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ABSTRACT Deep learning is one of the most popular approaches to machine learning, which has been
widely used for classification. In this paper, we propose a novel learning method based on a combination of
an idea of the deep learning approach and the cellular automata model, called DeepCA for single image haze
removal. DeepCA’s learning is divided into two main parts. The first part is a cellular automata-based deep
feature extraction: multi-layer cellular automata with the rules are used to extract the data feature matrices of
the image, in which the matrices can be divided into several layers. Then, the score matrices were generated
as the model in which was trained by the cellular automata rules. The second part is a decision stage: we used
the score matrices to the mapping between the proper data. For demonstration, we take the single image haze
removal task as an example to confirm the capability of the proposed method. In this regard, the dichromatic
model is chosen as the major model to remove the haze of the image. The multi-layer cellular automata
with the rules work as a mechanical extractor of the light source feature of the hazy image. The decision
stage of DeepCA performs as the recognizer for properly predicting the global light source for dehazing.
This aims to improve the light source and the transmission map that they are important compositions for
haze-free image restoration. For performance evaluation, we perform quantitative and qualitative measures.
For the qualitative performance of the haze removal, DeepCA did not even cause the halo artifact effect
that occurred in other haze removal algorithms. The empirical results in quantitative measures show that
DeepCA improved intensity, color saturation quality, and halo artifact when compared with the state-of-the-
art methods.

INDEX TERMS Cellular automata, deep learning, single image, dehazing.

I. INTRODUCTION
Nowadays haze removal algorithms (or dehazing algorithms)
are still challenging research problems in the field of image
processing due to weather and environment changes. Several
haze removal algorithms were published continuously due
to their fruitful applications. The haze removal algorithm is
not only the most important process for landscape or outdoor
photographing task, but also significantly improves the per-
formance of computer vision applications, such as in the pre-
processing of image segmentation, object detection or image
classification. Actually, there are two types of small particles
diffused in the air: haze and fog that are due to different
in natural processes. Haze is constituted of aerosol, which
is a dispersed system of small dust particles suspended in
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gas, such as combustion products or volcanic ashes. On the
other hand, fog evolves when the relative humidity of an air
parcel reaches saturation, then some of the nuclei grow by
condensation into liquid droplets [1], [2]. In addition, haze
particles are larger than air molecules but smaller than fog
droplets [2]. However, in hazy images, we can observe the
effect of haze or fog that even have low contrast, faint color,
and shifted luminance.

In the past decades, researchers used various techniques to
dehazing and enhancing the image contrast, color saturation,
and restored the important details of the image. Based on our
investigation of image dehazing researches, we found that
there are two approaches of haze removal methods consisting
of multiple and single images-based haze removal. Multiple
image-based haze removal methods usually required multi-
ple images to perform dehazing. For example, polarization-
based methods restore the scene depth information from
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different degrees of polarization property of multiple images
[3], [4]. Similarly, [5] and [6] capture the multiple images
of the same scene under different weather conditions to
be used as reference images with the clear weather condi-
tion. However, these methods with multiple reference images
have a limitation in online image dehazing applications
and may need a special imaging sensor [3], [6]. Alterna-
tively, the single image-based haze removal method relies
on the typical characteristics of a haze-free image. Recently,
researchers used various techniques for single image-based
haze removal. For example, contrast enhancement algorithms
were proposed by [7]–[9],Multi-scale fusion algorithmswere
proposed by [10] and [11], Retinex dehazing algorithm was
proposed by [12], and the most popular conventional single
haze removal algorithm is based on physics-based algorithm
or dichromatic model [2], [13]–[19].

The dichromatic model consists of equation parts suitable
for the hazy image related to computer vision theory that is
easy to understand. This model consists of four significant
steps: atmospheric light estimation, transmission map esti-
mation, transmission map refinement, and haze-free image
reconstruction. The details will be mentioned in the next
section. However, the dichromatic model still has some limi-
tations. Tan [14] observed the difference between the contrast
of the hazy image and haze-free image. He proposed amethod
that takes into account the characteristic that a haze-free
image has higher contrast than a hazy image. By maximizing
the local contrast value of an image, it enhances the visibility
but introduces blocking artifacts around depth discontinu-
ities. Fattal [15] proposed a method that estimated the albedo
of the scene by the assumption of medium transmission that
the transmission and surface shading are locally incorrect,
especially under a dense haze area of the image. He et al. [13]
proposed a novel dark channel prior (DCP) by observing the
property of haze-free outdoor images. The DCP is based on
the property of the dark pixels (in the dark channel), which
have a very low intensity in the color channel except for
the sky region. Owing to its effectiveness in dehazing, the
majority of recent dehazing techniques [14]–[20] adopted
the DCP in their works. Nevertheless, the results of some
recovered scenes are over-saturated in the sky region for the
small patch size, and also contain halo artifacts or border
effect for the large patch size. In this regard, these problems
are solved by soft matting interpolation in the post-process
of transmission map construction [13], bilateral filter [17],
guided filter [21]. Zhu et al. [22] copes with the drawback
of the sky region of the DCP method by proposed a fusion
of luminance and dark channel prior (F-LDCP) method to
effectively restore of long-shot haze-free images, especially
for the sky region.

In this paper, an improved single image haze removal
method is proposed based on deep learning approach and cel-
lular automata theory calledDeep Cellular Automata learning
(DeepCA). The main contributions of this paper are summa-
rized as follows.

1) We propose a novel deep learning method called
DeepCA that used multi-layer cellular automata and the rules
vector as the major of deep learning mechanism.

2) We propose a novel and efficient of single image haze
removal algorithm based-on DeepCA that is dealing with
the transmission map, small haze preserve parameter (ω),
and atmospheric light ratio (ρ). DeepCA directly learns to
the mapping between the hazy image and their transmission
map. This is achieved by special design of DeepCA archi-
tecture and rules training algorithm. Moreover, the proposed
parameters help DeepCA to preserve the natural appearance
of images capable of producing more natural haze-free image
without oversaturation problem and halo artifacts.

The remainder of the paper is organized as follows. In
Section II, we present the problem statement and the dichro-
matic model for dehazing, Section III offers background of
the hazy image and cellular automata model. In Section IV,
we provide details of the proposed DeepCA in the case of
single haze removal problem. Performance evaluation and
experimental results are given in Section V, and Section VI
provides a conclusion.

II. PROBLEM STATEMENT
A. HAZY IMAGE IN COMPUTER VISION
In computer vision and computer graphics, the traditional
physical atmospheric scattering model or also known as the
dichromatic model [2] has been widely used to describe the
formation of hazy image and to dehazing [9]–[11], [13]–[22].
It can be defined in Eq.(1) as follow:

I (x, y) = I ′(x, y)t(x, y)+ A(1− t(x, y)) (1)

where I is the input hazy image, x and y are image coor-
dinates, I ′ is the haze-free image or scene radiance, t is a
transmission value, and A is the global atmospheric light in
image space. Eq. (1) consists of two terms: the first term
I ′(x, y)t(x, y) is direct transmission of haze-free image, and
the second term A(1− t(x, y)) is called air light. The equation
describes the relation of haze-free image, direct transmission
light reflected value and the global atmospheric light. In this
regard, [13] replaced t(x, y) by e−βd(x,y) shown in the Eq. (2),
where β is scattering coefficient of atmospheric light and
d(x, y) is desired scene depth.

t(x, y) = e−βd(x,y) (2)

Then, replace Eq. (2) in Eq. (1), resulting in Eq. (3).:

I (x, y) = I ′(x, y)e−βd(x,y) + A(1− e−βd(x,y)) (3)

Eq. (3) describes the weather effect in hazy image, for β ≈ 0
in clear weather we have I (x, y) ≈ I ′(x, y). More recently,
various algorithms of single image haze removal used the
dichromatic model to dehazing. They have been recovering
I ′(x, y) from the Eq.(1), that can rewrite as follow:

I ′(x, y) =
I (x, y)− A
t(x, y)

+ A (4)
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where I ′ is a haze-free image, I is a hazy image, x and
y are image coordinates, t is a transmission value of the
transmission map, and A is the global atmospheric light in
the image.

For the single image haze removal algorithm based on the
dichromatic model with dark channel prior, the processes of
dehazing are as follows.

Firstly, the dark channel must be constructed from the
hazy image before estimating the atmospheric light. From an
empirical investigation on a number of the outdoor scene of
the haze-free images, He et al. [13] observed that at least one
color channel with some pixels in the image patch has very
low intensity closed to zero. Thus, the value of the dark pixel
in any x, y position (Idark (x, y)) can be estimated from the
three RGB channels by Eq. (5).

Idark (x, y) = min
x,y∈�(x,y)(

min
c∈{r,g,b}I

c(x, y)) (5)

where I c is a color intensity of the pixel in red(r), green(g)
and blue(b) color channel, and �(x, y) is any local patch
of the pixel at the x, y position. This equation describes the
minimum of color intensity from all three RGB channels
in all patches for the dark channel. However, for different
sizes of the local patch based on Eq. (5), the results of some
recovered scenes are often low intensity, low brightness, and
over-saturated image for small patch size and contain halo
artifacts or border effect for large patch size.

Secondly, the atmospheric light is the brightest pixel in
the image estimated from the dark channel. It is the most
important parameter to restore the haze-free image because
it affects all pixels of the restored image. Several DCP-based
algorithms estimated the atmosphere light by Eq. (6). How-
ever, the researchers founded incorrect results when the
image scene contains a large brightest area or bright objects,
such as landscape images with the sky scene. Hence, they
improved the Eq. (6) by defining a percentage of the top value
of the brightest pixel (p) as the atmosphere light. For example,
[13], and [20] used p = 0.1 of the brightest pixel in the dark
channel to estimate the atmospheric light, [17] used p = 0.2
and [18] used the top 5 percentage and edge information to
estimate the atmospheric light.

A = I (argmax(x,y)(I
dark (x, y))) (6)

where I is a hazy image, argmax(x,y) is the max value of
the brightest pixel in the dark channel Idark . The improved
version of the atmospheric light estimation with parameter p
is defined as follow:

A = I (p ∗ argmax(x,y)(I
dark (x, y))) (7)

Thirdly, the transmission map I tran is an image composi-
tion that maintained the image intensity information of the
haze-free image. It can be obtained by using Eq. (8). This
equation is constructed from the positive one subtracted by
the dark channel of hazy image Idark that I c is normalized by
atmospheric light Ac. The equation can be removed the haze
thoroughly, but the image may seem unnatural and lose the

feeling of image depth, this called under-estimation problem.

I tran(x, y) = 1− min
x,y∈�(x,y)(

min
c∈{r,g,b}

I c(x, y)
Ac

) (8)

To cope with the under-estimation problem, researchers pro-
posed an idea to keep a small amount of haze for the distant
objects in the image. He et al. [13] used a positive constant
value ω(0 < ω < 1) to retain the small number of haze; it is
defined as the Eq. (9) as follow:

I tran(x, y) = 1− ω min
x,y∈�(x,y)(

min
c∈{r,g,b}

I c(x, y)
Ac

) (9)

Xu et al. [20] added a positive constant value ρ ∈ [0.08, 0.25]
to cope with the same problem defined in Eq. (10):

I tran(x, y) = 1− min
x,y∈�(x,y)(

min
c∈{r,g,b}

I c(x, y)
Ac

)+ ρ (10)

In general, the parameter ω and ρ are positive constant
value in a range of 0 < ω, ρ < 1, Fig. 1 shows the
differences between ω and ρ in the normal range (0 to 1) and
over the range (> 1) that significantly affected the haze-free
image. Thus, these parameters in the normal range are able to
enhance the haze-free image in terms of haze retaining (see
Fig. 1 (a) to (d)) and atmospheric light (or global light) tuning
(see Fig. 1 (f) to (i)).
Finally, haze-free image restoration, the haze-free image

is restored from the transmission map and atmosphere light
information by the traditional equation defined in Eq. (4).

Regarding the problems above, there are two significant
factors in hazy images that necessary to solve. The first one
is the over-saturated results introduced by the atmosphere
light estimation problem in the case of the images comprise
the large brightest area. The second one is the unnatural
results presented by the inappropriate transmission map. To
address these problems, we propose a method for estimating
the proper transmission map that avoids the atmosphere light
estimation problem of the large brightest area and under-
estimation problem using a novel deep cellular automata
learning to identify the significant parameters. Besides, the
proposed method will be completely restoring the haze-free
image without any post-processing.

III. RELATED WORK
Many single image dehazing methods have been proposed
in the literature. In this section, we investigate two majors
categories, i.e., prior-based dehazing methods and learning-
based dehazing methods. Then the basis of cellular automata
and their application will bementioned, which provides back-
ground knowledge to understand the design of DeepCA.

A. PRIOR-BASED DEHAZING
In past years, several single image dehazing algorithms rely
on the traditional dichromatic model and prior-based method.
For example, Tan [14] proposed a method that takes into
account the characteristic that the haze-free image has higher
contrast than the hazy image. The patch-based local contrast
maximizing method is applied to enhance visibility results,
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FIGURE 1. Effect of different ω value and atmospheric light value: (a)-(e) fixed atmospheric light value, ω = 0.5, 0.7, 0.9, 1.0, and 1.2, respectively.,
(f)-(j) fixed ω = 0.95, atmospheric light value divide by ρ = 0.5, 0.7, 0.9, 1.0, and 1.2, respectively.

but it is still introduced blocking artifacts around depth dis-
continuities. Fattal [23] estimated the albedo of the scene by
the assumption of medium transmission that the transmis-
sion and surface shading are locally incorrect. This method
can slightly reduce the haze and requires time-consuming
to process. Then, Fattal [15] proposed a color-line method
that the scene transmission is recovered based on the color-
lines inside small image patches. However, some image con-
dition is not sufficient to guarantee a correct classification of
patches, and the method cannot operate on monochromatic
images. He et al. [13] proposed a method that addresses the
dark channel prior (DCP) by observing the property of the
dark pixels in outdoor haze-free images. The transmission
map is estimated from the dark channel for dehazing. Besides,
the majority of recent dehazing techniques [16]–[22] also
applied this approach in their works. Although these methods
have achieved outstanding haze-free image results, some of
the dehazing results are still needed to be further improved.
For example, the recovered image of the image scene that
contains the large brightest area or the sky region is over-
saturated and also contain halo artifacts.

B. LEARNING-BASED DEHAZING
Due to the rapid development of deep learning approaches
in computer vision tasks [24]–[28], the deep learning-based
methods have been applied to single image dehazing. For
instance, Cai et al. [29] proposed a DehazeNet based on
the classical convolutional neural network (CNN) and the
atmospheric scattering model to the mapping between the
hazy image and the transmission map. The architecture of
DehazeNet includes four sequential operations, i.e., feature
extraction, multi-scale mapping, local extremum, and non-
linear regression, which is constructed by three convolution
layers, a max-pooling, a Maxout unit, and a BReLU acti-
vation function. Due to a general costly to collect a vast
amount of labeled data for training deep models [25], they

used the haze-free images obtained from the Internet as the
training dataset and randomly sample from them patches
of size 16× 16. Li et al. [30] proposed an AOD-Net to
learn a mapping function based on CNN and a re-formulated
atmospheric scattering model. The AOD-Net is trained on
the synthesized hazy image and tested on both synthetic
and real natural images. Ren et al. [31] proposed a fusion-
based encoder-decoder network calledGated FusionNetwork
(GFN), by learning the confidence map to directly restore
the haze-free image without estimating the transmission map
and atmospheric light. The GFN is trained on NYU2 dataset
[32] and adopts the synthetic method in [33] to synthesize
the training data. Li et al. [34] proposed a flexible cascaded
network based on CNN and the atmospheric scattering model
for single image dehazing, which considers themedium trans-
mission and global atmospheric light jointly by two task-
driven subnetworks. The cascaded CNN includes three parts:
the shared hidden layers part, the global atmospheric light
estimation subnetwork, and the medium transmission estima-
tion subnetwork. The haze-free image can be restored from
the global atmospheric light and the medium transmission
that achieved from the network. However, the method tends
to amplify existing image artifacts and noise for some hazy
scenes. Li et al. [35] used a residual-based deep CNN to
dehazing. The network model has divided into two phases:
the first stage, a haze image is an input to estimate the
transmission map by the network; the second stage, the ratio
of the foggy image and transmission map is used as input, and
the residual network is used to train the atmospheric light and
to dehazing. In this work, the NYU2 depth dataset [32] and
RESIDE dataset [36] are used as training and test sets. Even
though this model effectively performed dehazing processing
for different scenes, especially in dark scenes, it still required
a vast amount of images to training the model. In sum,
although these methods enhance the haze-free results, the
accuracy of the estimated transmission map and the dehazing
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FIGURE 2. Three types of the neighborhood with r = 1: (a) 1-D
neighborhood, (b) Von Neumann neighborhood, and (c) Moore
neighborhood.

result need to be further improved. For instance, they are not
very robust for the hazy image with sky region scene and
heavily hazy scenes. Besides, they are also required a vast
amount of images to train the model.

C. CELLULAR AUTOMATA
Cellular automaton (abbreviated CA, or Cellular Automata
for plural) is firstly proposed by [37], [38] to describe the evo-
lution process of dynamic complex system. CA is a dynam-
ical model that time and space are discrete. It consists of a
regular grid of cells in any finite number of dimensions. The
set of cells (or called its neighborhood) is defined relative
to the central cell. The next state of any cell is dependent
on the rule in terms of the current state of the cell and
its neighborhood. Cellular automata have various types of
neighborhood (see Fig. 2).

The most commonly used of two-dimensional cellular
automata are Moore and Von Neumann neighborhoods. The
simplest class of one-dimensional cellular automata is pro-
posed byWolfram [39], called Elementary Cellular Automata
(abbreviated ECA). ECA has two possible states and evolu-
tion rules, depending only on the nearest neighbor values. In
this paper, we simulated on the neighborhood of Moore in
which similar to the notion of 8-connected pixels of digital
image structure [40] to extracting the feature of the image,
and to enhancing the image contrast and color saturation
of the haze-free image. More specifically, the neighborhood
N (x, y) is defined as follow:

N (x0, y0)M = {(x, y) : |x − x0| ≤ r, |y− y0| ≤ r} (11)

where M denoted Moore, N is a neighborhood, x and y are
the image pixel or position of data in a matrix, x0 and y0 are
the central point of the neighborhood, and r is radius or range
of neighborhood.

N (x0, y0)V = {(x0, y−1), (x−1, y0), (x0, y0),

(x1, y0), (x0, y1)} (12)

where V denoted Von Neumann, x and y are the coordinates
of this neighborhood in the range r = 1.

N (x0, y0)E = {(x−1, y0), (x0, y0), (x1, y0)} (13)

where E denoted ECA or 1-D neighborhood in range r = 1.
CA have successfully been used in image processing, such

as edge detection [41]–[44], noise filtering [40], [45]–[47].

saliency detection [48]–[50], image segmentation [51]–[53],
and 3D image reconstruction [54]. For example, Wongth-
anavasu and Sadananda [41] proposed an edge detection
method based on a cellular automata model. In this work, a
uniform cellular automaton rule using a von Neumann neigh-
borhood has been used for carrying out the edge detection
on binary and gray-scaled images. Jana et al. [55] applied
the cellular automata in a noise filtering technique. The dif-
ference values of Moore neighbors from a center pixel, and
all pixels value of Moore neighbor, including center pixel,
are calculated. Then the values are sorted in ascending order
to eliminated a minimum and maximum values and then
updated the center pixel value using CA rule. Sahin et al. [40]
and Qadir and Shoosha [46] proposed an image denoising
algorithms to restore digital images corrupted by impulse
noise. Both methods are based on two-dimensional cellu-
lar automata. Reference [40] used the cellular automata
with the help of fuzzy logic theory, while [46] used the
hybrid rules under null and periodic boundary conditions.
Qin et al. [49] proposed an unsupervised Hierarchical Cellu-
lar Automata (HCA) to detect salient objects in the image.
TheHCAconsists of twomain components: Single-layer Cel-
lular Automata (SCA) and Cuboid Cellular Automata (CCA).
Single-layer Cellular Automata exploited the relevance of
similar regions through interactions with neighbors. Low-
level image features and high-level semantic information
extracted from deep neural networks are used to measure
the correlation between different image patches. The saliency
maps will be iteratively updated according to well-defined
update rules. The CCA integrates multiple saliency maps
generated by SCA at different scales in a Bayesian framework
to increase the performance of the model. Li et al. [53]
proposed image segmentation method based on fuzzy clus-
tering with cellular automata (CA) and features weighting.
The method combined image color spatial feature weighting
and the CA’s self-iteration to speeds up the convergence
of image segmentation. Sompong and Wongthanavasu [51]
proposed a Gray-level co-occurrence matrix based cellular
automata (GLCM-CA) framework and Improved Tumor-Cut
(ITC) algorithm to cope with ambiguous tumor boundaries on
brain tumor segmentation task. The GLCM-CA transformed
an original magnetic resonance (MR) image to the target
featured image, while the ITC used a patch weighted distance
to enhances the robustness of seed growing. Olague et al.
[54] proposed the infection algorithm based on an artificial
epidemic process inspired byCA for 3D scene reconstruction.
In this work, they present the Epidemic cellular automata that
aim to match the contents of two images to obtain 3D infor-
mation that allows the generation of simulated projections
from a different viewpoint (also known as view synthesis).

For CA-based learning approaches, Wali and Saeed [56]
proposed an ensemble learning architecture called Cellular
Automata Learning and Prediction (CALP) model for the
classification of handwritten patterns. The model allows the
handwritten patterns to evolve or grow using various param-
eters that control by the cellular automata rules. Then these

VOLUME 8, 2020 103185



S. Tangsakul, S. Wongthanavasu: Single Image Haze Removal Using DeepCA Learning

different evolved patterns are used to train the classifier.
Besides, the most related work was proposed by Nichele
and Molund [57]. They proposed a deep learning framework
with cellular automaton-based for reservoir computing. In
this work, the cellular automata are used as a reservoir of
data and tested on the 5-bits memory task (aka. well-known
benchmark of the reservoir computing). The main objective
of the model is to mapping the input binary pattern to the
binary output correctly. The elementary cellular automata (or
1-D neighborhood) are used as the medium in the two reser-
voirs. In the encoding stage, the input is randomly mapped to
initial data in the first row of the reservoir, then evolved by the
cellular automata rule for the next row. In order to compute
the output, they used linear regression model to interpret the
readout value then fed it to the input of the next layer. The
results show that the single CA reservoir system yields similar
results to state-of-the-art, but the two-layered CA reservoirs
show a noticeable improvement compared to a single CA
reservoir.

IV. THE PROPOSED METHOD
In this section, we elaborate on the proposed method details:
basics of DeepCA learner, CA’s rule types used in this work,
and DeepCA architecture. We then present the training of
DeepCA and the building of the best parameter banks.

A. BASICS OF DEEP CELLULAR AUTOMATA LEARNER
Definition 1 (DeepCA Evolution Rule): Cellular automata
work with the rule in general, the evolution rule is a necessary
function that evolves the current state to the next state.

S t+1ij = f (S tij,Nij) (14)

where S t+1ij is a next state of the ith cell at jth layer, f is the
transition function, S tij is a current state for the ith cell at jth

layer, Nij is neighborhood configuration of the ith cell at jth

layer.
For single image haze removal task, we propose a rule

suitable for themulti-layer cellular automata aiming to evolve
any pixel to the haze pixel based on Eq. (14) as follow:

S t+1ij = f (S tij,Nij)

{
haze, if pvtij > cvthreshold
non− haze, otherwise

(15)

where pvtij is the mean of the pixel value in the neighborhood
of the ith cell at jth layer at current state, and cvthreshold is an
confident value estimated from a group of the dark pixel in
the dark channel, in which a current pixel is decided to a haze
pixel.

For example, in range r = 1 of Moore neighborhood, the
value of S t+1ij in any ith cell at jth layer obtained by Eq.(16) as
follow:

S t+1ij =
1
9
(a0S t(x,y) + a1S

t
(x+1,y) + a2S

t
(x+1,y+1)

+ a3S t(x,y+1) + a4S
t
(x−1,y+1)

+ a5S t(x−1,y) + a6S
t
(x−1,y−1)

+ a7S t(x,y−1) + a8S
t
(x+1,y−1)) (16)

where a0, a1, . . . , a8 are the value of an image pixels in each
neighbor of ith cell.
Definition 2 (DeepCA Feature Matrices): DeepCA

generated the multi-layer of data features using convolution
function with the rule vector in each layer, the depth of
these features enables to increase the classification accuracy.
DeepCA feature matrices are shown in Eq.(17) as follow:

Fj = fconv(Ij,Rj, s),

= {fr1 , fr2 , . . . , frn} (17)

where Fj denotes the feature matrices of jth layer,
fconv(Ij,Rj, s) represents the convolution function of input
I in any dimension, and rule R at jth layer with a stride
number s,Rj denotes the rules vector at jth layer represented as
<r1, r2, . . . , rn>, and fri denotes the feature matrix obtained
by the ith rule (ri), for i = 1 to n.
Definition 3 (Score Matrix (SM)): In the training process

of DeepCA that aims to build the reference model, we built
the memory section of DeepCA called Score Matrix (SM ). It
can be built corresponding to an original size of the feature
matrices or modified the size as follow:

SM = fpool(Fj,Nij, s) (18)

where SM denotes the score matrix of all feature lay-
ers, fpool denotes the scoring function, e.g., maxPool(y =
max(xpatch(i,j))), softMax(σ (zj) = ezj∑K

k=1 e
zk
) and maxOut(y =

max(xpatch(i,j,k))). Fj denotes the feature matrices of jth layer,
N ij denotes the neighborhood configuration of the ith cell at
jth layer, and s denotes a stride number.
Definition 4 (DeepCA Decision Rule): The structure of the

score matrix of DeepCA is capable of decision or classifica-
tion tasks. The decision rule for deciding a class of any input
data is defined as theminimum error between the scorematrix
of an input image (SMri ) and the desired data class Iclass as
follow:

SMmodel = min(ferr (SMri , Iclass)) (19)

where SMmodel represents the score matrix of the model,
and ferr represents an error estimation function of the score
matrix, i.e., mean squared error (MSE).
Definition 5 (Rule Vector): The rule vector of DeepCA is

the most important for the classification task because it is a
major key to all DeepCA layers in terms of the score matrices
values tuning. In the general type of cellular automata rules
[58], the rule members are all rules in the Moore neighbor-
hood space. For instance, the Moore neighborhood with two
states possible given as follow:

Rj = < r1, r2, . . . , rn > (20)

where Rj represents the rule vector at jth layer, r1, r2, . . . , rn
denote the 1st to nth of rule members in the rule vector, ri
denote any rule number, i.e., rule-0 to rule-22

9
(or 1.34e+154)

for general rule type of Moore neighborhood [58].
Due to the vast rules space of the general rule type of

Moore, we have to reduce the rules space to make it possible
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FIGURE 3. Totalistic rules: (a) The numbering of rule conventions with
respect to neighbors, and (b)-(e) Example of rule-35, rule-137, rule-273,
and rule-511, respectively.

to determine as the rule vector. In this regard, the totalistic rule
type proposed by [58]–[60] is chosen to reduce the rules space
of general rule type from all of 22

9
rules to totalistic rule type

as only 29 (or 512) possible rules (see Fig. 3). Fig. 3 (a) shows
the specific setting of the Moore neighborhood in which the
neighbors are in order of 2n according to [55], [59], [60].
Definition 6 (The Equivalence of theGeneral and the Total-

istic Rule Types): In general, the cellular automata rule space
is dependent on the type of neighborhood and possible states.
For Moore neighborhood (size 3 × 3) with 2 possible states
(0 or 1), the rule numbers in general rule type can be started
from rule-0 to rule-2512 − 1 (see Fig. 4) while the totalistic
rule type will be started only from rule-0 (neighborhood code
‘‘000000000’’) to rule-29 − 1 (rule-511, neighborhood code
‘‘111111111’’) (see Fig. 5). Actually, all of the totalistic rules
are subset of the general rules and they have a significantly
relation in term of their rule space, e.g., rule-35 in general
rule type, the result of the rule depends on three neigh-
borhood code that consists of ‘‘000000000’’, ‘‘000000001’’,
and ‘‘000000101’’, respectively, whereas the result of the
totalistic rule type depends on only single neighborhood code
‘‘000100011’’. In this regard, the equivalent of these rule
types can be formalized as follow:

rtotalistic(x) ≡ rgeneral(2(x)) (21)

For example, the rule-35 can be represented in totalistic rule
type as rtotalistic(35) = ‘‘000100011′′ which equivalent to
the general rule rgeneral(235) = ‘‘000100011′′. On the other
hand, the use of general rule rgeneral(20+21+25) means that
there are neighborhood codes ‘‘000000000’’, ‘‘000000001’’,
and ‘‘000000101’’. They are also equivalent to rtotalistic(0),
rtotalistic(1), and rtotalistic(5), respectively.
Definition 7 (The Rule-0): Eventhrough the meaning of

rule-0 is a rule that evolves any state to itself (or no operated),
It still has a differences in the case of general rule type and
totalistic rule type. In this work, we defined rtotalistic(0) =
‘‘000000000′′, and rgeneral(0) = null.
Definition 8 (DeepCA Architecture): The major architec-

ture of DeepCA is specially defined by multi-layer cellular
automata, which can be formalized as follow:

F(x) = fL(fL−1(fL−2( . . . (f1(x))))) (22)

where F(x) represents DeepCA’s architecture function with
input x, fL represents functional layer of L th layer that defined

FIGURE 4. Example of general rules: (top) rule-1, and (bottom) rule-35,
respectively.

FIGURE 5. Example of totalistic rules: (top) rule-1, and (bottom) rule-35,
respectively.

as input layer (fin), convolution layer (fconv), pooling layer
(fpool), and output layer (fout ).

B. PROPOSED FRAMEWORK
The main diagram of DeepCA architecture is illustrated in
Fig. 6. In this regard, we consider DeepCA as multiple layers
Layer−1 to Layer−n and defined the Definition. 8 asF(x) =
fout (fpool (fpool (fpool (fconv(fpool(fconv(fpool(fconv(fin(x)))))))))).
In this architecture, function fin(.) is the first functional layer
that separated each channel of the RGB image then feed to the
next layer. Second layer is obtained by convolution function
(fconv) of the input image and the rule vector. It is to determine
the data features that correspond to the rule called feature
matrices. We then build a score matrix from these feature
matrices using Eq. (18). The maxPool(.) operation function
is applied to all fpool(.), then the score matrix is determined
to form by the functional layer (fout ) properly.

C. DeepCA TRAINING
DeepCA training process for each layer is illustrated in Fig. 7
correspondings to Algorithm 1. Firstly, the Moore neigh-
borhood of size 3 × 3 and the rules vector are initialized.
Then, the input image is separated into each RGB channel,
and all pixels are evolved to the next state according to the
convolution function and the rules vector defined by Eq. (14),
Eq. (17), and Eq. (20), respectively. The results are formed
to data features called the feature matrices Fj, that a number
of the feature matrix fri in Fj depends on a number of rules
in the rules vector Rj (see Eq. (17) and Eq. (20)). Secondly,
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FIGURE 6. DeepCA architecture.

FIGURE 7. DeepCA training process.

these feature matrices are taken to the next layer or to build
the score matrices SM , as shown in Eq. (18) and Fig. 6. In this
regard, the maxPool function is applied on all layer-to-layer
feature matrices, while the softMax andmaxOut function will
only be applied to the last layer. After maxOut , the score
matrices can be extracted as an objective map. Thirdly, learn-
ing the mapping between input images and corresponding
objective maps is learned by minimizing the loss function
between the score matrices (SMri ) (or the predicted objective
map) and the corresponding class of image (Iclass) (or labeled
data). We evaluated a minimum error of the model by the loss
function (ferr ) based on Eq. (19). The operation is repeated
with all rules in the rules vector initialized by Eq. (20) for
all training images until convergence. Finally, a mapping
between the input image and the objective map is obtained
by the score matrices.

D. DeepCA TRAINING FOR SINGLE IMAGE HAZE
REMOVAL
DeepCA training process for single image haze removal is
also illustrated in Fig. 7 correspondings to Algorithm 1.
Firstly, the hazy image is separated into each RGB channel.
Then the feature matrices are generated by evolving all pixels

in each image channel to the next state and also evolving to
the haze pixel by Eq. (14), and Eq. (15), respectively. In this
layer, a number of feature matrices Fj in each image channel
depends on a number of the rules ri in the rules vector Rj.
Secondly, the feature matrices are taken to the next layer or
used to build the score matrices based on Eq. (18): function
maxPool, softMax or maxOut will be applied depending on
the layer in which it is located. Thirdly, learning the mapping
between hazy images and corresponding transmission maps
is learned by minimizing the loss function between the pre-
dicted transmissionmap (I tranpred ) and the corresponding ground
truth (I trangt ). We evaluated a minimum error of the model by
the MSE loss function based on Eq. (19) as follow:

loss =
1
N

N∑
i=1

(I tranpred − I
tran
gt )2 (23)

where N is the number of each batch. Then, the rule number
that provides the smallest error value will be registered in Ri.
We repeated this process with all rules in the rules vector
initialized by Eq. (20) for all training images until conver-
gence. Finally, a mapping between the hazy image and the
transmission map is obtained by the score matrices.
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FIGURE 8. The architecture of DeepCA for single image haze removal.

E. DeepCA FOR SINGLE IMAGE HAZE REMOVAL
The diagram of the DeepCA for single image haze removal is
illustrated in Fig. 8 corresponding to Algorithm 2. For more
details, a hazy image is an input to DeepCA to generate the
transmission map and to classify the haze density. It then
uses the information of haze density to determine the best
parameter of the haze preserve parameter (ω), and atmo-
spheric light ratio (ρ) from the best parameters bank. These
parameters provided by Algorithm 3 and Algorithm 4, they
are the most important parameters to generate the best global
atmospheric light. In this regard, the global atmospheric light
value is achieved by Eq. (7) (p is set to 0.1), we then applied
the haze preserve parameter (ω) from Eq.(9), and defined
a new parameter (ρ) in Eq.(1) to adjust the ratio of global
atmospheric light value resulting in Eq.(24) as follow:

I (x, y) = I ′(x, y)t(x, y)+
A(1− t(x, y))

ρ
(24)

Finally, the haze-free image I ′(x, y) is obtained by the global
atmospheric light and the transmission map as follow:

I ′(x, y) =
I (x, y)− A(1−t(x,y))

ρ

t(x, y)
(25)

F. BEST PARAMETER BANK
In order to build the best parameter bank, we applied an
Algorithm 3 to determine the best parameter for known
ground-truth hazy image and applied an Algorithm 4 for
unknown ground-truth hazy image. These algorithms are effi-
ciently determining two significant parameters for dehazing.
For the known ground-truth hazy image, the Algorithms 3
find the best values of both parameters in a range of

FIGURE 9. Example hazy images from R. Fattal [15], S. Wang et al. [61],
FRIDA-1 and FRIDA-2 [62], [63], and RESIDE [36] datasets.

0 < ω, ρ < 1 using the MSE function to the evaluating
between ground-truth image and the dehazed image provided
by Algorithm 5. For the unknown ground-truth hazy image,
the Algorithms 4 pre-defined parameters ρpre and ωpre for
temporarily determine the dark channel of a haze-free image
provided by Algorithm 5 and the pre-defined parameters. The
algorithm finds the best values of both parameters in a range
of 0 < ω, ρ < 1 by evaluating the quality of the dark channel
of temporary dehazed image and the dehazed image that also
provided by Algorithm 5.

V. EXPERIMENTALS
In this section, we first describe the experimental settings and
validate the proposed DeepCA on several datasets. Then, we

VOLUME 8, 2020 103189



S. Tangsakul, S. Wongthanavasu: Single Image Haze Removal Using DeepCA Learning

Algorithm 1 DeepCA Training Algorithm
Input: Images I and rule vector Rj.
Output: SMmodel , and Ri: the class references model with

rule vector.
Initialisation : 1

1: Nij← 3× 3,Rj←< r1, r2, . . . , rn > (Eq. (20))
LOOP Process : 2-13

2: for each Layer do
3: while !convergence do
4: for all image I do
5: for each ri ⊆ Rj do
6: Compute Fj by applying Eq. (14) and Eq. (17)

on I
7: SMri ← fpool(Fj,Nij, s) (Eq. (18))
8: end for
9: SMmodel ← min(ferr (SMri , Iclass)) (Eq. (19))
10: Ri← ri
11: end for
12: end while
13: end for
14: return SMmodel , and Ri

Algorithm 2 DeepCA for Single Image Haze Removal
Input: Hazy images I , ρ, ω.
Output: Dehazed image I ′.

Initialisation : 1
1: Nij← 3× 3,Rj←< r1, r2, . . . , r8 > (Eq. (20))
Process : 2-11

2: for each image I do
3: Compute Fj by applying Eq. (14), Eq. (15), and Eq.

(17) on I
4: Compute hazeDensity = (Fj)

Iwidth∗Iheight
5: SMRj ← hazeDensity
6: REFmodel ← Min(MSE(SMRj , SMmodel))
7: ρ, ω← Bank(REFmodel)
8: Compute A by applying Eq. (7)
9: Compute I tran by applying ω in Eq. (9)

10: Restore image I ′ by applying ρ in Eq. (25)
11: end for
12: return Dehazed image I ′

compare the dehazing results and the medium transmission
with several state-of-the-art methods on both natural and
synthetic benchmark images. In this regard, we directly use
the dehazing source codes and the published results of the
state-of-the-art method for the fairness of comparison.

A. DATASETS
For empirical experiments, three major groups of hazy
images are implemented. The first group consists of 4 classes
of 1464 natural images regarding the haze level proposed
by Wang et al. [61]. The second group consists of 420 syn-
thetic of foggy images and their ground truth (FRIDA-1 and
FRIDA-2 datasets) proposed by Tarel et al. [62], [63], and

Algorithm 3 Best Parameters Finding for Known Ground-
Truth Hazy Image
Input: Hazy images I and its ground-truth G.
Output: Bank(ρ, ω), the bank of atmospheric light ratio ρ,

and haze preserve value ω.
Initialisation : 1

1: ρ, ω← 0
LOOP Process : 2-9

2: for all image I do
3: while ρ 6 1 do
4: while ω 6 1 do
5: I ′← SHR(I , ρ, ω)
6: ρ, ω← Min(MSE(I ′,G))
7: end while
8: end while
9: end for
10: return Bank(ρ, ω)

Algorithm 4 Best Parameters Finding for Unknown Ground-
Truth Hazy Image
Input: Hazy images I , and pre-defined ρpre and ωpre.
Output: Bank(ρ, ω): the bank of best atmospheric light ratio

ρ, and haze preserve value ω.
Initialisation : 1-2

1: ρpre← 0.95, ωpre← 0.85
2: ρ, ω← 0
LOOP Process : 3-15

3: for all image I do
4: Idarkpre ← SHR(I , ρpre, ωpre)
5: while ρ 6 1 do
6: while ω 6 1 do
7: Idark ← SHR(I , ρ, ω)
8: if 6(Idarkpre ) > 6(Idark ) then
9: ρ, ω← getParam(Idarkpre )
10: else
11: ρ, ω← getParam(Idark )
12: end if
13: end while
14: end while
15: end for
16: return Bank(ρ, ω)

the third group consists of 1,000 hazy images of Synthetic
Objective Testing Set (SOTS) from the RESIDE dataset pro-
posed by Li et al. [36]. Moreover, we also implemented all
of the most popular images used by Fattal [15], and several
state-of-the-art methods. These images consist of benchmark
images, high-resolution images, ground truth images, and
known transmission images. Fig. 9 shows examples of hazy
images from these datasets.

B. TRAINING DATA
It is owing to a general costly to collect a huge amount of
labeled data for training deepmodels [25], [29], especially for
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Algorithm 5 Single Image Haze Removal, SHR(I , ρ, ω)
Input: Hazy images I , ρ, ω.
Output: Dehazed image I ′.

Initialisation : 1
1: Nij← 3× 3
Process : 2-7

2: for each image I do
3: Compute Idark by applying Eq. (5)
4: Compute A by applying ρ in Eq. (7)
5: Compute I tran by applying ω in Eq. (9)
6: Restore image I ′ by applying Eq. (4)
7: end for
8: return Dehazed image I ′

pairs of clear images and haze images on natural images. For
the training of DeepCA, we have synthesized the training data
based on the dichromatic model [2]. The synthetic haze-free
images of FRIDA-1 (18 images) and FRIDA-2 (66 images)
datasets are used as training data for DeepCA. However, it is
not enough to efficiently train the DeepCA. In this regard, we
have randomly sampled 100 patches of size 50× 50 on each
image to DeepCA training: each patch is determined only the
medium transmission based on the dichromatic model, and
the atmospheric light (A) is set to 1 as suggested by [29], [35]
to reduce the instability of the synthesis. Therefore, there are
8,400 ofmedium transmission patches generated for DeepCA
training.

C. PERFORMANCE EVALUATION
We compared the proposed method and the state-of-the-art
algorithms using Peak Signal to Noise Ratio (PSNR) [64]
for quantitative evaluation. To compute the PSNR, we first
calculate the mean squared error (MSE) using the following
equation:

MSE =
1
N

∑
c∈{r,g,b}

(I ′(c)− G(c))2 (26)

where I ′(c) is the haze-free image resulting from any algo-
rithms, G(c) is the ground-truth image, c is an image pixel at
r , g and b color channel, and N is a number of image pixels.

PSNR represents a measure of the peak error. It is derived
from the mean square error (MSE) and indicates the ratio of
the maximum pixel intensity to the power of the distortion.

PNSR = 10 log10(
(2b − 1)2

MSE
) (27)

where b is the bit size of a pixel of the image.
We also used the blind assessment method based on the

property of the human visual system [65] and structural
similarity (SSIM) measurement system [64] to objectively
evaluate of the proposed method compared to the state-of-
the-art methods on each of the single benchmark image. The
SSIM is defined as:

SSIM (I ′,G) =
(2µI ′µG + C1)(2σI ′G + C2)

(µ2
I ′ + µ

2
G + C1)(σ 2

I ′ + σ
2
G + C2)

(28)

where I ′ represents a haze-free image, and G is a dehazed
image. 2µI ′ is the average of I ′, µG is the average of µG.
2σI ′G is the covariance with I ′ andG. σ 2

I ′ is the variance of I
′,

and σ 2
G is the variance of G. We set the values C1 and C2 to

0.01 and 0.03 by default as suggested in [64].
For the blind assessment method, it consists of three indi-

cators: er is a ratio of edges newly visible after dehazing
with local contrast above 5% of the hazy image and restored
image, r̄ is the ratio of the quality of contrast after and before
dehazing, and σs is the percentage of pixels which become
saturated after dehazing.

D. TRAINING RESULTS ON HAZE REMOVAL PROBLEM
The problem statement in Section II mentions the dichromatic
model and the importance of ω and ρ. These parameters do
not only affect the transmission map but also significantly
influence on the resulting of haze-free image restoration.
Hence, we proposed the DeepCA learning to the mapping
between the hazy images and their proper transmission map.
Regarding the training datasets, Frida-1 and Frida-2 consist
of the haze-free images and four types of haze that inte-
grated in the image, i.e., homogeneous fog, heterogeneous
fog, cloudy homogeneous fog, and cloudy heterogeneous fog.
The haze-free images are used to estimating the transmission
map. We then used these transmission maps to train the
DeepCA model. Fig. 7 illustrated the training process of
DeepCA corresponding to Algorithm 1 that described the
training step of each layer on DeepCA architecture. Mean-
while, Fig. 10 (a)-(c) depict the values of training error and
a number of the rules used on DeepCA layer-1, layer-2, and
layer-3, respectively.

E. QUANTITATIVE RESULTS
To quantitatively verify the performance of the proposed
DeepCA, we validated DeepCA on both natural hazy and
synthetic hazy images by using evaluation metrics based
on the difference between a pair of their hazy or haze-free
images, and dehazing result. For natural hazy images, we
used images from Fattal [15] and Wang et al. [61] to verify
the model performance. The blind assessment method, er , r̄ ,
and σs [65] are applied to evaluate the original hazy image
and dehazing result. The quantitative results are provided in
Table. 1. As shown, the proposed DeepCA achieves better
performances of er on most of the images in the first rank and
the second rank meaning that DeepCA appears to be capable
of recovering the new edge visible better than others. For r̄ ,
DeepCA also achieves the quality of contrast in the first and
the second rank on most of the images. For σs, the value that
closes to zero signifies the better performance. DeepCA is
able to maintain the percentage of pixel saturation compared
to other methods.

In the case of synthetic hazy images (FRIDA and SOTS
datasets), we used the PSNR and the SSIM to evaluate
the haze-free image (or ground-truth) and dehazing result.
The average values of these evaluation metrics obtained by
DeepCA and the state-of-the-art compared methods are listed
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FIGURE 10. Training process in Layer-1, Layer-2, and Layer-3 with the different number of the rules: (a)-(c) MSE of Layer-1, Layer-2, and
Layer-3, respectively.

FIGURE 11. Dehazing results of the natural images and their transmission maps restored by DeepCA.

and illustrated in Table. 2, Table. 3, Fig. 12, and Fig. 13,
respectively. For the Frida datasets, the proposed DeepCA
performs competitively against state-of-the-art algorithms.
The use of synthetic haze-free images and its transmission
maps in the training process allows DeepCA to produce the
best PSNR and SSIM, means that the proposed method is
able to significantly maintain the image content and the sim-
ilarity of the structures of the original image. For the SOTS
dataset (indoor and outdoor images), we also compared the
dehazing performance with other learning-based dehazing
methods. Table 3. shows that the DeepCA performs relatively
high against the learning-based dehazing methods in terms
of the average PSNR and SSIM values. Although DeepCA
has achieved the third and second rank for indoor images,
the PSNR and SSIM generated by DeepCA are higher than
the He et al. [13], Zhu et al. [19], Choi et al. [11], Bui and
Kim [66], and Li et al. [36] methods. For outdoor images,
Cai et al. [29], Zhu et al. [19], and Ren et al. [31] obtain
greater PSNR advantages over all methods. However, the
DeepCA also performs relatively high PSNR and SSIM com-
pared to other methods.

F. QUALITATIVE RESULTS ON NATURAL IMAGES
To evaluate the performance of the proposed DeepCA and
the state-of-the-art compared algorithms, we simulated these

algorithms on the benchmark hazy images provided by Fattal
[15], and Wang et al. [61]. Fig. 11 shows the hazy images,
dehazing results, and the corresponding transmission maps
generated by the DeepCA. As can be seen, the DeepCA
is able to significantly recover haze-free pixels from the
hazy images of various image scenes and preserve the subtle
transitions in the hazy regions without introducing the halo
artifacts.

The sky region in images is mentioned as the dehazing
problem, especially in cloudy landscape scenes [11], [13],
and [29], because of two reasons: haze and clouds are similar
to the color in natural phenomenons, and the proportion of
the sky or the clouds in the image can cause under-saturation
or over-saturation of haze-free image scenes restoration.
Fig. 14 shows the result of images with sky region Ny17 and
Yos2 that focused on the redmarked region. It can be seen that
the DeepCA appropriately produced haze-free images of the
landscape scenes without under-saturated or over-saturated
compared to other methods. Meanwhile, the hazy from the
results of Zhu et al. [19], Cai et al. [29], and Ren et al. [31]
has not completely reduced. In addition, the dehazed images
from Bui and Kim [66], and Li et al. [36] methods are tend to
become over-saturation.

Fig. 15 shows the qualitative comparison of DeepCA and
the state-of-the-art methods on the most popular benchmark
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TABLE 1. Comparison rate er , r̄ , and σs of natural images with the state-of-the-art methods. Note Text color blue = 1st rank, magenta = 2nd rank, and
green = 3rd rank.

TABLE 2. Comparison of PSNR and SSIM on FRIDA datasets obtained by the state-of-the-art methods and DeepCA.

images. Fig. 15 (a) depicts the original hazy image, (b)-(f)
illustrate the results of He et al. [13], Zhu et al. [19],
Cai et al. [29], Bui and Kim [66], Li et al. [36], Ren et al.
[31] and (g) shows the results of DeepCA, respectively. As
can be seen, all dehazing algorithms can gain good results in
general outdoor images except for images that come with the

sky, the cloud or the large white areas that some dehazing
methods cannot handle. For instance, the dehazed images
produced by Cai et al. [29] and Ren et al. [31] are look lightly
dehazed (e.g., Man, Yos2, and Guogong) while Bui and Kim
[66] produced the images that look over-saturated and still
have some color distortions, but DeepCA obtain more natural
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TABLE 3. Comparison of PSNR and SSIM on SOTS datasets obtained by the state-of-the-art methods and DeepCA.

FIGURE 12. Comparison of PSNR and SSIM on FRIDA datasets obtained by state-of-the-art methods and DeepCA.

FIGURE 13. Comparison of PSNR and SSIM on SOTS datasets obtained by state-of-the-art methods and DeepCA.

FIGURE 14. Comparison of dehazed images on landscape scene with the sky region of image Ny17, and image Yos2 in the red marked region: (a) Original
hazy image, (b) Result of He et al.’s method [13], (c) Result of Zhu et al.’s method [19], (d) Result of Cai et al.’s method [29], (e) Result of Bui et al.’s
method [66], (f) Result of Li et al.’s method [36], (g) Result of Ren et al.’s method [31] and (h) DeepCA.

results. For images House, He et al. [13] and Zhu et al.’s
method [19] tent to produced the images that the hazy and the

halo effect are not completely removed, while other methods
and DeepCA do not suffer those problems.
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FIGURE 15. Qualitative comparison of dehazed images (Man, Yos2, Guogong, Train, and House) of the state-of-the-art methods and DeepCA: (a) Original
hazy image, (b) Result of He et al.’s method [13], (c) Result of Zhu et al.’s method [19], (d) Result of Cai et al.’s method [29], (e) Result of Bui et al.’s
method [66], (f) Result of Li et al.’s method [36], (g) Result of Ren et al.’s method [31] and (h) DeepCA.

FIGURE 16. Comparison of object restoration on a synthetic hazy image from FRIDA dataset in the red marked region: (a) Original hazy image, (b) Result
of He et al.’s method [13], (c) Result of Zhu et al.’s method [19], (d) Result of Choi et al.’s method [11], (e) Result of Cai et al.’s method [29], (f) Result of
Bui et al.’s method [66], and (g) DeepCA.

G. QUALITATIVE RESULTS ON SYNTHETIC IMAGES
To evaluate the qualitative performance of the proposed
DeepCA and the compared methods on synthetic images,
we simulated the algorithms on FRIDA and SOTS datasets.
For the Frida dataset, Fig. 16 shows the performance of
DeepCA capable of obviously recovering the building object
visible in the red marked region better than other methods,
while the hazy from the results of Zhu et al. [22], Choi et al.
[11], and Cai et al. [29] has not entirely removed. Fig. 17
shows the qualitative results in comparison of DeepCA and

the state-of-the-art methods. Fig. 17 (a) depicts the original
hazy image, (b)-(f) illustrate the results of He et al. [13],
Zhu et al. [19], Choi et al. [11], Cai et al. [29], Bui and Kim
[66], and (g) shows the results of DeepCA, respectively. It can
be seen that the proposed DeepCA and Bui et al.’s method
obviously produced the greatest reduction of haze density
and yielded better results meaning that main objects can be
restored from the dense-haze scenes, while other methods can
only be reduced lightly haze. However, Bui and Kim [66]
and DeepCA tend to produce results that contain distorted
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FIGURE 17. Qualitative comparison of dehazed images (on FRIDA datasets) of the state-of-the-art methods and DeepCA: (a) Original hazy image, (b)
Result of He et al.’s method [13], (c) Result of Zhu et al.’s method [19], (d) Result of Choi et al.’s method [11], (e) Result of Cai et al.’s method [29], (f)
Result of Bui et al.’s method [66], and (g) DeepCA.

FIGURE 18. Qualitative comparison of dehazed images (on synthetic indoor images from SOTS dataset) of the state-of-the-art methods and DeepCA: (a)
Original hazy image, (b) Result of He et al.’s method [13], (c) Result of Zhu et al.’s method [19], (d) Result of Cai et al.’s method [29], (e) Result of Bui et
al.’s method [66], (f) Result of Li et al.’s method [36], (g) Result of Ren et al.’s method [31] and (h) DeepCA.

colors for dense-haze scenes. For the SOTS indoor dataset,
the comparison results are shown in Fig. 18. It can be seen
that the results generated by He et al. [13], and Bui and Kim
[66] suffer from color distortion where the results are usually
darker than other methods. The methods of Zhu et al. [22],
Cai et al. [29], and Li et al. [36] produce results that there
remains some haze in the dehazing images. Meanwhile,
Ren et al. [31] and DeepCA obtain the proper reduction of
haze density and yielded better results. In the case of the out-
door dataset, Fig. 19 shows that most of the haze is removed
by He et al. [13], Zhu et al. [19], Cai et al. [29], Li et al. [36],
Ren et al. [31], and DeepCA. It can be seen that the results
look very natural except for Bui and Kim [66]’s method that

often generated over-saturated images and contains distorted
colors. Comparing to the results of the state-of-the-art algo-
rithms, DeepCA tends to significantly reduce the dense haze
and achieves better visibility enhancement images on chal-
lenging images.

H. RUNNING TIME
Table 4 reports the average running time of the algorithms
based on their codes published on the internet. We use the
100 images (640×480 pixels) in the FRIDA dataset for eval-
uation. All methods are implemented in MATLAB r2018a
based on their source code available on the internet. We
evaluate these methods on the same machine without GPU
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FIGURE 19. Qualitative comparison of dehazed images (on synthetic outdoor images from SOTS dataset) of the state-of-the-art methods and DeepCA: (a)
Original hazy image, (b) Result of He et al.’s method [13], (c) Result of Zhu et al.’s method [19], (d) Result of Cai et al.’s method [29], (e) Result of Bui et
al.’s method [66], (f) Result of Li et al.’s method [36], (g) Result of Ren et al.’s method [31] and (h) DeepCA.

TABLE 4. Comparison of the average running time (in seconds) on test
image size of 640× 480 pixels.

acceleration (Intel CPU 3.60 GHz and 8 GB memory). The
proposed algorithm is more efficient than the state-of-the-art
methods (e.g., He et al. [13] and Choi et al. [11]) in terms of
run time. However, the proposed method is slower than the
other learning-based dehazing methods.

VI. CONCLUSION
We have presented a novel DeepCA that combines ideas of
deep learning and cellular automata approach for improv-
ing single image haze removal. DeepCA learning is divided
into two major parts: the first part is cellular automata deep
feature extraction, we used multi-layers cellular automata
with rules vector to extract the light source feature of hazy
images, then this feature is formalized as score matrices. It
was trained by the cellular automata rules to determine the
proper transmissionmap and to estimate the haze pixels in the
hazy image. The second part is a decision stage: we used the
score matrices in mapping between the proper transmission
map and hazy image and in deciding the haze density class of
the hazy image. Then, the haze preserved parameter (ω) and
the ratio of global atmospheric light value (ρ) are determined
from the haze density class. This provides the parameters to
enhance the transmission map suitable for restoring the best
haze-free images. For performance evaluation, we also used
the most popular natural benchmark images, high-resolution
images, ground truth images, and synthetic images in the
experiments to compare with the state-of-the-art algorithms.
The simulation shows that the proposed DeepCA provides
promising performance, improving image intensity, reducing
the halo artifact, and obviously producing themost significant
reduction of haze density when compared with the state-of-
the-art algorithms.

Even though the proposed method significantly reduced
the haze density in the image, especially in the dense-haze
scenes, the method tends to amplify existing image arti-
facts for some image scenes, and the background details or
color of some objects can be corrupted by noise on heavily
hazy images. For future work, we intend to suppress these
drawbacks in a further dehazing model. Additionally, we
will improve the proposed model to directly estimation of
the medium transmission (without any parameters) and also
increase the speed of the dehazing process.
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