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ABSTRACT In this paper we propose a novel path-loss model, theWeighted ABG (WABG), which suitably
allows integrating or combine different available datasets, or previously proposed 5G propagation path-loss
models from the state-of-the-art. Our proposal is therefore a new ABG-based approach which integrates
other existing models, leading to the best possible approximation in least-square sense, considering different
weighting policies. We evaluate the performance of the WABG in several 5G scenarios, and we carry out a
complete comparison of the proposed method against several recently published ABG models, showing that
the WABG obtains the best results in terms of model’s accuracy.

INDEX TERMS 5G, path-loss, mmWave, ABG propagation models, models combination.

I. INTRODUCTION
The fifth generation of mobile communications systems
(5G) will bring along a complete revolution in applications
and experiences [1]. Many sectors such as health, industry,
vehicles, videogames or business, among many others, will
completely change thanks to this technology. Characteris-
tics of the new mobile network include a 10Gbps downlink
throughput, 1ms latency, 99.999% reliability and a large
number of devices connected simultaneously to the access
network [2], [3].

Wirelessly providing these high data rates and qual-
ity parameters demands new innovative technologies, not
implemented in the fourth generation of mobile commu-
nications (4G), such as, massive multiple-input multiple-
output (mMIMO) [4]–[6] or non-orthogonal multiple access
(NOMA) [7]–[9]. However, even with these new techniques,
the frequency bands where legacy mobile communication
systems are placed will not fulfill the requirements of the
5G technology. This is the reason why the Third Gener-
ation Partnership Project (3GPP [3]) has pointed out the
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need to use mmWave frequency bands for hosting future 5G
services [10].

Among the different issues related to the use of mmWave
frequencies, the extremely high path-loss occurring at these
frequencies is a major technological issue [11]–[13]. Like in
previous generations, radio propagation has been a key aspect
on mobile communications design. Propagation models are
used to estimate the path loss and, consequently, to determine
the maximum coverage range of a given radio base station.
Generally speaking, there are three types of radio propagation
models [14]: ray tracing or optical models [15], [16], domi-
nant path models [17] and statistical models [18]–[20]. Ray
tracing-optical models are based on the addition of the indi-
vidual contribution of multiple rays. These models require
specifying the area under study including geographic infor-
mation (buildings, streets, elevations), as well as building
construction materials, in order to calculate the scattering,
reflection and diffraction for each individual ray. Conse-
quently, the ray-tracing models present a high computational
cost, and need to be implemented on large simulators. Dom-
inant path models only consider the main contributing ray
between the transmitter and receiver, and specific information
regarding the area and the environment’s materials [21]. They
reduce the computational cost compared with the ray-tracing
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models, but also require the area’s materials database. Finally,
statistical models (aka empirical models) provide fair estima-
tions of the propagation path-losses by using few environment
parameters, therefore they present a very low computational
cost. The statistical strategy establishes an optimization prob-
lem based on different statistic criteria, such as, Maximum
Likelihood (ML), Maximum a Posterior (MAP) criteria or
Least-Squares (LS), and looks for the model which best
adjusts the path-loss samples in this sense. In fact, radio
propagation models implement mathematical formulation,
which depending on the model’s complexity, may be used for
either site specific and/or general site calculations [22]. These
models are very useful when the available area information
is reduced or when the computation time requirements are
limited, for instance, in the estimation of the maximum cell
range around the 360◦ directions (note that in ray-tracing only
one direction is obtained).

Focusing on the statistic models, several studies propose
the use of different propagation path-loss models in 5G
systems [3], [12], [18], [19], [23]–[26]. However, the large-
scale path-loss propagation model named the Alpha-Beta-
Gamma (ABG) model [3], [12], [19] is currently the most
used path-loss model in 5G applications, and it is also the
model established by the 3GPP as the standard model for
5G [3]. There are specific ABG models for different 5G
scenarios, such as, Urban Micro and Macro cells (UMi and
UMa, respectively), in different environments such as Line-
of-Sight (LOS) and Non-Line-of-Sight (NLOS). The imple-
mentations of these models cover a wide working range of
distances and frequencies, many of which overlap in terms
of distance or frequency [12], [19]. To name some examples,
[27] studied the wideband channels at 9.6, 28.8 and 57.6GHz
in LOS and NLOS. In [28], [29] a measurement campaign
and path-loss modeling was carried out in the 60GHz band.
And in [30] Aalto University studied frequencies in the
E-band, specifically the 71 to 76GHz and the 81 to 86GHz
bands. Although all of these models estimate similar path-
loss values, especially in LOS (where propagation path-loss
modelling is close to the free-space modeling), dissimilarities
occur, and policies for balancing the path-loss approaches are
needed to create an integral model.

In the literature, there are not many integral approaches
that deal with the existent ABG models and cover all the
established distance-frequency ranges in 5G. The most recent
approach in [19] proposes to create a database by combining
different 5G path-loss databases. This new database leads to
a new set of ABG coefficients and, therefore, we have named
this procedure as the basic and integrated ABG model. To
construct the new ABG model, a large dataset is needed to
lead to reliable ABG coefficients. Nevertheless, the first issue
of this approach is that merging is done without a balancing
or weighting policy. All input models weight the same when
creating the integrated (output) model, regardless of their
accuracy. Hence, tending to overestimate those models made
with a larger number of samples. The second issue is that,
in order to create the new database, it requires that all input

models are defined similarly (i.e. input models are defined
by a path-loss dataset). This is, in general, an extremely hard
requirement since we do not often count on public databases.
Many published studies (summarized in [19]) only provide
the resulting ABG coefficients of a model, its ranges and a
noise figure indicating how accurate the model is with respect
to its database.

Input models and/or the provided raw path-loss datasets
may cover different frequency or distance ranges, may be
defined using ABG coefficients or field measurements, may
have a larger or a smaller number of points, etc. Therefore,
it is paramount to address correctly the importance of the
former baseline models.

The main objective of the present paper is to obtain a single
(output) ABG-based model that is able to combine different
(input) ABG models and/or (input) raw path-loss datasets
provided by different studies. To perform the integration, the
novelty of this research is that these inputs are weighted using
a balancing policy that allows to surpass the aforementioned
drawbacks of the state-of-the-art approaches. In this research,
this model is named as Weighted ABG (WABG), and its
main characteristic is that it preserves the low number of
parameters characteristic to the ABGmodels. Figure 1 shows
an illustrative flowchart of our proposal.

We have tested the WABG in several 5G scenarios, includ-
ing UMi and UMa scenarios, in both LOS and NLOS envi-
ronments. We also compare the proposed WABGmodel with
several recently published alternative ABGmodels, including
the basic integrated ABGmodel, in the different 5G scenarios
considered, obtaining excellent results in terms of path-loss
standard deviation.

The remainder of the paper is structured as follows:
Section II reviews the theoretical aspects of the ABG prop-
agation model. Section III describes in detail the proposed
WABG model, including the weighting policies which can
be applied to generate it. Section IV first shows an instructive
example of how to build a WABGmodel from the beginning,
then it details an study of the effect of the different weight-
ings, and finally it presents a complete set of experiments in
LOS and NLOS environments for the different 5G considered
scenarios. This section also shows a direct comparison with
the state-of-the-art ABG models. Section V closes the paper
with some final conclusions and remarks.

II. THE ABG MODEL
The Alpha Beta Gamma (ABG) model [3] is a large-scale
path-loss propagation model for all generic frequencies. The
model is not highly constrained, so it is frequently used
for specific scenarios, distinguishing LOS and NLOS envi-
ronments; or finding specifically calculated ABG model for
different 5G scenarios, such as UMi and its variants (UMi
Street Canyon, UMiSC, and UMi Open Square, UMiOS) and
UMa. In NLOS, for instance, generally ABG models divide
the distance range in different partitions to gain accuracy in
specific applications [3].
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FIGURE 1. WABG Flowchart. The proposed WABG is an ABG-based model which integrates raw datasets and/or other ABG models from different studies
using a weighting policy.

The ABG models calculate the path-loss as follows:

PABG(d, f )[dB] = 10α log10(d)+ β + 10γ log10(f )+ ξ,

(1)

where PABG is the path-loss in decibels (dB) logarithmically
dependent on the distance d and frequency f , measure in
meters (m) and Gigahertz (GHz) respectively. The involved
distance d is the Euclidean 3D distance between the trans-
mitter and the receiver, and the frequency f refers to the
carrier frequency. The coefficients α, β, γ define the ABG
model. Specifically, α and γ are the coefficients related to
the log-distance and log-frequency respectively, and β is an
offset term. They all define a plane in the 3D space where the
path-loss, log-distance and log-frequency form the Cartesian
axes. The random variable ξ models the large-scale signal
fluctuation produced along the transmissions. A particular
statistical distribution for the noise ξ is not assumed, but a
zero mean and a finite variance σ 2 is required.

The ABGmodel discovers the α, β and γ values by setting
an ordinary linear least-squares problem, which consists of
adjusting the coefficients to those which fit the best to a data
set [19]. Let D = {(xi, yi) | 1 ≤ i ≤ n} be the set of
n available pairs of input-output observations, where xi =
(di, fi) is an input pair of distance-frequency, also referred
as the independent variable; and yi its corresponding path-
loss measure, the dependent variable. The established ABG
model relates xi and yi by the Equation (1). The fit of a model
to a data point (xi, yi) is measured by its residual, defined as
the difference between the measured path-loss and the value
predicted by the ABG model:

ri = yi − PABG(di, fi). (2)

The optimal parameter values are obtained by minimizing the
sum of the squared residuals R:

R =
n∑
i=1

r2i =
n∑
i=1

(yi − PABG(di, fi))2 . (3)

Just for linear models, which is the case of the ABG (see
Equation (1)) there exist a unique solution to the problem of

finding the best parameters (α̂, β̂, γ̂ ) with following closed-
form expression:α̂β̂

γ̂

 = (XTX )−1XTY , (4)

where X is a matrix whose ijth-element is the ith-observation
of the jth independent variable:

X =



log10(d1) 1 log10(f1)
...

...
...

log10(di) 1 log10(fi)
...

...
...

log10(dn) 1 log10(fn)

 (5)

and Y = (y1, · · · , yi, · · · , yn)T its corresponding path-
loss vector whose ith-element is the path-loss of the
ith-observation. Note that (XTX )−1XT is the Moore-Penrose
inverse of X . The Gauss-Markov theorem guarantees that the
obtained linear regressor is the Best Linear Unbiased Estima-
tor (BLUE), in terms of minimum variance. The following
assumptions concerning the set of error random variables
{ξi | 1 ≤ i ≤ n} have been taken:
1) The noise variables ξi are zero mean: E[ξi] = 0.
2) They are homoscedastic, that is, all they have the same

finite variance Var[ξi] = σ 2 <∞.
3) Distinct error terms are uncorrelated Cov[ξi, ξj] =

0 , ∀i 6= j.
The ABG model can manage a single carrier frequency by

fixing its γ coefficient to 0 or 2 [18], [20], [31], becoming a
two-parametersmodel (α andβ). Themathematical treatment
to obtain the best coefficients (α̂, β̂) is similar to the one
shown above.

III. PROPOSED WEIGHTED ABG MODEL
Multiple ABG coefficients for the different state-of-the-art
path-loss databases can been obtained for several 5G scenar-
ios. Particularized for a single carrier frequency or a near band
of carrier frequencies, ABG models have shown in general
good accuracy, especially when they are computed from one
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specific database. However, ABG models computed from
multiple databases, with different distance-frequency ranges,
do not achieve such accurate results: Most of them collect
all data from the multiple state-of-the-art datasets to create
a larger one, obtaining the best parameters following the
steps of the previous Section II (see [19]). These integrated
models do not contemplate unbalanced data from the different
database or the residual values associated with each range
of distance or frequencies. In addition, note that assuming
the homoscedastic preservation along the different distance-
frequency ranges leads to inaccurate and unbalance integrated
models.

In order to improve these previous issues with integrated
ABG models, we propose a weighted model which considers
the heteroscedastic property along the different data from
the dataset for managing multiple range of distances and
frequencies. The proposed Weighted ABG model (WABG),
which surpasses the mentioned inconveniences of integrated
path-loss approaches, is following defined.

We observe three main scenarios or cases for proposing the
WABG path-loss model:

1) The first scenario is defined by a family of propagation
path-loss datasets {Sj | 1 ≤ j ≤ m}. Each dataset
Sj contains a set of input-output observations Sj =
{(xi, yi) | 1 ≤ i ≤ nj} in its corresponding range
of distances and frequencies. Some of them may con-
tain significant distance or frequency gaps which may
need to be filled using interpolation algorithms. Usu-
ally the different datasets contain observations from
a single carrier frequencies or a near frequency band,
which leads to very accurate individual ABG models.
Consequently, each dataset Sj has associated its own
ABG model defined by its parameters ABG(Sj) =
(αj, βj, γj), computed following the steps of Section II.
Associatedwith the ABGmodel, the standard deviation
of the error σ can be easily calculated, once the optimal
ABG model is obtained, by applying Equation (6):

σj =

√
Rj
nj
=

√∑nj
i=1 (yi − PABG(di, fi))

2

nj
(6)

Note that the standard deviation σj expressed in Equa-
tion (6) determines the model’s quality.

2) The second scenario for defining theWABG, is the case
where we do not have access to the complete databases,
but only to the already calculated ABG coefficients
{(αj, βj, γj) = ABG(Sj) | 1 ≤ j ≤ m} and its
corresponding standard deviation σj valid for a specific
distance-frequency range. This scenario corresponds,
for example, to a case where the employed datasets are
not public.

3) The third scenario is amixture of the two previous ones,
the general case, where we can have measurements for
some distances and frequencies and also ABG coeffi-
cients for other, and we would like to collect all this
information into a new integrated ABG path-model.

In any of these scenarios, the proposed WABG model
works by integrating (combining) several ABG models for
different ranges of distances and frequencies. Thus, after
obtaining the ABG model and its associated standard devia-
tion in the case of scenario 1, directly from the given models
in scenario 2, or a mixture of both in scenario 3, we create a
synthetic dataset S̃j for each corresponding ABG model, and
form a collection of observation datasets {S̃j | 1 ≤ j ≤ m}. In
order to do this, we equally vary the distance and frequency
covering all the range of each givenABGmodel, and annotate
the associated standard deviation. As a practical rule, we
vary distances and frequencies in steps of 1m and 1GHz
respectively. In case of ABG models computed for a single
frequency, we only vary the distance in its corresponding
range.

At the end of this process, we have m simulated databases
with observations S̃j = {(x

j
i , y

j
i) | 1 ≤ i ≤ nj}, which belong

to a specific model and have the same standard deviation
σj. Observations from different databases may have different
standard deviations, therefore, collecting all the observations
in a unique set and calculating an ABGmodel leads to wrong
path-loss estimations (such as the basic integrated ABG
model). WABG manages these variability of the deviations,
avoiding this important issue to construct a robust integrated
model.

The WABG establishes a weighted least-squares problem,
a special case of generalized least-squares. It occurs when
all the off-diagonal entries of the correlation matrix of the
residuals are zero. The variances of the observations, which
are the unique non-null elements placed along the covariance
matrix diagonal, may still be unequal. It is the so-called
heteroscedasticity property which differs from the basic inte-
grated ABG models. In WABG, the optimal parameter val-
ues are obtained by minimizing a weighted sum of squared
residuals, which involves the heterogeneous variance of the
observations:

S =
n∑
i=1

Wiir2i =
n∑
i=1

Wii (yi − PABG(di, fi))2 , (7)

where W is the inverse of the correlation matrix, see Equa-
tion (8).

W =



1

σ 2
1

· · · 0 · · · 0

...
. . .

...
. . .

...

0 · · ·
1

σ 2
i

· · · 0

...
. . .

...
. . .

...

0 · · · 0 · · ·
1
σ 2
n


(8)

Aitaken [32] proved that the coefficients calculated in
this way (α̂, β̂, γ̂ ) are the BLUE if each weight is equal
to the reciprocal of the variance of the measurement,
see Equation (7), and provides the following closed-form
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solution: α̂β̂
γ̂

 = (XTWX )−1XTWY . (9)

where X is a matrix whose ijth-element is the ith-observation
of the jth independent variable, andW is represented in Equa-
tion (8). Observe how the computation complexity to solve
Equation (9) is reduced to invert matrix XTWX , similarly to
the ABGmodels, where complexity is reduced to invert XTX .

Particularized for our WABG model, X is a block matrix
defined by stacking all the observations of the different
databases S̃j:

X =



X1
...

Xj
...

Xm

 , Xj =



log10(d1) 1 log10(f1)
...

...
...

log10(di) 1 log10(fi)
...

...
...

log10(dnj ) 1 log10(fnj )

 . (10)

Note that the block Xj that corresponded to an ABG model
valid for a single frequency has its third column constant.
The inverse of the correlation matrix W is also a partitioned
matrix, where the observations that belong to the same dataset
Sj have the same variance, as we expressed in Equation (11).

W =



W1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Wj · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · Wm

 ,

Wj =



1

σ 2
j

· · · 0 · · · 0

...
. . .

...
. . .

...

0 · · ·
1

σ 2
j

· · · 0

...
. . .

...
. . .

...

0 · · · 0 · · ·
1

σ 2
j


nj×nj

(11)

Now the corresponding standard deviation, considering the
weighting, is computed as depicted in Equation (12).

σ =

√√√√∑N
i=1Wiir2i∑N
i=1Wii

=

√√√√∑N
i=1Wii (yi−PABG(di, fi))2∑N

i=1Wii
. (12)

We will see in the next section different policies to form
the inverse of the correlation matrix W in order to correctly
balance the WABG model, attending to different criteria. As
the inverse of the correlation matrix W is diagonal, it can be
expressed through the so-called weighting vector ω.

A. WEIGHTING POLICIES
We propose three main policies of weightings applied to the
WABG model when it is built by integrating several ABG
models from different datasets:

1) Equalizing by the Number of Points: The ABG models
integrated by the WABG may cover different range of
distance and frequencies, and be built from datasets
with different number of points. Each ABG model
given for computing a WABG should be considered
with the same importance independently of the number
of points that were used to create them. Consequently,
equalizing the WABG providing same grade of impor-
tance requires the following weighting vector:

ωN = M


n1times︷︸︸︷
1
n1

, · · · ,

nitimes︷︸︸︷
1
ni

, · · · ,

nmtimes︷︸︸︷
1
nm

 , (13)

where ni is the number of points using in each
model and M is the least common multiple of the
set {ni | 1 ≤ i ≤ n}.

2) Weighting by the Standard Deviation: The initial ABG
models used to create the WABG may have different
standard deviation which should be consider to weight.
ABGmodels with large standard deviation should have
less weighting than others with a small one. A good
weight vector ω for the WABG uses the inverse of the
standard deviation as follows:

ωσ =


n1times︷︸︸︷
1

σ 2
1

, · · · ,

nitimes︷︸︸︷
1

σ 2
i

, · · · ,

nmtimes︷︸︸︷
1
σ 2
m

 (14)

3) Mixture of the previous policies: Computing the
Hadamard product of both vectors:

ω = ωN � ωσ (15)

The corresponding weighting matrix W is a matrix whose
diagonal matches its weighting vector ω. Note that using
a weighting vector of ones ω = (1, · · · , 1), the obtained
WABG model becomes an ABG whose weighting matrix is
the identityW = I .

IV. COMPUTATIONAL EXPERIMENTS AND RESULTS
In this section, we compare the WABG model with the state-
of-the-art ABG models computed from several 5G datasets,
specifically, from those one provided by the companies
Nokia, Qualcomm, and the Universities of Aalborg (AAU),
New York (NYU) and Aalto (ALU). We distinguish between
three different kinds of 5G scenarios: Urban Micro-cellular
Street Canyon (UMiSC), Urban Micro-cellular Open Street
(UMiOS) and Urban Macro-cellular (UMa). We also dis-
tinguish between two different 5G environments: LOS and
NLOS. The LOS environment presents lower standard devi-
ation σ compared to the NLOS cases, a consequence of the
non-existence of a direct Line-of-Sight.
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FIGURE 2. Example of WABG construction. A low band WABG is developed in the distance range from 19 to 272 m and frequency range
from 2 to 18 GHz. ABG models of both Nokia/AAU datasets [30] at 2.9 and 18 GHz are given as input models. Simulated points of the
Qualcomm dataset [19] at 2.9 GHz are also considered.

The ABG models for each 5G scenario in the NLOS envi-
ronment have been obtained from [19]. The corresponding
ABG models for each 5G in LOS were computed from the
works published in [11], [12]. According to this, we will
provide aWABGmodel covering awide range of frequencies.
In NLOS, where the number of available models is high, we
will also provide a model for low and high frequencies. The
division between low and high frequencies was established
by the state-of-the-art methods [11], [12]. Consequently, we
have followed this division to allow comparison among them.
Note that this division is not a requirement of the proposed
model and we can design a WABG model in any other fre-
quency range.

Moreover, the metric error used is the weighting stan-
dard deviation σ , as expressed in Equation (12). Note
that the weighting standard deviation directly leads to
the standard deviation assuming as weighting matrix the
identityW = I .
This section is then structured into three subsections:

we first give an end-to-end real computation example of
a WABG departing from both ABG models and datasets,
the mixture scenario (see Section III). Then, we ana-
lyze and compare the proposed weighting policies of
Section III-A. Finally, we give the WABG coefficients in
LOS and NLOS for the studied 5G scenarios UMiSC,
UMiOS and UMa, and we carry out a comparison with
the available large-scale propagation path-loss models in the
literature.

A. REAL WABG COMPUTATION EXAMPLE
This section presents the calculation of the WABG model in
the third scenario, the most general scenario as it includes
the first and second scenarios (all of them described in
Section III). Figure 2 shows an example of the construction
of the WABG model in this case.

We have elaborated a low band WABG model using three
different datasets corresponding to the 5G UMiSC scenario
in NLOS environment. These three models correspond to the
first three rows presented in Table 5. Namely, these are the
two datasets provided in the Nokia/AAUABGmodel [30] for
2 and 18GHz, and the Qualcomm dataset for 2.9GHz [19].
Specifically, we consider 103 evenly spaced points which
emulated the captured real ones according to the ABGmodels
(see Figure 2).
We first estimate its corresponding ABG coefficients from

the given set of points following the steps described in
Section II. As we see in Figure 2, the obtained estimation
is very accurate, see Table 1 fourth and last columns for
numerical values. It can be seen that the provided number
of points is enough to obtain a good estimation of the ABG
coefficients.

Oncewe have anABGmodel for all the datasets, we evenly
sample each ABG along its distance range, by creating sets
of pairs Sj = {(xi, yi) | 1 ≤ i ≤ nj} where xi is the distance
d and yi the path-loss predicted by the model. Observe that
the number of points nj may not be the same, consequently,
weighting policies for balancing the models are necessary, as
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explained in Section III-A. For the following example, the X
matrix is computed as follows:

X =

X1X2
X3

 =



log10(109) 1 log10(2.9)
...

...
...

log10(235) 1 log10(2.9)
log10(19) 1 log10(2.0)

...
...

...

log10(272) 1 log10(2.0)
log10(19) 1 log10(18)

...
...

...

log10(272) 1 log10(18)


. (16)

Note that the WABG models the datasets with different
standard deviations, and we give larger weights to those
models whose standard deviation is larger, as explained in
Section III-A. As a consequence, the weighting vector ω
obtained expanding Equation (15) and using weighting pol-
icy 3 (see Section III-A for more detail) is presented in
Equation (17).

ω = M


n1times︷ ︸︸ ︷

(n1σ 2
1 )
−1, · · · , (n1σ 2

1 )
−1 ,

n2times︷ ︸︸ ︷
(n2σ 2

2 )
−1, · · · , (n2σ 2

2 )
−1,

n3times︷ ︸︸ ︷
(n3σ 2

3 )
−1, · · · , (n3σ 2

3 )
−1,

,
(17)

which leads to the corresponding weighting matrix presented
in Equation (18), as deduced in Equation (11) and using
policy 3.

W =



W1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Wj · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · Wm

 ,

Wj = M



1

njσ 2
j

· · · 0 · · · 0

...
. . .

...
. . .

...

0 · · ·
1

njσ 2
j

· · · 0

...
. . .

...
. . .

...

0 · · · 0 · · ·
1

njσ 2
nj


nj×nj

. (18)

Collecting all the corresponding path-loss together in a single
vector Y :

Y =
(
y1, · · · , yn1 , yn1+1, · · · , yn1+n2 ,

yn1+n2+1, · · · , yn1+n2+n3
)T
, (19)

FIGURE 3. Estimation of the ABG model of the simulated UMiSC dataset
(Qualcomm). Sub-figures a), b), c) and d) show evenly spaced simulated
datasets with 101, 102, 103 and 104 points.

and solving Equation (9), it leads to the sought WABG coef-
ficients for this example:α̂β̂

γ̂

 = (XTWX )−1XTWY =

 3.2
25.3
2.3

 (20)

We compute its associated standard deviation σ = 5.93 using
Equation (12). Note how the calculated value is closer to
the standard deviation of Qualcomm’s ABG model whose
value is the smallest one. Weighting by the model’s standard
deviation, it leads to approaches which are close to the most
accurate models, as shown in Figure 2.
The number of points of the given datasets has a strong

influence on the ABG estimation. Obviously, the larger the
number of points available for estimation, the more accu-
rate is the estimation of the ABG coefficients. We show
an experiment varying the number of points from 101 to
104 with an increment of 10, see Figure 3. These orders of
magnitude are the most frequently found in the 5G databases.
Table 1 summarizes the estimated ABG coefficients for the
Qualcomm dataset, when varying the available number of
points. As can be seen, the quality of the ABGmodel obtained
is better when a larger number of points is available. Note that
this is a classical result, well known in estimation theory.

B. COMPARISON AMONG DIFFERENT WEIGHTINGS
SCHEMES
This experiment shows the influence of the weighting in the
finalWABGmodel. As inputs to construct theWABGmodel,
we use three existing ABGmodels in the range of 2 to 18GHz
in a 5G UMiSC scenario with a NLOS environment from
[19]. We extract points evenly spaced along its correspond-
ing distance ranges and create the corresponding WABG as

101764 VOLUME 8, 2020



D. Casillas-Perez et al.: Weighted ABG: A General Framework for Optimal Combination of ABG Path-Loss Propagation Models

FIGURE 4. Study on the effect of different weighting schemes in the construction of WABG models. a) Basic integrated ABG model (without weighting);
b) and c) WABG models in which the number of points or the individual standard deviation (respectively) are used for weighting; d) WABG model which
considers both the number of points and the standard deviation of each individual model for weighting. The second row (sub-figures e) to h)) shows
different views of the previous figures.

TABLE 1. Coefficients of the estimated ABG models obtained varying the
number of available points. Acronym G.T. refers to the Ground Truth, the
real coefficients we want to estimate using the samples.

we did in the previous example using different weighting
policies. Figure 4 shows four WABG models with different
weighting policies. Figure 4.a) does not use weighting, so
W = I , which means it is the basic integrated ABG model.
Figure 4.b) and Figure 4.c) show WABG models which only
use the number of points or the individual standard devia-
tion respectively for weighting. Finally, Figure 4.d) shows
a WABG model which uses the number of points and the
standard deviation of each individual model to carry out
the weighting process. We also provide different views of
the previous figures in Figure 4.e), Figure 4.f), Figure 4.g)
and Figure 4.h).

Observe in Figure 4.e) the distance between the generated
ABG model (blue) and the Qualcomm dataset (green), in
comparison with the WABG model (blue) in Figure 4.h). In
the first one there is no weighting, and the second one is
weighted both by the number of points and by the accuracy
of each individual model. The difference in the number of
points between the databases causes the model to move away
from those models made up of fewer points, in this case,
the Qualcomm dataset (green). In Figure 4.f), weighting is
done by the number of points. This configuration leads to a
WABG model closer to the dataset that has fewer points, that
is the Qualcomm dataset (green). In Figure 4.g), weighting is
done by the accuracy of each model (σ ) and it leads to a fair

TABLE 2. WABG coefficients obtained from the different weighting
schemes and associated WABG model standard deviation (σ ). Scripts F
and T refer to a False or True value of weighting by number of points and
standard deviation.

estimation when comparing it with the ABG model (blue) in
Figure 4.e).

Table 2 shows the coefficients generated for each weight-
ing configuration and the standard deviation of the associ-
ated WABG model (computed using Equation (7)). It can be
observed that the sensitivity of the standard deviation σ when
compared to the α coefficient is lower than the sensitivity of
the standard deviation σ when compared to the γ coefficient.
This is due to the fact that the three integrated models present
quite similar behaviour along the distance, but this is not a
generalized rule. Thus, the sensitivity of the standard devia-
tion σ when compared to the α coefficient may be higher than
the sensitivity of the standard deviation σ when compared
to the γ coefficient, as we can see in the low band model
generated for UMiOS in NLOS, see Table 6.

From now on, all the provided WABG models will be
calculated considering weightings schemes by both number
of points and standard deviation.

C. LOS
In order to further evaluate the performance of the proposed
WABG, we create WABG models for LOS environments,
in different 5G scenarios, specifically in UMiSC and UMa.
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TABLE 3. Available ABG models used as WABG inputs for UMiSC and UMa 5G scenarios in LOS environment. The considered models cover different
distance-frequency ranges.

TABLE 4. Resulting WABG model for UMiSC and UMa scenario in LOS. We compare our WABG with the ABG model computed by Sun16 [19] and the
3GPP16 [3].

Table 3 shows the available ABG models for the mentioned
5G scenarios. Specifically, we have models for single fre-
quencies, such as 28 or 73GHz, or for several frequencies
ranges, 0.8 to 60 or 6 to 100GHz, in UMiSC scenario. In
UMa, we have two ABG approaches that cover different
frequency ranges. We do not have enough UMiOS path-loss
models in order to create an integrate WABG with them, and
then to compare it with the existent ones in the literature. Note
the differences in distance ranges between UMiSC and UMa
scenarios.

We use the path-loss models shown in Table 3 to create an
individual WABG for each 5G scenario, following the steps
given in Section III. We have a mixture of models defined for
single and range frequencies.

Table 4 shows the coefficients of our WABG together
with the ones given by Sun [19] and 3GPPT [3]. All the
models cover a wide frequency range. The following equa-
tion has been used for specifying the maximum distance for
the 3GPP:

dM = 4 · hBS · hUT ·
fc
c

(21)

In UMiSC scenario, 3GPP maximum distance dM has been
computed assuming a transmitter height hBS = 10m and a
receiver height hUT = 1.5 m respectively. Carrier frequency
fc is fixed to 0.5GHz and c is the speed of light in vacuum
3× 108ms−1. In UMa scenario, the standard transmitter and
receiver heights are fixed to 25 and 1.5m respectively. The
carrier frequency is fixed to 1GHz. These parameters repre-
sent suitable standard conditions. However, other restrictive
conditions would drive to lower maximum distances.

In UMiSC, our WABG model obtains very good accuracy,
with a standard deviation of 3.2 (that is 0.3 dB below the
result presented in [19], but with a wider frequency appli-
cation range: between 0.5 to 100GHz. The WABG achieves
a standard deviation 1 dB smaller than the one provided

by the 3GPP16 [3] with similar distance-frequency range.
Observe how the maximumworking range of theWABG (the
maximum and minimum of the distance-frequency range) is
bounded to the model ranges of the input models considered.
Note that we could also expand the working range of our
WABGmodel by integrating the 3GPPmodel, but in this case,
it would prevent any comparison between the proposedmodel
and the model that has been used as Ground Truth.

In UMa scenario, our WABG model obtains the best value
of standard deviation, 1 dB below the one obtained by Sun16
and 0.9 dB below the one by the 3GPP16 model. In addition,
WABG covers more frequency range than that provided by
Sun16, between 2 to 100GHz against 2 and 73GHz, respec-
tively. The model in 3GPP16 expands our frequency range in
low frequencies but with less accuracy.

Note that the results presented in Table 4 do not show a
significant reduction of the standard deviation σ . Neverthe-
less, it is lower than the rest of the evaluated state-of-the-
art methods, and it is remarkable how the proposed WABG
model catches loss modeling from the large frequency ranges,
while keeping a reduced standard deviation value.

D. NLOS
The standard deviation values observed in the LOS environ-
ment aremuch lower than in the counterpart NLOS. InNLOS,
the fading phenomenon is more pronounced, doubling the
standard deviation figures in dBs. Similar to the procedure
followed for the LOS case, we provide WABG approaches
from the existing ABG models for the UMiSC, UMiOS and
UMa in NLOS environment. Table 5 shows the provided
ABG coefficients computed from the state-of-the-art datasets
in these environments [19]. We have 6, 5 and 7 different
ABG models for UMiSC, UMiOS and UMa, respectively,
considerably more than in LOS environment. Models are
valid for single frequency located between 2 and 73.5GHz, in
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TABLE 5. ABG models in the literature for UMiSC and UMa 5G scenarios in NLOS environment obtained from Nokia/AUU database [30] and from
Qualcomm, Aalto, and NYU databases [19]. The models cover different distance-frequency ranges.

TABLE 6. Low, high frequency and total WABG models in UMiSC with NLOS. We compare our WABG with the ABG computed by Sun16 [19] and 3GPP [3].

case of UMiSC and UMa, and between 2 and 60GHz, in case
of UMiOS, covering different distance ranges. Observe that
the initial ABG models are not defined for a single frequency
range in contrast to the initial models in LOS.

Due to the large number of NLOS models found for the
different scenarios (see Table 5) we develop three models for
this case: a low frequency model between 2 and 18GHz, a
high frequency model between 28 and 73.5GHz and a global
model covering the entire mmWave frequency range. In
case of UMiOS, the upper-bound frequency of the generated
model is reduced to 60GHz because there is not an existing
approach which estimates path-losses above 60GHz for this

1Actually, the 3GGP ensures a frequency range between 0.5 and 100GHz.
We establish the frequency range of the Table because of comparative
reasons.

scenario, as shown in Table 5. The separation between low
and high frequencies is not the regulated by the 5G standards.
We follow the separation chosen by Sun16 model [19], in
order to compare our results with that work.

Following the steps described in Section III, we compute
path-loss estimations from all the provided methods varying
the distances in steps of 1m along each distance range. The
resulting WABG models for low, high and the global fre-
quency range are given in Table 6.
Focusing on UMiSC scenario, we observe that the Sun’s

model prioritizes the Nokia/AAU model for 2GHz and
18GHz against the others, see Tables 5 and 6. The number
of observations of these datasets is much higher than the rest.
Consequently, creating a new model which covers all the
frequency range by collecting all the data together without
weighting leads to unbalanced models. On the Contrary, our
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WABG model equally balances the involved ABG consid-
ering both the number of points and the standard deviation.
Our WABG model reduces the standard deviation in the low,
high and global path-loss models. A significant reduction is
achieved in the low and global WABG models, below than
2 dB for the low frequency model and 1.1 dB for the global
frequencymodel when compared to the results by Sun16 [19].
The proposed WABG also reduces the standard deviations in
the high frequency model.

In UMiOS scenario, our WABG improves the standard
deviation obtained by Sun16 for all range of frequencies:
the low, high and global frequency range. WABG achieves
a standard deviation for the low frequency model 5.2 dB, far
from the obtained by Sun16 of 7.6 dB. The WABG model
for high frequencies obtains similar standard deviation than
those by Sun16 model. In the global frequency range, we also
obtain the best result with a standard deviation of 3.8 dB. Note
that the 3GPP does not provide any model for this scenario.

In the UMa scenario, our WABG model achieves the best
standard deviation, better than that provided by Sun’s model
for low and high frequency ranges. However, the differences
are not as severe as in the previous scenarios, below than
0.6 dB. In case of the global frequency range which cover
all frequencies, the best model is the one provided by 3GPP
with a standard deviation of 8.2. Our WABG ranks second,
followed by Sun16 with 9.6 and 9.9 dB of standard deviation.
However, note that despite obtainingworse results than 3GPP,
WABG and Sun16models cover more distance range than the
former.

V. CONCLUSION
In this paper we propose a new path-loss model, theWeighted
ABG, which allows integrating and combining different avail-
able datasets and 5G approaches for path-loss calculation.
This new ABG-based model, overcomes the issues related to
unbalanced data described in the literature, by using weight-
ing policies. In addition, we have shown that the proposed
WABG is able to be obtained directly from other alternative
ABGmodels, even if no databases are available, avoiding the
problem of unpublished data. We have provided the coeffi-
cients of the proposedWABGmodel for several 5G scenarios,
including UMi and UMa, in LOS and NLOS environments.

We have carried out a complete comparison to recently
published ABG models, obtaining best results with respect
to the standard deviation of the studied models. Specifically,
the WABG considerably overcomes the standard deviation
values provided by the evaluated state-of-the-art approaches
in NLOS environments and achieves comparable results
in LOS.
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