selected for
mutation. A gene of each selected individual is mutated with a
probability P,,. This parameter influences the convergence of
the proposed algorithm. Tested probabilities and the obtained
results are summarized in Fig. 15.

Referring to Fig. 15, the highest fitness value is obtained
with P, = 0.15. Execution time is not highly affected by this
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FIGURE 15. Impact of mutation probability on fitness and execution time.
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FIGURE 16. Impact of population size on fitness and execution time.

parameter. This is due to the process of mutation. It consists
of swapping two value or a simple variable assignment.

c: POPULATION SIZE

Population size is another parameter that influences GA con-
vergence. To choose the optimal population size, we run
simulations with different population sizes. We tested pop-
ulations from 10 individuals to 100 individuals with a scale
of 10. Fig. 16 shows the influence of population size on our
algorithm.

As illustrated in Fig. 16 for population sizes higher than
40 individuals, the fitness value remains more or less stable at
0.9. In the other side, more individuals mean more GA oper-
ations (selection, crossover, mutation, evaluation) and then
more execution time (s). To ensure a compromise between
fitness and execution time, population size is fixed to 40.

d: MAXIMUM NUMBER OF GENERATIONS

Our algorithm converges when it reaches a maximum number
of generated iterations. The execution time of the algorithm
increases proportionally with this maximum number of gen-
erations. To evaluate the influence of this last parameter on
the convergence of our algorithm, we vary this number from
10 to 180 generations and, for each variation, we execute
the algorithm ten times. According to Fig. 17, we found
that our algorithm converges when the maximum number of
iterations generated is around 90 iterations. We thus consid-
ered, while remaining cautious, that the best value will be
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FIGURE 17. Impact of maximum generation on algorithm convergence.

TABLE 11. GA configuration.

Parameters R. Rm P Max_Gen
Values 03 06 015 100 40

Pop_Size

fixed at 100 iterations. Table 11 illustrates the appropriate
values of the parameters for our approach after evaluation of
the parameters, execution time and iteration of convergence,
which influence the optimality of our algorithm according to
the solution obtained.

Table. 11 summarizes the suitable parameters for our GA
optimizer.

Algorithm 1 shows the pseudo-code of the proposed GA.

IV. EXPERIMENTATIONS AND ANALYSIS OF RESULTS
Before running simulation, WSN designer must specify dif-
ferent parameters such as the deployment space dimensions,
its characteristics, node characteristics, the used protocol,
the desired topology and designer preferences (importance
of each metrics, preferred or eliminated positions). These
informations are formatted to represent individuals which are
the entry of our hybrid algorithm. Individuals are processed
and evaluated according to different models until the end of
iterations (Maximum number of generations). It returns the
optimal solution that satisfies different constraints (available
budget, k-coverage and m-connectivity degree, etc.). The
simulation process is illustrated in Fig. 18.

Our optimizer is developed in python. We used Python
DEAP library under ‘“PyCharm” development environment.
Our tool is executed in a PC with an Intel Core 7-5500U,
2.4 GHz processor and 8 GB of RAM. The simulated deploy-
ment space consists of a 225m?> area. It is a corridor in
the National School of Engineering of Le Mans University
(ENSIM), as shown in Fig. 19.

In the first part of this section, we evaluate the efficiency
of our proposed algorithm with different deployment problem
instances (topology, k-coverage, m-connectivity and sensing
probability). Then, we validate the effect of weights and user
preferences on the solution. In the second part, we present a
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Algorithm 1 Proposed Optimizer Based on GA

input : C, pop_size, R;, Ry, Ppy:
output: Best solution
1 Function computeFitness (individual, type, cells) :

2 N,E < CreateNet (individual) ;

3 if (type == NSGA-II) then

4 ‘ fitness<— AN), €(N), ¢k(C), % (C), '(N) ;
5 else

6 L fitness < .Z (cells,N) ;

7 | return fitness ;

8 begin

9 k<0;

10 Py < Initialize (pop_size);

11 foreach i € P do

// create network (eq.3)

// (eq.15, 8, 9, 10, 19)

// (eq.22)

// initialize the first population
// of randomly-created individuals

// Evaluate Py
12 i.fitness<«— computeFitness (1i,NSGA-II);
13 i.global<—computeFitness ((i,Elite));
15 while k< max number of generations do
16 elite<—selectElite (P, Z5%°); // Elite selection based on i.global
17 nonDominant<-selectNSGA (Pk, I%W) ; // NSGA-II selection based on i.fitness
18 Pj41 < elite + nonDominant ; // Insert in the next generation
19 childrenCx<—selectNSGA (Py, %.|P|) | selectElite (Px, 5.|Pc|);
20 childrenMut<—selectNSGA (P, 1%.|Pk|) | selectElite (P, 1%.|Pk|);
21 childrenCx<—mate (childrenCx);
22 childrenMut<«—mutate (childrenMut);
23 foreach child in (childrenCx | J childrenMut) do
24 child.fitness<«— computeFitness (i,NSGA-II);
25 child.global<—computeFitness ((i,Elite));
26 Piy1 <~ P U {Child};
27 k <—k+1,

28 return selectElite (Pg, 1);

TABLE 12. Definitions and values of simulation parameters.

Parameters Designations Values
TX(dBm) Transmit power 0
RX(dBm) Reception sensitivity —92
Gr2z, GRro(dBm) Antenna gains 0
R™I™ (m) Min sensing radius 4
R™** (m) Max sensing radius 8.5
7 Path loss exponent 1.8
Ts Sensor node’s cost 0.5
Tsk Sink node’s cost 0.5
Tij Installation cost 0.5
w; Objectives weights 1
k Coverage degree 1
m Connectivity degree 1

comparison of the obtained results to other works. We repre-
sent the simulation parameters in Table 12.

In the following, we evaluate different options of our tool
in order to prove its effectiveness. We configure our tool to
run 10 instances (10-cross validations) for each described
simulation.
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A. TOPOLOGY EVALUATION

For the first simulation (Sim n°1), the objective is to mon-
itor all events in the area of interest. Mesh topology will
be adopted. The proposed solution is illustrated in Fig. 20.
Our proposed tool suggests a WSN with 7 nodes. Blue dots
represent sensors. For this simulation, the WSN contains
1 sink and 6 sensors. This WSN ensures 174 covered cells
with 10 over-covered cells. All nodes are fully connected in
a mesh topology.

In the second simulation (Sim n°2), we configured our
simulator to generate a star topology. The parameters are
the same as previous simulations. The obtained solution is
illustrated in Fig. 21. The red dot represents the sink node. For
this simulation, 8 nodes are deployed; 1 sink and 7 sensors.
This WSN ensures 175 covered cells with 3 over-covered. All
nodes are fully connected.

One more topology is evaluated. This time, we evalu-
ate the infrastructure topology (Sim n°3). With the same
parameters, the obtained solution is shown in Fig. 22.
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FIGURE 18. Components and relation process of the proposed solution.
TABLE 13. Simulation results for different topologies.
# Option Connect(%) m-Conn(%) Conn_Red(%) Coverage(%) k-Cover(%) Cover_Red(%) Cost(#)
Avg  Best Avg Best Avg Best Avg Best Avg Best  Avg Best Avg  Best
1 Mesh 100 100 100 100 89.5 85.7 95.8 96.7 95.8 96.7 7.3 2.7 7.3 7
2 topology Star 100 100 100 100 0 0 93.1 95.1 93.0 95.1 7.5 1.6 8.3 8
3 Infrastructure 100 100 100 100 0 0 93.1 95.1 93.0 95.1 7.5 1.6 8.3 8
4 Existing lighting nodes 100 100 100 100 0 0 89.5 89.1 89.5 89.1 38 7.6 1.6 1

Fig. 22 illustrated how different nodes are perfectly deployed.
Simulation results of the infrastructure topology show that
our tool converged at an optimal solution. It ensured a high
sensing coverage rate 99 (only two cells are not covered)
and with a low coverage redundancy. All sensor nodes are
connected to at least one sink node (AP) and sink nodes are
connected.

In the fourth simulation (Sim n°4), our WSN will be ded-
icated to an installed lighting network. The existing lighting
system contains 13 light sources. These lighting units have
predefined and unchangeable positions. Obviously, while
having existing nodes, it is more economical to combine
nodes when it is possible. We consider that these actuators
have the same radio frequency specifications of other nodes.
The obtained results are shown in Fig. 23.

In Fig. 23, green dots represent pre-installed light sources.
Our tool suggests implementing 8 nodes. Node represented
by a red dot is supposed to be a sink. 7 sensors are pro-
posed to cover the area of interest. 164 cells are covered by
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these 7 sensor nodes and 14 cells are over-covered. In this
situation, only one extra RF module is needed (6, 28). In the
suggested WSN, a sink node and 6 sensors are placed at the
same positions of lighting nodes. Prefixed lighting nodes are
included in connectivity evaluation, and the proposed WSN
is fully connected. The obtained results are compatible with
the previously described economic approach. Table. 13 sum-
marizes obtained results for different simulations. Different
simulations presented in Table. 13 prove the effectiveness
of our proposed approach. It takes into consideration the
required topology and existing nodes.

B. USER PREFERENCES EVALUATION

More experimentations were done in order to evaluate the
k-coverage and m-connectivity metrics. For the following
simulations (Sim n°5 — 6), we move from 2-Mesh connec-
tivity degree to 3-Mesh degree. We need to ensure that each
node is connected in a mesh topology to at least 3 other nodes.
To ensure this condition, nodes have to get closer to each other
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FIGURE 19. Deployment space.

when it is possible or adding some extra nodes. Fig. 24 shows
the obtained results. Results show that all nodes have at least
three neighbours. In Sim n°6, nodes are closer to each other
compared to Sim n°5) which ensured 3-Mesh degree. As a
result of this rapprochement, coverage redundancy increased.

We suppose in the next simulation (Sim n°7 — 8) that
the designer requires that at least two nodes must cover
each cell. For this purpose, more nodes are required. The
obtained results are illustrated in Fig. 25. We can see that
nodes are doubled from an average of 7.1 in Sim n°7 to
15.1 for Sim n°8. We can see that connectivity redundancy
and sensing coverage redundancy metrics are not influenced
and are almost the same, which reinforce the effectiveness of
our solution.

In the next simulation, we suppose that our application has
no tolerance for sensing failure. For that, we consider that
a cell is covered only if its sensing probability is equal to 1
(Pcoy = 1). This simulation ( Sim n°9 ) will be compared
to another one where cells are covered when its sensing
probability is higher than 0.7 (Sim n°10). By minimising
the sensing probability, the covered space by a single sen-
sor increases. To avoid sensing coverage redundancy, sensor
nodes will move away from each other, which may cause
nodes disconnection. If that is the case, some extra nodes
are needed. Fig. 26 illustrates the obtained solution. It has
been found that the number of used nodes is decreased.
Moreover, connectivity redundancy decreased. An extra node
was deployed to ensure that node (8, 39) have a second
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FIGURE 20. Mesh topology simulation (Sim n°1).

neighbour (condition for mesh connectivity). Regarding sens-
ing coverage, a high rate is satisfied for both simulations
(Fig. 26). Table. 14 summarizes simulations results for dif-
ferent user preferences. These simulations indicate that our
optimizer provides an efficient solution and takes into con-
sideration different user preferences.

C. APPLICATION REQUIREMENTS

As previously described, the importance of metrics varies
according to the nature of the application [5]. Accord-
ingly, we will vary the weights of different objectives
in order to evaluate weights impact on our solution.
In simulations 11-13, we changed the importance of the cov-
erage metric (w). Table. 15 depicts the results of simulations
in function of weight.

We can see that while increasing w; from 1 to 3, the sens-
ing coverage increases. It goes from 93.1 to 99.3 (average
of 10 simulations). We notice that this also affects other
metrics. To ensure higher sensing coverage, more nodes are
needed, which is compatible with the obtained results. After
that, in simulations 14-16, we reproduced these simulations
with sensing coverage redundancy (w4). We clearly remark
that sensing coverage redundancy decreases with the increase
of wy. It goes from 7.5 to 0.5. A small sensing coverage
rate decrease accompanies this reduction of sensing coverage
redundancy rate.
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TABLE 14. Simulation results for different user preferences.

# Option Connect(%) m-Conn(%) Conn_Red(%) Coverage(%) k-Cover(%) Cover_Red(%) Cost(#)
Avg  Best Avg  Best Avg Best Avg  Best Avg  Best Avg Best Avg  Best
5 m-Connectivit 2-Mesh 100 100 100 100 89.5 85.7 958 967 958  96.7 73 2.7 73 7
6 ¥ 3-Mesh 100 100  94.5 100 62.1 71.4 91.7 946 917 946 107 9.2 7.1 7
7 k-Coverage 1-Cov 100 100 100 100 0 0 93.1 95.1 93.0 95.1 7.5 1.6 8.3 8
8 & 2-Cov 100 100 100 100 0 0 99.4 99 89.2  89.1 9.7 8.7 15.1 14
9 Sensing probabilit Peov = 1 100 100 100 100  89.5 85.7 958 967 958 96.7 7.3 2.7 73 7
10 ep Y Peoy =07 100 100 100 100 258 033 949 994 949 994 69 13 56 6

TABLE 15. Simulation results in function of weights.

# Option Connect(%) m-Conn(%) Conn_Red(%) Coverage(%) k-Cover(%) Cover_Red(%) Cost(#)
Avg  Best Avg Best Avg Best Avg Best Avg Best  Avg Best Avg  Best
11 woy =1 100 100 100 100 0 0 93.1 95.1 93.1 95.1 7.5 1.6 8.3 8
12 Coverage weight wo =2 100 100 100 100 0 0 97.8 98.3 97.8 98.3 13.6 8.7 8.1 8
13 wy =3 100 100 100 100 0 0 99.3 100 99.3 100 14.1 11.9 9.1 9
14 wy =1 100 100 100 100 0 0 93.1 95.1 93.0 95.1 7.5 1.6 8.3 8
15 Redundancy weight — wgq = 2 100 100 100 100 0 0 90.1 924 90.1 92.4 1.1 11 7.8 7
16 wg =3 100 100 100 100 0 0 86.6 90.2 86.6 90.2 0.5 0 7.6 7
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FIGURE 21. Star topology simulation (Sim n°2).

Different simulations results are influenced by objective
weights which make our tool adaptable to application nature.
For example, in a surveillance application, high sensing cov-
erage is required while in other applications having a low
available budget, cost-weight should be higher than other
ones, etc.
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FIGURE 22. Infrastructure (AP) topology simulation (Sim n°3).

D. COMPARISONS

To validate our work, we compare our optimizer with [21]
(Benatia, 2017) and in [19] under the same simulation con-
ditions. At first, we configured our tool with the same envi-
ronment and characteristics as in [21]. We chose these studies
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TABLE 16. Values of simulation parameters.

Parameters Values
[21] [19]
Size (m) 10x10 100x100
TX(dBm) sink: 2, sensor: 0 0
RX(dBm) —90 —90
R™" (m) 1.5 15
Wall attenuations (dBm) 2 -

because it is similar to our problem in terms of the selected
criteria. In [19], the authors tested two different algorithms.
One is base on MOFPA, and another is based on PSO.
As described in [19], we configured our tool to generate
networks with 15, 13 and 10 nodes. In other words, we speci-
fied the available budget constraints. Sim n°17 and Sim n°18
represent respectively simulation results of our tool for the
same problems’ parameters as in [21] and [19]. Simulation
parameters are illustrated in Table. 16. Fig. 27 illustrates the
obtained results of the reproduced environment as in [21].
As summarized in Table. 18, we ensure full connectivity
comparing to 96% for [21]. Sensors cover 97% of the area
of interest. In Benatia, 2017, only 91% is covered. Although
more nodes are used (18 faces to 16), we maintained a low
sensing coverage redundancy which confirms the optimal
placement. In addition, our tool outperforms (MOFPA, 2017)
and (PSO, 2017) for different metrics except in term of
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FIGURE 25. k-Coverage degree.

connectivity. This is due to using an unreal binary connec-
tivity model in [19]. Our obtained results are more realistic
and more optimal in terms of different objectives. As can
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TABLE 17. Simulation results for square space.

# Connect(%)  m-Connect(%)  Connect_Red(%) Cover (%) k-Cover (%)  Cover_Red(%) Cost (#)
Avg  Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg  Best
17 100 100 100 100 59 0 96.7 98 96.7 98 8.9 2 18.2 18
93.7 100 937 100 0 0 91.5 94 91.5 94 12.1 8 15
18 98.7 100 98.7 100 0 0 86.3 92 86.3 92 6.2 7 13
100 100 100 100 0 0 71.3 81 71.3 81 1.7 1 10
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I it |
15 ,_, i
: j
5 tg f-'i | TABLE 18. Results comparison with other works.
i 1 !
B i: /
ﬁ ‘Ii / Ref Solution Connect(%)  Cover(%)  Cost(#)
¥ ] Our tool 100 96.7 18.2
; : , [21]  Benatia 96 91 16
1 7 _,"' 3
§ § /' Our tool 93.7 91.5
i |3 i (o]  MOFPA 100 82 15
3 ; / PSO 100 76
? 2 Vi,
1 | i / Our tool 98.7 86.3
L o — i @ (o)  MOFPA 100 75 13
0123.=5£739m T 113451500 PSO 100 70
width (m) width (m) Our tool 100 73
a) Sim n°9: peop = 1 b) Sim n°10: =07 MOFPA 100 64 10
(@) Pcov (b) Pcov [19] PSO 100 52
FIGURE 26. Sensing probability.
TABLE 19. Simulation parameters.
be seen in Table. 15 and 17, we conclude that our approach Parameters Values
outperforms other ap'pr'oaches in terms of sensing coverage No. of target points 100
and network connectivity and these simulations are a proof No. of potential positions 100
of the effectiveness and flexibility of our approach in term of Communication radius(m) 100
Sensing radius(m) 60

deployment space shape.

Further comparisons were required to prove the effec-
tiveness of the proposed optimizer in terms of k-coverage,
m-connectivity and cost. This evaluation is done in the same
case study as used in [23]-[25]. These studies assume a
deployment space of 300 x 300 square meter area and target
to be covered are placed randomly in this space. To meet the
same simulation conditions, the environment is divided into
30m? squares to obtain 100 potential positions, where nodes
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can be deployed. Within these parameters, these studies aim
to minimise the number of deployed nodes while maintaining
k-coverage and m-connectivity degrees. To have a fair com-
parison, we switched to binary models for both sensing cover-
age and connectivity models as used in [23]-[25]. Simulation
parameters are summarized in Table 19. Fig. 28 illustrated an
example of this problem instance.
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We performed extensive experiments with MOONGA tool
to compare it with other approaches in terms of the num-
ber of deployed sensor nodes needed to assure k-coverage
and m-connectivity. We varied the values of k from 1 to
4 and, m from 1 to 3. Regarding the random aspect of dif-
ferent target points placement, the average of the number
of deployed nodes from 10 cross-validations and the best
result are reported. Fig. 29 shows the comparison between
our proposed tool with the algorithms proposed in [24], [25]
and [23].

From 29, it can be seen clearly that for different (k, m)
combinations, our optimizer is able to place fewer nodes
while ensuring full k-coverage and m-connectivity, except
for (4,1) it is greater than [23], [24]. Surprisingly for these

60
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32
30
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FIGURE 29. Comparison in terms of No. of nodes.
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il

two studies, the number of nodes jumped from 42 to 47
for [24] and from 44 to 49 for [23] for the couple (4,2).
This finding was surprising, and it needs further investiga-
tions. We believe that the difference in terms of the number
of nodes while varying k values is more more significant
compared to varying m values. This returns to the fact that
the communication radius (100 m) is greater than the sensing
radius (60 m). We note that a large communication range is
responsible for maintaining sensors connected to each other
while converging to the optimal solution.

Overall, these results indicate that our MOONGA
approach presents an efficient solution to the deployment
problem of WSN. It surpasses different approaches. More-
over, we conclude that our approach is a holistic one that deals
with different protocols, topology, user preferences, preferred
or eliminated positions, existing nodes and application spec-
ifications. Furthermore, it can assist the WSN designer in
different applications by specifying the importance of each
metric.

V. CONCLUSION AND FUTURE WORKS

In this article, we have proposed a new approach to solv-
ing the WSN deployment problem. We have modelled the
problem as a constraint multi-objective optimization prob-
lem. Our main objective, within the framework of this work,
consisted of determining the best positions of the wireless
nodes and ensuring optimization of the sensing coverage,
the connectivity and the cost. The limits and shortcomings
that we have noted, through the study of the main approaches
existing in the literature and the analyses carried out on the
results found, have allowed us to propose a new approach,
called MOONGA, based on the multi-objective genetic
algorithm and the weighted sum optimization method.
We have presented our study of the GA based algorithm with
suitable chromosome representation, evaluation functions,

] Rebai et al

Il]|

Gupta et al.
N < i

45,4
4||
43

456

|

42

(k. m)
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selection, crossover and mutation operations. This approach
makes it possible to generate an optimal deployment based
on the required topology, the environment, the specifications
of the different applications and user preferences. Several sce-
narios of WSN with different parameters and conditions were
simulated extensively. The simulation results are compared
with different algorithms. The analysis of these simulations,
resulting from the various experiments carried out on a set of
test data, confirm the feasibility and the effectiveness of the
proposed approach.

Our future work includes four directions. The first is to
conduct a deeper comparative study between our approach
and the main approaches studied in the literature in order to
give academics and practitioners more amplification on how
to optimize the problem of node placement in wireless sensor
networks. The second consists in proposing a new extension
of our approach to support a representation of the deployment
space as a 3D environment. Undoubtedly, this extension will
increase the complexity of the problem and the execution
time since the evaluation process is the most demanding in
terms of execution time. To remedy this problem, we plan
to integrate machine learning methods to approximate differ-
ent assessment functions. Furthermore, as a third direction,
we are also aiming for the integration of new measures such
as, for example, lifespan and energy consumption, which are
essential criteria in the field of WSNs.The fourth direction
consists in carrying out a computer complexity analysis of our
algorithm, around which our approach is articulated, to show
that our solution converges in a reasonable time. This will
allow us to confirm that the added value of our results is that
they are obtained without additional calculation costs.
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