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ABSTRACT In mobile networks, detecting and eliminating areas with poor performance is key to optimize
end-user experience. In spite of the vast set of measurements provided by current mobile networks, cellular
operators have problems to pinpoint problematic locations because the origin of suchmeasurements (i.e., user
location) is not registered inmost cases. At the same time, social networks generate a huge amount of data that
can be used to infer population density. In this paper, a data-drivenmethodology is proposed to detect the best
sites for new small cells to improve network performance based on attributes of connections, such as radio
link throughput or data volume, in the radio interface. Unlike state-of-the-art approaches, based on data from
only one source (e.g., radio signal level measurements or social media), the proposed method combines data
from radio connection traces stored in the network management system and geolocated posts from social
networks. This information is enriched with user context information inferred from traffic attributes. The
method is tested with a large trace dataset from a live Long Term Evolution (LTE) network and a database
of geotagged messages from two social networks (Twitter and Flickr).

INDEX TERMS Small cell, social network, twitter, traces, site selection.

I. INTRODUCTION
In the last years, mobile networks have experienced a continu-
ous growth in the amount of users and services [1]. Likewise,
the development of 5G system will increase drastically the
number and heterogeneity of connected devices [2]. As a
result, network complexity will make it very difficult for
operators to manage their networks. For this reason, automa-
tion of mobile networks has become a field of interest for
the industry and academia, giving rise to Self-Organizing
Networks (SON) [3]. SON methods are classified into self-
configuration, self-tuning and self-healing, depending on
their use for network planning, optimization or problem
solving.

At the same time, network providers have started to think
in terms of users experience when managing their networks.
Traditionally, network management followed a network-
centric approach based on Quality of Service (QoS) criteria.
This legacy approach has been replaced by a more user-
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centric approach based on how the user perceives the service,
known as Quality of Experience (QoE) [4]. Parameterizing
user experience for the different services provided by the
network helps to increase the impact of network management
on the end user. Thus, Customer Experience Management
(i.e. CEM) is today one of the main procedures that stand out
operators from their competitors [5]. Unfortunately, estab-
lishing the relationship between network performance and
user opinion is a difficult task due to the large number of
factors influencing user experience [6].

The communication context (e.g., terminal type,
indoor/outdoor location, time of day, geolocation?) is one
of the most influential factors on service perception [7], [8].
Thus, the most sophisticated QoE models take user context
(e.g., time of day or user location) into account. To recognize
user activity, service providers can use active measurements
from on-body sensors through ensemble learning [9]. Alter-
native, network operators can infer user context by leveraging
signaling events registered by the network on a per-
connection basis [10]. In particular, indoor/outdoor detection
can be performed based on signal level measurements [11] or
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traffic descriptors registered in connection traces [12]. Then,
this information can be used to develop context-aware SON
algorithms [13]–[15] [16].

To fulfill the stringent constraints of new use cases, 5G
operators will take network performance to the next level
by combiningmultiple techniques. Network densification has
been recognized as an efficient way to provide higher network
capacity and enhanced coverage [17]. In densely populated
areas, densification is best achieved by combining macro-
cellular infrastructure with small cell (SC) deployments. In
such heterogeneous networks, consisting of macrocells and
small cells, discovering the best locations for SCs is key to
making the most of the new infrastructure. However, most
current site selection approaches only take simple network
coverage and signal quality indicators due to the difficulty of
modeling dynamic packet scheduling with users of multiple
services and different radio link conditions in a radio network
planning tool. In the absence of such a performance model,
the Minimization of Drive Tests (MDT) feature [17], [18]
allows the collection of geolocated measurements that can
be used to build precise network performance maps (Radio
Environment Map, REM). Such maps can then be used to
detect coverage holes [19]. Unfortunately, MDT is rarely
activated in live networks due to the workload of processing
these measurements. Thus, network re-planning and opti-
mization tasks often has to be done based on measurements
only positioned by cell identity and time advance statistics.
Such an approach leads to large location errors, which prevent
estimating user context.

With recent advances in information technology, the inter-
est in data science has grown in the last years. As a result,
many open data initiatives have been launched around the
world. Open data portals now offer direct and automated
access to valuable assets that may be used to improve cellular
network management. Some companies (e.g., OpenSignal
[20] or WeFi [20]) provide real crowdsourced measurements
collected by anonymous users, which can be used to assess
current deployments [21]. Social networks are another source
of information for understanding user behavior. Social media
activity can be used to predict cellular traffic, regardless
of radio access technologies or network providers [22]. At
the same time, information on social events obtained from
browser results or open data repositories can be used to
explain abnormal network behavior during troubleshooting
procedures [23]. Likewise, areas of poor signal coverage or
service performance (i.e., blackspots) can be detected by
processing geotagged text messages in social networks [24].
However, to the authors’ knowledge, few works have con-
sidered the fusion of geolocated information from social
networks and mobile networks.

In this work, a new data-driven site selection method for
SCs is presented. The aim is to detect (and rank) small space
regions (both indoors and outdoors) with lack of coverage
or capacity with the largest benefit in terms of expected
recovered data volume. Unlike legacy approaches, based
solely on REMs derived with telecom data, the proposed

method enriches this information with geotagged posts pub-
licly available from social networks. Moreover, the method
takes advantage of user context to refine user positioning.
The main benefit is an improved spatial resolution in detect-
ing inadequately served hotspots. Method assessment is per-
formed with a real dataset consisting of a large set of open
maps, connection traces from a live Long Term Evolution
(LTE) network and geotagged posts obtained from Twitter
[25] and Flickr [26]. The rest of this paper is structured as
follows. Section II reviews the current state of research to
clarify the contribution of this work. Section III describes
the proposed SC site selection method. Section IV shows the
results of the method in a live scenario. Finally, section V
summarizes the main conclusions of the work.

II. SITE SELECTION RELATED WORK
The antenna placement problem (APP) can be formulated as a
classical optimization problem. The design variables are the
base station coordinates, often restricted to a limited set of
candidate locations, and the objective function may be any
combination of global network performance indicators. For
computational reasons, this combinatorial optimization prob-
lem is often solved by heuristic approaches. Previous works
can be classified by type of environment, design criteria and
solution algorithm.

In terms of radio environment, a first group of works
deal with macrocellular and microcellular outdoor scenarios.
In [27], simulated annealing is used to solve the APP in a
TDMA/FDMA microcell environment based on signal-to-
interference-plus-noise ratio (SINR) and path loss indicators.
In [28], APP in WCDMA is formulated as an integer linear
programming problem, solved by tabu search. In [29], the
APP is formulated so as to find the minimum number of
antennas for a desired coverage level. In [30], the aim of
the APP is to maximize coverage in GSM while still satis-
fying a minimum SINR requirement, which is achieved by
genetic algorithms. In [31] and [32], a sensitivity analysis is
carried out to check the impact of site location and antenna
tilt angles on the pole capacity in a WCDMA network with
uneven traffic distribution. In [33], randomized local search
and tabu search are used to solve the APP in order to jointly
optimize installation costs, signal quality and traffic coverage
in WCDMA.

A second group of works extend the previous methods
to indoor scenarios. In some of them, the APP is formu-
lated to minimize path loss (or maximize coverage) with a
general-purpose optimization algorithm (e.g., genetic [34],
direct search [35], simulated annealing [36] or heuristic [37]).
Similarly to [29], [38] proposes binary integer programming
to find the minimum number of access points guaranteeing a
minimum SINR in the scenario. In [39], a heuristic method is
proposed to place indoor access points inWCDMAwith con-
straints on uplink (UL) and downlink (DL) SINR. Later stud-
ies focus on SINR optimization by different methods (e.g.,
brute force enumeration in WCDMA [40] and LTE [41], par-
ticle swarm inWCDMA [42] and reduction approximation in
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FIGURE 1. Block diagram of the proposed Trace and Social Method (TSM) for small-cell site selection.

WCDMA [43]). In [44], a method for femtocell placement is
proposed tominimize transmit power ofmobile users. In [45],
a methodology for locating enterprise femtocells in a building
is proposed to maximize the effectiveness of mobility load
balancing schemes. Alternatively, in [46], [47], the aim is
to find the best location for Wi-Fi access point for optimal
user positioning in indoor environments. More recently, an
overview of SC deployment strategies for Internet of Things
(IoT) 5G environments is presented in [48].

Social networks can provide valuable information for the
APP. In [22], it is shown that social media activity aggregated
at a district level can be used to predict cellular traffic at
a spatiotemporal resolution higher than current approaches
based on census data. Equally important, social media data
reflects the overall traffic demand across radio access tech-
nologies or network providers. Similarly, cell loads can be
estimated by a queuing model adjusted with the distribution
of geotagged messages from Twitter [49]. Nonetheless, it is
still to be checked whether data from social networks can
be used to predict traffic at a lower scale (e.g., at a building
level).

The main contributions of the method proposed here are: a)
to combine cellular network measurements with user context
and social media data to detect blackspots at a building level,
and b) to quantify the expected performance benefit of each
new SC based on observed user behavior.

III. METHODOLOGY
The aim of the method is to detect areas in a live cellular
network where traffic demand can be increased by improving
radio link conditions. For this purpose, a deep knowledge
of the most influential factors affecting traffic demand is
needed, namely: a) radio network performance per location,
b) spatial user distribution and c) context-dependent user
behavior.

Fig. 1 shows a block diagram of the proposed method. The
inputs are: a) radio trace files, comprising signaling events
of individual connections in the radio interface, b) the cellu-
lar network layout, describing existing site coordinates and
antenna azimuths in the area, c) a large dataset of geotagged
messages (posts) generated in the area from social networks,
and d) a land use map of the area. This inputs are used due
to its relevant information. In this way, radio traces provides
all the necessary information about network performance,
while the land uses map adds context information and the
network layout and the dataset of geotagged posts allows to
build a deep knowledge of the spatial user distribution. On
the one hand, the network performance enables to compute
the expected traffic gain. On the other hand, spatial user dis-
tribution and context information determine where this gain
occurs. The output is an ordered list of candidate SC sites,
specified by their geographical coordinates (latitude and lon-
gitude), Lat/Lon(sc), expected traffic volume gain, Gsc(sc),
and ratio of traffic gain due to indoor locations, Gin(sc).

In a first pre-processing stage, connection traces are ana-
lyzed to compute performance indicators for each connection,
PI (k) (k denotes connection index). Likewise, connections
are also analyzed in groups based on location. To this end,
connections are positioned based on the combination of cell
identity and timing advance information (known as Enhanced
Cell ID, ECID). Timing Advance (TA) is a temporal offset
introduced at the terminal to ensure that the downlink and
uplink subframes are synchronized at the base station. Such
an offset takes discrete values depending on the distance
between user and base station. TA statistics are collected on
a cell basis, which are used to divide cell service areas into
concentric distance rings centered at the base station. With
this information, connections are grouped per ring, Rta(c) (R
for ring, c denotes cell index and ta denotes distance ring),
to perform ring-level analysis. The spatial distribution gener-
ated from discrete locations of individual geotagged posts is
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interpolated by a kriging algorithm to generate a continuous
map approximating the density of users of social networks,
M ′p(x, y) (x and y are Cartesian coordinates). Finally, the land
use map is simplified into a map showing indoor and outdoor
locations,Mct (x, y) (ct for context).

In a second stage, a map is derived showing the potential
traffic gain achieved at each point if a new SC was deployed,
M1V (x, y). In the live network, such an increase is mainly
originated by two effects: a) the increase of session length
(e.g., more downloaded web pages, larger time of audio
playback?) or content quality (e.g., higher resolution video)
due to a better user experience, and b) the request of more
data-hungry services (e.g., videostreaming, app download?).
In this work, the former component, related to session length,
is associated to past connections already established without
the SC (referred to as old connections), whereas the latter
component, related to new services, is associated to fresh con-
nections that would be established with the new SC (referred
to as new connections). Moreover, gain values are different
depending on user context (indoors or outdoors). From these
assumptions, the potential traffic gain for existing connec-
tions per context, 1Vold,ct (k), is computed by processing
past connections individually. In contrast, the potential traffic
gain for new connections, for which no data is available,
is computed at a ring level, 1Vnew,ct (r), as explained later.
Then, traffic gains are distributed in space using the spatial
user distribution inferred from post messages.

In a third stage, traffic gains per tile are aggregated at a cell
level by taking into account typical small cell radii. Finally,
the best SC locations are selected based on the expected traf-
fic gain. To ease the understanding of the algorithm, Table 1
contains the most important notation in the text. Unless stated
otherwise, all variables refer to the Downlink (DL).

A. INPUT DATA
Radio traces are log files with signaling events generated by
base stations, which are periodically uploaded to the mobile
network management system. This data is delivered as binary
files that must be decoded to extract performance measure-
ments at a connection level. The reader is referred to [50] for
details on trace processing. Table 2 summarizes the data fields
needed by the algorithm.

The data fields used in this method to obtain the potential
traffic gain in each point of the network are DL throughput,
DL volume and the probability of each connection happening
indoor. This probability is obtained with the rest of indica-
tors presented in Table 2, plus DL throughput, as described
in [12].

The geotagged posts are obtained from two social networks
(Twitter [25] and Flickr [26] by Application Programming
Interfaces (APIs) provided by the service provider [51]. Each
post is collected with an associated location, which is used to
build a raster (i.e., grid-based data) with the number of posts
per location.

The map of land uses consists of a raster represent-
ing the business and social activity of each small piece

TABLE 1. Notation table.

TABLE 2. Selected performance indicators.

of terrain (tile). This information is publicly accessible
from open data initiatives fostered by institutions (e.g.,
local municipality) or popular crowdsourcing platforms
(e.g., OpenStreetMap [52]).

B. CONSTRUCTION OF POTENTIAL TRAFFIC GAIN MAP
First, the basis of the method is introduced. Then, a pre-
liminary analysis over real traces proves the validity of the
proposed approach by showing how radio link conditions
affect traffic generated bymobile users. Finally, the algorithm
to compute the potential traffic gain per location is detailed.

1) RATIONALE
The deployment of a new SC can increase signal level (cover-
age), signal quality (spectral efficiency) and, ultimately, link
capacity perceived by the user. It is expected that the perfor-
mance gain obtained by these changes will be much larger
for users of data-intensive services (e.g., videostreaming, app
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download?) than for users of low data volume services (e.g.,
instant messaging, voice call?). Unfortunately, connections in
current radio access networks are roughly divided into large
groups of services. In the absence of a precise classification
of services, last-TTI transmission statistics are used here to
identify data-intensive services. A last TTI is the last trans-
mission interval of a data burst that temporarily empties the
transmit buffer [53]. Thus, data-intensive services, consisting
of one or more large data bursts, often have low last-TTI
ratios. In contrast, non-data-intensive services, consisting of
one or more small data bursts, have large last-TTI ratios. For
these reasons, data-intensive services tend to behave as a full-
buffer traffic source, whereas non-data intensive services can
be modeled as bursty traffic.

Based on the above observations, two main sources of
traffic gain are identified. A first component of traffic gain
comes from users already using data-intensive (i.e., non-last
TTI) services without the SC, which will increase their traffic
as a result of the increased session length and content quality
due to a better user experience. A second source of traffic
gain comes from users that, in the past only requested non-
data intensive (i.e., last-TTI) services, but with the SC request
new data-intensive services due to the better user experience.
In addition, since user behavior is not the same in all loca-
tions, both traffic components are broken down depending on
user context (indoors or outdoors). The convenience of this
approach is validated with the analysis presented next.

2) IMPACT OF RADIO LINK THROUGHPUT ON USER TRAFFIC
A priori, it is difficult to predict the impact of adding a new
SC on user traffic. To this end, a correlation analysis is carried
out based on traces collected in a live LTE network. The aim
is tomodel the relationship between radio link throughput and
several indicators related to traffic demand.

To check how the data volume of users of non-last TTI
services is affected by network conditions, the relationship
between data volume and user throughput is studied on a
per-connection basis. Fig. 2 shows a scatter plot of these
two variables observed in real mobile connections (1 point
per connection). The throughput value on the x-axis corre-
sponds to the average throughput of the connection at Packet
Data Convergence Protocol (PDCP) layer excluding last TTIs
(same for data volume on the y-axis) [54]. Since the focus is
on non-last TTI services, only connections with a last-TTI
volume ratio lower than 10% are considered in the analysis
(i.e., full-buffer connections). For clarity, three regression
curves are included in the figure. The middle one is obtained
by linear regression on all the samples (note the log scale
in the x-axis), and hence reflects the general trend. The
other two are computed by quantile regression to reflect the
trend of extreme cases. Specifically, the lower/upper curve is
obtained by linear regression on the 10th/90th percentile of
data volume of connections in different throughput ranges.
In the three curves, the data volume per connection increases
with average user throughput, which proves the hypothesis
that improving radio link conditions generally leads to higher

FIGURE 2. Example of scatter plot of data volume vs radio link
throughput per connection.

FIGURE 3. Example of scatter plot of ratio of non-last TTI connections
vs radio link throughput per timing advance ring.

data volumes per connection. As expected, correlation is
not strong, since two connections may have very different
data volumes for the same throughput value due to different
session lengths. This observation justifies the need for several
regression curves to model the relationship between through-
put and data volume per connection. A closer analysis of
residuals shows that the mean absolute error is reduced from
4.93e6 with a single curve to 2.25e6 with 3 curves (achieving
a reduction of 45.64 %).

To check if the number of requests of non-last TTI services
of a user is affected by network conditions, the correlation
between the ratio of non-last TTI against last-TTI connec-
tions is examined. As above, a connection is considered as a
non-last TTI (last TTI) connection if less than 10% of data is
transmitted in last TTIs (non-last TTIs). All other connections
that fall in between these two thresholds are discarded in the
analysis. As explained above, in the absence of geolocated
traces, connections are positioned based on cell identity and
timing advance. Thus, the analysis can be done by aggregat-
ing all connections within a TA ring. For reliability, only rings
with more than 25 connections are considered. Fig. 3 shows
a scatter plot of the non-last TTI/last TTI connection ratio
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FIGURE 4. Example of scatter plot of data volume vs radio link
throughput per connection, broken down by context.

versus average connection throughput in the ring (1 point per
cell/ring/context). Again, three regression curves are super-
imposed, obtained by linear and quantile regression. In the
general and 90th-tile trend curves, it is confirmed that rings
with a larger average throughput tend to have larger ratios
of non-last TTI connections. Likewise, the large dispersion
justifies the need for several regression curves also in this case
(in this case, the mean absolute error with 3 curves is reduced
by 53.28 %).

The previous analyses can be done separately for indoor
and outdoor connections to check the impact of user con-
text. In the absence of a precise user positioning method,
connections are tagged as indoor or outdoor based on trace
measurements as described in [12]. Only connections with
a large confidence of being indoors or outdoors (>90%) are
considered in the analysis. Fig. 4 and 5 present the results
of breaking down the regression curves per context for the
two considered traffic indicators. In Fig. 4, the outdoor and
indoor curves differ slightly for connection data volume,
which points out that data volume per connection is not much
affected by user context. However, in Fig. 5, indoor curves
are well over outdoor curves, indicating that, for the same
user throughput conditions, the ratio of data-intensive vs non-
data-intensive services is larger indoors than outdoors. This
observation justifies the need for a different set of regression
curves for indoors and outdoors.

From the previous analysis, two regression models are
derived, each consisting of 6 regression curves. A first model
defines the relationship between data volume, V , and average
connection throughput, T , in a non-last TTI connection k that
took place in context ct as

V (j)(k) = β(j)1,V ,ctT (k)+ β
(j)
0,V ,ct k ∈ ct, (1)

where βi,V ,ct (j) is the ith regression coefficient of the regres-
sion curve j (j ∈ {10th, all, 90th}) and user context ct (ct ∈
{in, out} for indoors and outdoors, respectively). Regression
j = all is a simple linear regression with all the samples,
while j=10th and 90th correspond to quantile regression with

FIGURE 5. Example of scatter plot of ratio of non-last TTI connections vs
radio link throughput per timing advance ring, broken down by context.

10th and 90th percentile of data volume values per throughput
bin, respectively. A second model defines the relationship
between the ratio of non-last TTI vs last-TTI connections,
Rnlt , and the mean throughput from all connections, T , in a
TA ring r in context ct as

R(j)nlt,ct (r) = β
(j)
1,R,ctT ct (r)+ β

(j)
0,R,ct , (2)

where β(j)i,R,ct is the i
th regression coefficient for the regression

curve j and user context ct .

3) ESTIMATION OF POTENTIAL TRAFFIC GAIN PER
CONNECTION AND RING
The traffic gain obtained by deploying a new SC is divided
in two components: a) the increase from existing connec-
tions, calculated on a connection basis (only applicable to
connections that needed many resources, i.e., non-last TTI
connections), and b) the increase from the extended use of
data-intensive services, calculated on a ring basis.

As a first step, an optimal throughput value is defined,
Topt , as the best throughput that can be reached with optimal
propagation conditions. In this work, Topt is set to the 90th
percentile of average throughput across all connections in the
network.

Then, connections are classified as indoor or outdoor. To
this end, the probability that a particular connection is gen-
erated in a given context, Pct (k), is estimated from trace data
with the algorithm described in [12]. As a result, a connection
might be tagged both as indoor and outdoor, provided that
Pin(k)+ Pout (k) = 1.
Following the above classification, the potential gain of

data volume from an existing connection is divided into an
outdoor and indoor component, calculated as

1Vopt,ct (k) = Pct (k)(V ′ct (k)− V (k)), (3)

where Pct (k) is the indoor/outdoor probability of the
connection, V (k) is the data volume of the connection,
taken from traces, and V ′ct (k) is the potential data volume
indoors/outdoors of the connection with optimal radio con-
ditions (i.e., after deploying the SC). The latter is estimated
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FIGURE 6. Estimation of Vopt (k).

by the regression model in (1) with T (k) = Topt . Yet, the
specific regression curve (out of the three possible, j=10th,
all or 90th) must be decided. To solve this problem, linear
interpolation between the closest curves is used, as shown in
Fig. 6. Specifically,

V (k) ≥ V̂90(T (k))
{
w1 = 1 (4)

V̂all(k) ≥ V (k) > V̂90(T (k))

{
w1 =

V (k)−V̂all (T (k))
V̂90(T (k))−V̂all (T (k))

w2 = 1− w1
(5)

V̂10(t) ≥ V (k) > Îall(T (k))

{
w1 =

Vct−V̂10(T (k))
V̂all (T (k))−Î10(T (k))

w2 = 1− w1
(6)

V (k) < V̂10(T (k))
{
w1 =

V (k)
V̂10(T (k))

(7)

To reduce the influence of outliers, input data volume is
upper and lower bounded by the values in the 90th and 10th
percentile curves.

The potential increase in data volume from the use of
more data-intensive services is estimated per ring from the
number of connections of non-data intensive services, which
should not be affected by radio link conditions, and is thus
the same with and without the SC. Specifically, the increase
in the number of ideal non-last TTI connections (i.e., those
transmitting all its data in non-last TTIs) per ring and context
is estimated as

1Nnew,ct (r) = N ′nlt,ct (r)− Nnlt,ct (r)

= Nlt,ct (r)R′nlt,ct (r)− Nnlt,ct (r), (8)

where Nnlt,ct (r) and Nlt,ct (r) are the number of equivalent
non-last TTI and last-TTI connections per context ct in ring
r without the SC, calculated as

Nnlt,ct (r) =
∑
k∈r

Pct (k)Rnlt (k), (9)

Nlt,ct (r) =
∑
k∈r

Pct (k)(1− Rnlt (k)), (10)

where Rnlt (k) is the share of data volume transmitted in non-
last TTIs in connection k (e.g., 4 connections with Pct (k) =
0.5 and Rnlt (k) = 0.5 are equivalent to 1 ideal non-last TTI
connection). Likewise, N ′nlt,ct (r) is the predicted number of

ideal non-last TTI connections with the SC, computed from
the new non-last-TTI/last-TTI connection ratio with the SC.
The latter is estimated by the regression model in (2) with the
curve interpolation process explained in Fig. 6 and T ct (r) =
Topt . Then, the increase in data volume in ring r is calculated
as

1Vnew,ct (r) = 1Nnew,ct (r)Vopt,ct (r), (11)

where Vopt,ct (r) is the average data volume of an ideal non-
last TTI connection in ring r with context ct with the new SC,
calculated as

Vopt,ct (r) =

∑
k∈r,ct V

′(k)

Nnlt,ct (r)
. (12)

C. SPATIAL DISTRIBUTION
Once the two traffic gain components are calculated on a per-
connection and ring basis, these have to be projected onto the
map by positioning connections. Unfortunately, connections
in traces are rarely geolocated, so they must be located by
ECID method. This leads to large positioning errors in rings
far from the serving cell. To circumvent this problem, the
spatial user distribution within a ring can be inferred from the
distribution of geotagged posts taken from social networks
as in [22], since the transmission of short messages is not
conditioned on a good radio link.

The geolocation process starts by creating a grid with the
same tile dimensions as the map of land uses, Mlu(x, y).
Hereafter, indexes (x, y) refer to horizontal and vertical tile
indexes. From land uses, a user context matrix with the same
size, Mct (x, y), is derived indicating whether every tile is
indoor or outdoor. Then, a matrix with the number of geolo-
cated posts per tile,Mp(x, y), is constructed by taking advan-
tage of location information provided by social networks. In
areas of low population density (e.g., open field), the average
number of posts per tile is much lower than one, causing that
most tiles have no posts and a few of them have some. For
a better estimation of these small density values, a kriging
process [55] is applied to drive the underlying spatial post
distribution,M ′p(x, y).

The post distribution is used to derive the probability of a
connection occurring in a tile (x, y) labeled as context ct (i.e.,
indoor or outdoor) in ring r as

P(r, x, y) =
1+M ′p(x, y)

Nct (r)+
∑

(x,y)∈r M
′
p(x, y)

(x, y) ∈ r,

(x, y) ∈ ct, (13)

where Nct (r) is the number of tiles labeled as context ct
in ring r and M ′p(x, y) is the post spatial distribution. Note
that the same tile index (x, y) can be served by rings from
different cells and, thus, different P(r, x, y) values are asso-
ciated to each ring serving the same tile. A closer analysis
of (13) shows that, in rings where the number of geotagged
posts is 0 (as could be in unpopulated areas), connections
registered in traces are uniformly distributed in the ring area
(i.e., P(r, x, y) = 1/Nct (r)). In contrast, in rings with a
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large number of geotagged posts, connections are distributed
following the post distribution in the ring (i.e., P(r, x, y) ≈
(M ′p(x, y))/sum(x,y)∈rM ′p(x, y)).

Once tile probabilities are calculated, traffic gains are pro-
jected onto the map. To this end, the data volume increase
from existing connections (per connection) or new connec-
tions (per ring) is distributed in indoor/outdoor tiles within
the ring according to probabilities in (13) and then aggregated
across rings serving the same tile. Specifically, the data vol-
ume increase due to existing or new connections in tile (x, y),
1Vopt (x, y) and 1Vnew(x, y), respectively, is computed as

1Vopt (x, y) =
∑

r/(x,y)∈r

∑
k∈r

1Vopt,ct (k)P(r, x, y)

(x, y) ∈ ct, (14)

1Vnew(x, y) =
∑

r/(x,y)∈r

∑
k∈r

1Vnew,ct (r)P(r, x, y)

(x, y) ∈ ct. (15)

Finally, both terms are added to build the traffic gain map as

M1V (x, y) = 1Vopt (x, y)+1Vnew(x, y) . (16)

D. SMALL CELL SELECTION
Once potential traffic gain map is obtained, it must be decided
where the SC should be located. To this end, the aggregated
data volume gain associated to a candidate SC location (x, y),
Gsc(x, y), is calculated as

Gsc(x, y) =
∑

(i,j)∈Asc(x,y)

M1V (i, j), (17)

where Asc(x, y) is the coverage area of a hypothetical SC
located in (x, y). In this work, SC is assumed to be omnidirec-
tional, so that Asc(x, y) is a circle of radius 50 meters centered
at (x, y) [56], [57].

Then, the best candidate SC locations can be identified by
detecting local maxima inGsc(x, y) in an iterative manner. To
avoid selecting too close sites that might overlap, the traffic
gain map is updated every time a new SC is selected by
forcing to 0 the value of points under the newly selected SC.
The selection process is summarized as:
The output of the above process is a list of new SC sites
specified by the tile including the center of their targeted
service areas, with the.

Note that, in heterogeneous areas comprising indoor and
outdoor tiles next to each other, the context of the center tile
may not be the same as the context where most of the traffic
gain comes from. For instance, the suggested SC location
for a SC covering four nearby buildings (where most of the
traffic gain comes from indoor users) might be on a street
level (outdoors). To avoid this situation, a ratio of indoor
improvement for each SC, Rin(xsc, ysc), is estimated as

Rin(xsc, ysc) =

∑
(x,y)∈Asc(xsc,ysc),indoor M1V (x, y)∑

(x,y)∈Asc(xsc,ysc)M1V (i, j)
. (18)

Lower values indicate that most of the traffic gain comes from
outdoor areas, and higher values indicate that the traffic gain

Algorithm 1 Algorithm for Site Selection
Input: Map of aggregated data volume gain associated to

a candidate SC location (Gsc(x, y)), minimum acceptable
gain (Gmin) and map of potential data volume gain per tile
(M1V (x, y))

Output: List of newSC (xsc, ysc) and achieved gain (Gsc(sc))
while max(Gsc(x, y)) > Gmin do
\\Obtain the position of maximum gain:
(xsc, ysc) = arg max

(x,y)
(Gsc(x, y))

\\Obtain maximum gain:
Gsc(sc) = max(Gsc(x, y))
\\Set to 0 all tiles covered by the new SC:
M1V (x, y) = 0 ∀(x, y) ∈ Asc(xsc, ysc)
\\Recompute map of SC volume gain:
Gsc(x, y) =

∑
(i,j)∈Asc(x,y)M1V (i, j) ∀(x, y)

end while

comes from indoor areas. In the former case, the SC should
be located outdoors, while, in the latter, the SC should be
located indoors. In this work, a threshold of Rin,th) = 0.5 is
heuristically set to decide if a SCmust be located indoors (i.e.,
Rin(xsc, ysc) ≥ 0.5) or outdoors (otherwise). If the tile of the
suggested SC location does not match that context, a closer
analysis is needed to determine the best location according
to the prevailing gain context. Such an analysis might end up
with the addition of several SCs to cover indoor and outdoor
locations separately.

IV. METHOD ASSESSMENT
The proposed method is tested with a large set of traces
obtained from a live LTE network. The assessment method-
ology is described first. Results are presented later, including
an explanation of how the algorithm works with real data and
a comparison with legacy approaches. Finally, computational
aspects are discussed.

A. ANALYSIS SET-UP
The considered scenario covers a geographical area of 125
km2, corresponding to the metropolitan area of a city with
800,000 inhabitants. This area is divided into tiles of 10× 10
m. The land use per tile,Mlu(x, y), is obtained from open data
provided by the municipality. Table 3 shows the distribution
of land uses in the scenario, with a brief description, their
context classification (indoor or outdoor) and their share in
the scenario.

The analyzed area comprises 400 LTE cells, grouped into
175 tri-sectorized sites, with a carrier frequency of 2.325
MHz and a system bandwidth of 15 MHz. In these cells,
trace collection is activated for 2 hours, obtaining 166,561
connections. Table 4 shows the main statistics for the indi-
cators derived from traces, namely radio link throughput,
connection data volume and indoor probability.

The geotagged posts from social networks generated in
the area are collected in real time during 16 months for
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TABLE 3. Description of land uses in the scenario.

TABLE 4. Statistics of input key performance indicators.

FIGURE 7. Spatial distribution of posts per social network.

Twitter and 12 months for Flickr, resulting in 785,515 and
33,519 posts, respectively. The code used for this purpose
is publicly available at [58]. Fig. 7 shows the Cumulative
Distribution Functions (CDFs) of the number of posts in the
scenario,Mp(x, y), broken down per application (dashed line
for Twitter, and dotted line for Flickr). It is observed that most
posts come from tweets in Twitter.

Three methods are tested: a) the proposed method to select
the best SC candidate locations, which combines traces and
social network data (referred to as trace and social net-
work method, TSM), b) a simplified version of the method
based only on traces, which segregates connections into out-
door/indoor connections to refine the spatial user distribution
from timing advance with the land use map (referred to as
trace method, TM), and c) a variant of the method, inspired
in the method to detect traffic hotspot proposed in [22], that
derives the user spatial distribution only from social network
data (referred to as social network method, SM). The latter
two are legacy approaches used as benchmarks to check the
benefit of only using posts or traces, respectively.

Ideally, method performance should be evaluated by
deploying the sites suggested by the methods in the real net-
work. Since this was not possible, the comparison presented
here is based on the potential traffic gain map per tile derived

FIGURE 8. Scatter plot of data volume vs radio link throughput per
connection, broken down by context.

FIGURE 9. Scatter plot of ratio of non-last TTI connections vs radio link
throughput per timing advance ring, broken down by context.

by TSM. Thus, the analysis only shows where (and to what
extent) the three methods behave differently.

B. METHOD PERFORMANCE
The aim here is to describe the results of the different stages
in the TSM method, shown in Fig. 1.

ESTIMATION OF POTENTIAL TRAFFIC GAIN MAP
Fig. 8 and 9 show the scatter plot of data volume and non-last
TTI connection ratio versus throughput built from the trace
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TABLE 5. Regression parameters.

TABLE 6. Statistics of data volume gain per existing connection and ring
(in bytes).

TABLE 7. Estimation of potential data volume increase (in bytes).

dataset, which are used to derive the set of regression curves
per context for each indicator. Table 5 presents the resulting
regression coefficients.

Once regression models are derived, the potential data vol-
ume gain per connection and ring are estimated. Table 6 sum-
marizes the results presenting the 10th percentile, mean and
90th percentile values of data volume gains of connections
and rings in the scenario,1Vopt,ct (k) and1Vnew,ct (r). Fig. 10
shows their CDFs, broken down by context. As expected, in
Table 6, it is observed that gain values are smaller for individ-
ual connections than for rings aggregating several locations.
More interestingly, from Fig. 10(a), it is deduced that, for
existing connections, larger data volume gains per connection
are achieved outdoors. In contrast, from Fig. 10(b), it is
deduced that indoor rings show a larger increase of new data-
intensive connections.

C. PERFORMANCE COMPARISON
1) SPATIAL DISTRIBUTION
The potential gains estimated on a connection and ring basis
are projected onto a map by geolocating network data. Fig. 11
shows the statistical distribution of several indicators com-
puted per tile by aggregating connections in the tile, namely
number of connections, average radio link throughput, total
data volume and mean data volume per connection. The large
variability observed in all indicators is just the consequence
of the heterogeneity of the scenario, comprising areas of very
different population density and radio link conditions (e.g.,
the number of connections per tile of 100 m2 ranges from 0 to
175 connections). This justifies the need for a precise model
that considers all the above factors.

Fig. 12 (a)-(c) depict the potential traffic gain map, broken
down by its two components, over the orthophoto of the area.
From left to right, Fig. 12 (a), (b) and (c) show the potential
volume gain per tile from existing connections, new services

FIGURE 10. CDF of estimated data volume gain.

and the sum of both, respectively. It is observed that the
potential volume gained by improving already established
connections,M1Vopt (x, y), is more distributed across the map.
In contrast, the gain from new services, M1Vnew (x, y), is
more concentrated in specific areas. This is due to the fact
many rings do not have non-last TTI connections. In both
maps, transparent tiles show areas with zero gain, where
no connections were established. Most of these tiles are
in unpopulated areas, out of the targeted coverage region.
Table 7 confirms these findings by presenting some statistics
of the three spatial distributions. As shown in the figures and
the table, the largest volume gains per tile come from new
connections. Likewise, the overall gain map can be used to
detect areas already performing at optimal conditions (i.e.,
lowM1V (x, y)) and others with bad radio link conditions and
many users (i.e., highM1V (x, y) value).

2) SMALL CELL SELECTION
Finally, the decision of where to locate the new SCs is made.
To this end, the potential data volume gains per tile are
aggregated to compute the total traffic gain for the different
candidate SC locations, Gsc(x, y). Fig. 13 presents the 100
largest total gain values, ordered from highest to lowest.
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FIGURE 11. Statistical distribution of indicators computed per tile.

FIGURE 12. Spatial distribution for potential data volume improvement, M1V (x, y ).

TABLE 8. Examples of new sites where methods perform differently.

For a more detailed analysis, gains are broken down into
that coming from existing and from new connections. It is
observed that, in most sites, traffic gains come from new
connections.

To show the ability of the method to detect coverage issues,
Fig. 14 plots two examples of selected SC locations (dot) and
their ideal coverage areas (circle of 50-meter radius) over
a coverage map extracted from OpenSignal platform [20].
This platform collects geolocated signal level measurements
anonymously from mobile users subscribed to this initia-
tive. In the figure, it is observed that the proposed SC sites
would cover areas reported as of weak radio signal level by
OpenSignal (red areas in the figure).

Finally, the analysis is focused on the indoor gain ratio
indicator, Rin(xsc, ysc), reflecting how much of the data vol-
ume gain from a SC comes from indoor tiles. Fig. 15 shows
the histogram of Rin(xsc, ysc) for the best 100 candidate SCs.
It is observed that the indoor gain ratio of the best sites
tends to be above 0.5, showing that the traffic gain is mainly

FIGURE 13. Data volume increase for the best 100 small cell locations.

originated by indoor users. Specifically, 73 of the 100 best
sites have indoor gain ratio greater than 0.5 and should be
located indoors.
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FIGURE 14. Example of selected SC sites and received signal level
(OpenSignal).

FIGURE 15. Histogram of indoor gain ratio of the best 100 candidate SC
sites.

The proposed method that combines trace and social net-
work data (TSM) is compared with legacy methods that only
use traces (TM) or social data (SM). Fig. 16 shows the CDF
of the data volume gains obtained from the best 100 new SCs
suggested by the three methods, evaluated with the potential
data volume gain map of TSM. As expected, TSM obtains
larger data volume gains per site. Overall, TSM achieves a
total data volume gain in the network of 27.58 GB, TM of
25.40 GB (8% less) and SM only of 3.22 GB (88% less).
This result points out that the solution obtained by SM greatly
differs from that of TSM and TM. A detailed analysis shows
that the difference between TM and TSM is not large because
many TA rings have few posts due to the limited size of
the social network dataset, causing traffic in these rings to
be evenly distributed (per context) in TSM, as in TM. It is
expected that larger differences would be observed with a
larger post dataset.

A more detailed analysis of SC locations on a map shows
important differences among methods. To this end, the output
of the methods is compared to find cases where the proposed
TSM method perform differently from legacy methods, TM
and SM. For convenience, the new SCs are divided in two
groups, depending on whether their aim is to cover areas
with poor coverage (i.e., black spots) or high traffic demand
(i.e., hot spots). Table 8 summarizes the identified five cases,
presented next. In both groups, several cases are analyzed
where: a) the problematic spot is detected by several methods,

FIGURE 16. Distribution of data volume gain of the best 100 candidate
SC sites.

but in slightly different locations, or b) the problematic spot
is only detected by one of the methods.

Fig. 17(a) shows the first case of an outdoor blackspot
detected by TSM and TM. For a complete picture, the figure
depicts the locations of the SCs suggested by TSM and TM,
the nearby macro base stations and the post messages. Not
shown is the fact that both SC locations cover an area not
in line of sight with the macro base station due to a tall
building (and, hence, the blackspot). It is observed that the
SC location of TSM is shifted to the right, following the
post distribution. In spite of this displacement, the total data
volume gain estimated by TSM and TM is almost the same
(1437.4 MB and 1423.7 MB, respectively). In both cases,
most of the gain comes from outdoor tiles.

Fig. 17(b) shows the second case of an indoor blackspot
only detected by TSM. A preliminary analysis shows that the
building where the SC is located is a underground parking
garage, which is in non-line-of-sight conditions with the
nearby macro base station due to a skyscraper. To understand
why TMdoes not suggest a site for this area, Fig. 18 shows the
number of connections per tile, Mk (x, y), and the associated
traffic gain, Gsc(x, y), used by TSM and TM in the area of
the SC suggested by TSM. On the left, it is observed that the
connection density in TM is low and regular, which is the
result of distributing connections in TA rings of the macrocell
evenly in space (per context). In contrast, connection density
in TSM is large and irregular, due to the concentration of posts
inside the car park. This difference justifies the reason for
the large deviations in expected traffic gains. Moreover, note
that, despite the large number of posts in the area, SM does
not suggest a new SC due to its inability to detect coverage
problems.

Fig. 19(a) shows the third case of an indoor hotspot
detected by TSM and TM. In this case, TSM locates the
new SC in the corner of a skyscraper hosting an important
company thanks to the post messages, whereas TM locates
the new SC in a smaller (and possibly less populated) nearby
building. As a result, the total gain achieved by the new SC
(estimated with traffic map of TSM) is 125.81 MB for the
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FIGURE 17. Small cell proposals for black spot area.

FIGURE 18. Detailed analysis of TM and TSM (second case).

FIGURE 19. Small cell proposals for hotspot area.

position suggested by TSM and only 67.59 MB for that of
TM. In this case, SM fails to include the site in the list of 100
best SC locations because the number of posts in the area is
not high enough.

Fig. 19(b) illustrates the case of an indoor hotspot detected
only by TSM and SM. It is not seen in the figure that the
SC suggested by TSM is inside a shopping center, which
emphasizes the importance of considering geolocated posts.
Fig. 20 presents the same detailed analysis, showing that TM

fails to detect the hotspot due to its difficulty to geolocate
connections more precisely than in rings. In this case, SM
detects two points of user concentration by searching for
peaks in the post spatial distribution.

Finally, Fig. 19(c) depicts a case where SM detects a
hotspot that is not detected by TSM and TM. This case can
be explained by a peak of posts in a region where mobile
users have proper coverage and enough available radio
resources.
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FIGURE 20. Detailed analysis of TM and TSM (fourth case).

D. COMPUTATIONAL ISSUES
The proposed method needs some previous work (collection/
pre-processing of traces and construction of land use/post
map) before the procedure in Fig. 1 can be launched. The
execution time of pre-processing traces grows linear with the
number of connections and data fields, while the construction
of maps grows linear with the number of tiles in the map.
Once input data is available, the computational complexity
of the method is given by the algorithm for building the
spatial connection distribution. The algorithm distributes Ni
indicators from Nconn(r) connections originated in the area
covered by a ring r of the Nr rings in the scenario. Thus, the
worst-case time complexity is O(Nr ∗ Nconn ∗ Ni).

Trace processing is done by complex event processing with
Esper routines [59]. Land use are processed withMatlab, post
data are obtained with the Streaming API using Java through
the library Twitter4j and the Flickr API using Python [25],
[26], [60] and processedwithMatlab. The proposedmethod is
implemented with the Statistics and Machine Learning Tool-
box and Image Processing Toolbox in Matlab. All processes
are executed in a server with a 2.4-GHz octa-core processor
and 64 GB of RAM. The time required for decoding connec-
tion traces (400 cells, 2 hours of traces, 166,561 connections)
is 282 seconds. The time to build the land use and post maps
(125 km2, 1,222,787 tiles) are 50,444 and 57,743 seconds.
Finally, the time to detect the 100 best candidate sites with
the above dataset is 238 seconds, 67% of which is spent in
the construction of the spatial connection distribution.

V. CONCLUSION
Small-cell site selection is currently a labor-intensive process.
In this paper, an automatic context-aware data-driven method
has been proposed to precisely detect small areas with cov-
erage or capacity problems in a mobile network based on the
performance of connections. The core of the method is the
positioning of connections based on the indoor probability
of each connection and the distribution of geolocated posts
from social networks. Themethod has been testedwith a large
trace dataset from a live Long Term Evolution network and a
database of geotagged posts from Twitter and Flickr.

Results have shown that problems detected in the net-
work by combining connection data and geotagged posts are
consistent with their context, i.e., sites detected due to poor

coverage present bad propagation conditions from the serving
macrocell, while spots with capacity problems are located
in very populated places (e.g., museums, schools, shopping
centers, etc.). Likewise, the indoor/outdoor distinction for
the new small cell is coherent, i.e., sites tagged as indoor
are located in indoor locations, whereas spots covering open
areas in the city are classified as outdoor. Moreover, compari-
sonwith legacy approaches have shown important differences
in the sites selected.

A key component in the proposed method is regression
curves modeling the impact of user throughput on traffic
volume and service mix. Figures have shown that regression
accuracy can still be improved. For this purpose, sophisti-
cated regression models considering more predictors can be
derived with machine learning techniques, provided that a
large and diverse measurement dataset is available.

The low computational complexity of the method allows
an easy integration in radio planning tools. By combining
different data sources, the method can make the most of the
latest big-data empowered network management systems.
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