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ABSTRACT In complex industrial processes (CIPs), due to technical and economic limitations, key
performance indicators (KPIs), especially the chemical content-related KPIs, are often difficult to measure
in real time, which hinders the propagation of advanced process control technologies. This paper presents
a soft sensor-based online KPI inference scheme by a state transition algorithm (STA)-optimized adaptive
pre-sparse neuro-fuzzy inference system model, called STA-APSNFIS. It introduces a pre-sparse neural
network to the traditional adaptive neuro-fuzzy inference system (ANFIS)model to establish an adaptive pre-
sparse neuro-fuzzy inference system (APSNFIS) model to alleviate the adverse effects of data redundancy
and noise interference in the detectable process monitoring data, which can effectively reduce the complexity
of neuro-fuzzy inference system (NFIS) and speed up its convergence. Successively, to avoid being trapped
at a local optimum, the STA-based optimization algorithm is adopted to replace the traditional gradient-based
optimization approach to achieve an optimal APSNFIS model. Extensive validation and comparative
experiments on nonlinear numeric simulation systems, benchmark Tenessee Eastman (TE) process and a
real industrial bauxite flotation process demonstrated that the proposed STA-APSNFIS performed favorably
against traditional ANFIS model as well as its variants, e.g., PSO-ANFIS, GA-ANFIS, and some other soft
sensor-based KPI inference models.

INDEX TERMS Soft sensor modeling, complex industrial process, key performance indicator (KPI),
adaptive neuro-fuzzy inference system (ANFIS), state transition algorithm (STA).

I. INTRODUCTION
Complex industrial processes (CIPs) [1] are often composed
of closely-coupled sub-circuit processes, involving a series of
strongly-coupled equipment. In the process production, many
complex physico-chemical reactions occur in the equipment,
usually acting in gas-liquid-solid three-phase mixtures [2].
Specifically, CIPs involve a large amount of non-linear,
time-varying parameters correlated with each other, but the

The associate editor coordinating the review of this manuscript and
approving it for publication was Khalid Aamir.

detectable process monitoring information is often incom-
plete or lagged. Hence, many CIPs are often running in a
non-ideal operating condition. One of the key reasons is that
it is intractable or unavailable to detect some key production
indicators (KPIs) of CIPs timely by hardware sensors [3], [4],
especially the chemical composition-relevant KPIs, which are
mainly obtained by infrequent on-site manual sampling with
laboratory assays [5].

Taking a bauxite flotation process as an instance, it is
a typical CIP, involving multi-stage sequential sub-circuit
processes, such as rougher, scavenger and cleaner, strongly
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coupled each other [6]–[8]. The key performance evaluation
indicators, such as concentrate grade (reflecting the content
of aluminiumoxide in the concentrate product, measured by
the alumina-to-silica ratio (A/S) in the flotation plant) and
recovery rate (reflecting the recovering level of valuable
minerals) in each stage, are still unavailable for the on-line
flotation processmonitoring. Currently, the concentrate grade
and recovery rate are largely depended on the laboratory
assays, which is a labor-intensive and long-lagged task. Thus,
only a few concentrate grade samples can be achieved in
the daily process monitoring and each assayed sample has a
several-hour delay, leading to the improper control or oper-
ation adjustment frequently with concentrate grade fluctu-
ations and low recovery ratios of mineral ores, due to the
several-hour delay and scarceness of the concentrate quality
indicators.

To overcome the measuring difficulties of product
quality-relevant indexes, many soft sensor-based online
KPI-inferential models can be found in the literature. Soft
sensors are generally inferential models or systems to esti-
mate or predict the KPI by detectable industrial parameters
related to the KPI that are easy to measure, which have
received extensive attention [9]–[11], [13]. As summarized
in Bidar’s work [3], [4], soft sensors can be categorized into
the model-based and data-driven models. Model-based soft
sensors are generally developed based on first principle mod-
els, thus they require the in-depth process knowledge. Due
to the inherent chaos and complexity of a CIP, mechanism
model-driven soft sensors are often impractical in the CIP
monitoring.

Currently, most soft sensormodels are data-drivenmethods
that use detectable process monitoring data to build infer-
ential models for the online KPI detection. Some multi-
variate statistics-related regression techniques have attracted
extensive attention due to their theoretical simplicities and
elaborate mathematic frameworks. Commonly-used meth-
ods include the linear models, such as multiple linear
regression (MLR) model, linear feature extraction and
regression-integrated models, e.g., the principal component
analysis (PCA) [14] or independent component analysis
(ICA) [15]-based key feature extraction of process monitor-
ing data with a regression model; and principal component
regression (PCR) or partial least squares regression (PLSR)
[16] models, and so on.

Since linear models cannot fit the complex nonlinear
relations in CIPs, researchers pay more attention to the
nonlinear models, such as artificial neural networks (ANN)
and support vector machines (SVM) [17]. In addition, fuzzy
inference-based soft sensor models and Gaussian process
regression (GPR) models [18]–[21] are also widely used. For
instance, Pani and Mohanta [22] proposed a Takagi-Surgeon
fuzzy inference model, which is a multimodal approach,
combining multiple linear sub-models to describe the global
nonlinear behaviors of CIPs, for the online monitoring of
cement clinker quality. In addition, the flourishing vari-
ants of abovementioned basis models, such as the recursive

least-squares support vector regression (RLSSVR) approach
for the online modeling of batch processes with uneven oper-
ating durations [23], dynamic fuzzy neural network (D-FNN)
method for the KPI prediction of convention velocity of vinyl
chloride monomer (VCM) in the polyvinylchloride (PVC)
polymerizing process [24], and so on.

Although considerable soft sensor models have been
proposed and many of them were reported to be applied in
real industrial processes for the online KPI detection, most
of them have their own limitations in the real application.
Generally, most soft sensor models have low interpretabil-
ity and they cannot associate system knowledge to improve
their system modeling ability for CIP monitoring. For exam-
ple, though ANN-based soft sensor models have good
self-learning and association capability with high-precision
fitness ability and no manual intervention, they cannot pro-
cess and describe fuzzy information and knowledge and they
are easy to cause over-fitting due to the noise interference in
CIPs, and their working mechanism is not interpretable.

Fuzzy inference system (FIS), using the decision
mechanism to express the uncertainty in form of rules,
which can well reduce the noise and error interference in
the incomplete and noisy industrial process monitoring data,
has attracted increasing attention in the online soft sensor
modeling of KPIs. However, its adaptive ability is inadequate,
which hinders its popularization [25]. Adaptive neuro-fuzzy
inference system (ANFIS) is a hybrid model that combines
the learning mechanism of ANNs and the fuzzy inference
ability of FISs, which has been applied to industrial process
monitoring and achieved the state-of-the-art systemmodeling
results [26], [27].

The original ANFIS model achieves the network
parameters by solving a least squares problem using the
gradient-based optimization algorithm to fit the nonlinear
relations in CIPs. It has demonstrated that the converging
speed of an ANFIS is slow and it is easy to fall into a local
minimum of the nonlinear system [28]. The FIS’s structure
makes its rule number and parameter quantity increase with
a power-law relationship with the number of input features.
Hence, the computational cost of the ANFIS-based soft
sensor model is expensive and the model converges slowly
with the increasing number of input features. Worse still,
models with too many parameters are easy to lead to over
fitting.

To summarize, despite the strong learning power of ANNs
and explicit knowledge representation of FISs, traditional
ANFIS-based soft sensor is still intractable to fit complex
nonlinear relations in a CIP effectively due to the high-
dimensional, redundant, and strong noise-interfering param-
eters in the CIP. Thus, it will generate a very large network
structure that consumes a lot of time and memory space,
making it difficult to meet the requirements of the online KPI
monitoring for the CIP monitoring.

To achieve a highly efficient and noise-tolerant soft sensor
model, this paper proposed a state transition algorithm
(STA)-induced adaptive pre-sparse neuro-fuzzy inference
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system, termed STA-APSNFIS, for the soft modeling of
KPIs in CIPs. STA-APSNFIS uses a pre-sparse neural net-
work to improve the traditional ANFIS model, which can
effectively reduce the dimensions and reduce the interfer-
ence of redundancy, inaccuracy and noise in process mon-
itoring data to achieve a highly-efficient and robust model.
In addition, the optimal APSNFIS model parameters are
achieved by introducing a STA-based optimization algo-
rithm, rather than the traditional gradient-based optimiza-
tion algorithm. Experiments demonstrated that the proposed
STA-APSNFISmodel can establish a stable and effective soft
sensor model for the online KPI monitoring of CIPs. The
main contributions of this paper are threefold.
� A novel end-to-end soft sensor model, termed

STA-APSNFIS, for the online KPI monitoring of CIPs,
is proposed.

� STA-APSNFIS introduces a pre-sparse neural network
to the traditional ANFIS model to make a sparse repre-
sentation of process monitoring data, which can reduce
the adverse interferences of data redundancy and noise
in the process monitoring data to ensure the online
inferential ability of the FIS for the CIP monitoring.

� The STA optimization algorithm is introduced to opti-
mize the parameters of the APSNFIS model, which can
improve the fitting effect and speed up the convergence
of the inference model.

Extensive confirmatory and comparative experiments,
including numeric simulation systems, benchmarking TE
process and a real industrial flotation process, showed
that the proposed STA-APSNFIS model had faster con-
vergence speed and higher computational efficiency for
the online KPI detection. STA-APSNFIS can achieve
a better parameter optimization performance (nonlinear
data fitting) than the ANFIS-relevant mainstream models,
e.g., PSO-ANFIS and GA-ANFIS, which can effectively
avoid the local extremum achieved by the traditional
gradient-based optimization algorithm in the model learning.

The remainder of this paper is organized as follows.
Section II briefly reviews the basic principles of ANFIS
and the main steps of STA. Section III addresses the main
thoughts and detailed steps of the proposed STA-APSNFIS
model, followed by numeric simulation experiments with
confirmatory and comparative case studies on the bench-
marking TE process and an industrial bauxite flotation pro-
cess described in Section IV. Section V concludes the whole
paper with possible extensions of this paper.

II. PRELIMINARIES
This section briefly overviews the basic principle of ANFIS
and the main steps of the STA optimization algorithm.

A. ANFIS
By combination of ANN and fuzzy system, ANFIS [29] is a
class of adaptive multi-layer feedforward networks based on
the T-S fuzzy inferencemodel. It uses fuzzy neural network to
realize three basic processes, fuzzy control, fuzzy reasoning
and defuzzification, by the learning mechanism of ANNs to

FIGURE 1. Schematic of ANFIS.

automatically extract rules from input and output samples.
The extraction rules constitute an adaptive neuro-fuzzy con-
troller. Offline training and online updating algorithms are
used to adjust the fuzzy rules, so that the system has the
properties of adaptive, self-organizing and self-learning. The
ANFIS architecture is show in Fig. 1.

As can be seen from Fig.1, an ANFIS consists of five
layers. Each layer includes multiple nodes described by a
node function.
Layer 1 (Fuzzy layer): Fuzzify the input variable and

output the membership degree of the corresponding fuzzy
set. Each node i of the layer is an adaptive node with a node
function, given by,

O1
i = µAi (x) i = 1 · · ·N (1)

where x is the input to node i, and Ai is the linguistic label
(e.g., small, medium, large, huge); O1

i is the membership of
the fuzzy set associated with Ai. The membership function µ
can be any suitable parameterized membership function, such
as the bell function with maximum of 1 and minimum of 0,
defined by,

µA (x) =
1

1+
(
x−ci
ai

)2bi (2)

where {ai, bi, ci} is the parameter set, referred to as a premise
parameter set. With the change of the values of the param-
eter set, the membership on the linguistic label Ai will vary
accordingly.
Layer 2 (Product layer): Each node i collects the algebraic

product of all input signals, given by,

O2
i = ωi = µAi (x)× µBi (x) · · · · i = 1 · · ·M (3)

whereM is the number of nodes in the first layer. The output
ωi represents the activation strength of that rule, and the
activation function of this layer can also takes the form of
minimum, bounded product or strong product.
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Layer 3 (Normalization layer): Normalize the activation
strength of each rule, and the output of each node is the ratio
of its activation strength to the sum of activation strength of
all rules, namely,

O3
i = ω̄ =

ωi

ω1 + ...+ ωM
i = 1 · · ·M . (4)

Layer 4 (Defuzzification layer): Each node i is an adaptive
node with a node function, used to calculate the contribution
of the i th rule to overall output, defined by,

O4
i = ω̄ili = ω̄i

 n∑
j=1

pjxj + ri

 (5)

where ω̄ is the normalized firing strength from the third layer,
and {p1, p2, . . . , pn, r} is the consequent parameter set.
Layer 5 (Total output layer): The output of an ANFIS is

obtained by summing the outputs obtained by each rule in
the defuzzification layer, i.e.,

O5
i =

∑
i

ω̄ili =

∑
i ωili∑
i ωi

(6)

Training ANFIS means determination of these parameters
using an optimization algorithm [30]. Since the introduc-
tion of ANFIS at the first time [29], researchers have pro-
posed many different optimization algorithms to achieve the
ANFIS model parameter [31]. These methods can be divided
into three types: derivative-based, heuristic-based and hybrid
methods, in which heuristic-based parameter optimization
methods can generally achieve the relative better results, such
as PSO-ANFIS, GA-ANFIS, and so on.

However, learning an ANFIS model with high dimension
input data is still intractable. As can be seen from Fig.1, there
are two different parameter sets, i.e., the premise parameter
set and the consequence parameter set, to be determined.
The number of model parameters will increase exponentially
with the increase of the dimension of input data. When the
feature dimension of input data is great, the complexity of
the model learning increases significantly and it is easy to
achieve over fitting model learning results due to the com-
monly existing optimization difficulties in the high dimension
parameter space. For Instance, when the input data dimension
is n and each feature is divided into a membership degrees,
the number of premise parameters is,

premise parameter numbers = 3× an, (7)

and the number of consequent parameters is

consequent parameter numbers = (n+ 1)× an. (8)

B. STA
State transition algorithm (STA) [32], [33] is a recently
proposed intelligent optimization algorithm based on the idea
of state space transformation. In the initial version, pro-
posed by Zhou et al. in 2011 [34], STA has three operators:
rotation, expansion and translation for solving the contin-
uous optimization problem. Subsequently, Zhou et al. pro-
posed an improved STA in 2013 [35]. Based on the original

three operators, a new operator, named axesion transforma-
tion, is included in the STA to improve the search ability of a
certain dimension.

To avoid falling into the local optimum, a corresponding
suboptimal solution selection mechanism is introduced in
the latest version of the STA. Compared with genetic algo-
rithms (GA), particle swarm optimization (PSO) and dif-
ferential evolution algorithm (DE), STA has stronger global
search ability, better search accuracy and faster convergence
speed [35].

Without loss of generality, considering the following
minimum optimization problem,

min
x∈<n

f (x) . (9)

The state transition process has the following form:{
xk+1 = Akxk + Bkuk
yk+1 = f (xk+1)

(10)

where xk ∈ <n represents a state that corresponds to a
solution to the optimization problem; Ak with Bk are state
transition matrices, which can be considered as operators
of the optimization algorithm; uk is a function related to
state xk and historical state; f (•) is the corresponding fitness
function.

1) ROTATION TRANSFORMATION

xk+1 = xk + α
1

n ‖xk‖2
Rrxk (11)

where xk ∈ <n, α is a positive constant, called the rotation
factor, n as the number of variables; ‖•‖2 is 2-norm of vec-
tor or Euclidean norm; Rt ∈ <n×n is a uniformly distributed
random matrix between [−1, 1]. The rotation transforma-
tion has the function of searching in a hypersphere with the
maximal radius α.

2) TRANSLATION TRANSFORMATION

xk+1 = xk + βRt
xk − xk−1
‖xk − xk−1‖2

(12)

where β is a positive constant, named translation factor; Rt ∈
< is random number that is uniformly distributed between
[0, 1], which makes the algorithm searing along a line from
xk−1 to xk in the positive direction of the gradient with the
maximum length of β.

3) EXTENSION TRANSFORMATION

xk+1 = xk + γRexk (13)

where γ is a positive constant, called expansion factor;
Re ∈ <n×n is a random diagonal matrix obeying Gaussian
distribution. The extension operator is able to search the entire
search space.

4) AXESION TRANSFORMATION

xk+1 = xk + δRaxk (14)

where δ is a positive constant, named axesion factor; Ra ∈
<
n×n is a random diagonal matrix obeying a Gaussian distri-

bution, and only one element in the random position in the
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matrix is not zero. The axesion operator can search along the
axis of a variable. Thus, it can improve the searching ability
of single dimension.

STA is analogous to the other heuristic algorithms, which is
based on the individual’s iterative search in a neighborhood.
As summarized in [36], in the STA iteration, the rotation
transformation operator has the ability of local searching,
and the rotation factor α can adjust the searching range
by exponentially reducing from a maximum value αmax to
a minimum value αmin. The translation operator has the
function of line search. The expansion transformation has the
ability of global search and the axesion transformation is used
to strengthen the ability of single dimensional search as well
as the global search.

The searching procedure of a STA is only related to the
optimal population value of the previous generation and the
searches are confined within the neighborhood of the optimal
value of this population. Hence, STA has the ability of fast
and global search.

III. PROPOSED STA-APSNFIS
This section details the model structure of the proposed
STA-APSNFIS with a theoretical analysis of its com-
putational complexity, followed by the main steps of
the STA-APSNFIS-based online KPI-inferential procedure.
In addition, the feasibility and robustness of the pro-
posed STA-APSNFIS are verified by numerical simulation
experiments.

A. STA-APSNFIS
ANFIS has a good performance of nonlinear system
modeling, but its model structure (model parameter num-
ber or the final fuzzy rule number) leads to an exponential
increasing trend with the dimensional increase of the input
data feature. To prevent the structure of the inference sys-
tem from being too large to train, for the high-dimensional
data system, some researchers firstly adopted the dimension
reduction algorithm to preprocess the original data set, and
then used the ANFIS method to the system modeling. But
traditional dimension reduction methods, such as PCA [14],
LDA [37], Auto-Encoder [38] and Laplacian Eigenmaps [39],
are generally based on the retention of the original data from
feature mapping, which ignore the correlations between the
data features and the data tags.

Since the process data of a CIP has the property of high
dimension, high information redundancy, and uncorrelated
data (noise) interference, traditional feature selection method
has little help for the final fitting effect of the ANFIS model.
Therefore, we introduce a pre-sparse neural network model
to improve the data processing ability of the ANFIS model.

The pre-sparse neural network maps the input data features
from a high-dimensional space to a low-dimensional space,
which can effectively reduce the complexity of the FISmodel.
The feature mapping parameter matrix depends on the min-
imum error between the predicted result and the real result.
The least square loss function is used to constrain the map-
ping matrix of the pre-sparse neural network to ensure that

FIGURE 2. Schematic structure of APSNFIS.

the mapped data can accurately and effectively predict the
target value; thereby it can effectively remove irrelevant data
features, decrease the information redundancy and reduce the
feature dimension. The APSNFIS model structure is shown
in Fig. 2.

As can be seen from Fig.2, by introducing a pre-sparse
neural network, the APSNFIS is divided into six layers. The
last five layers are consistent with the traditional ANFIS
model, and the pre-sparse neural network is located between
the input and the original first layer, which is a pre-sparse
layer. Each node i in the pre-sparse layer is adaptive neurons
with an activation function, and the number of neurons is
consistent with the number of input parameters. Its output
is used as the input to the ANFIS model, and its output is
calculated as,

ai = f

 n∑
j=1

wjixj + bi

, (15)

where w is the weight parameter of full connection, b stands
for the bias parameter. They are the set of adaptive parameters
of the pre-sparse layer; x is a n dimension input variables;
f (•) is the activation function, e.g., sigmoid, ReLU and Tanh.
To reduce the complexity of the FIS model, the output of

the pre-layer should be minimized, i.e.,

min

ρ̂i = 1
m

m∑
j=1

aji
(
x j
) (16)

where ρ̂i is the average activation value (output value) of the
i nodes of the pre-layer on the input data x with m sample.

Therefore, a sparse penalty term is included to suppress the
output of the pre-sparse layer node and ensure the output of
the pre-sparse layer neuron node be small enough:

The least (most sparse) output of the pre-layer is used as
the input of the FIS model. The KL distance as described
in (17) is adopted to measure the average activation value of
pre-layer nodes.

KL
(
ρ||

_
ρj

)
= ρ log

ρ
_
ρj
+ (1− ρ) log

1− ρ

1− _
ρj

(17)
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Formula (17) represents the relative entropy of two
Bernoulli random variables, whose mean values are ρ and _

ρj,
respectively, where ρ is a sparsity parameter, generally set as
a decimal number close to 0, e.g., set as 0.01; _ρj is the average
activation of the jth neuron in the pre-layer. KL-divergence is
a standard function for measuring how different two different
distributions are.

Then, the loss function of the APSNFIS model can be
modified as,

JAPSNFIS = JANFIS + β
n∑
j=0

KL
(
ρ||ρ̂j

)
JANFIS =

∥∥y− ŷ∥∥2 . (18)

where y is the true value, ŷ is the model prediction value; β a
parameter that is sparsely constrained.

The pre-sparse neural network can effectively learn a set
of basis vectors that have a smaller dimension than the
original data. Thus, it can effectively reduce the complexity
of the traditional FIS model. For example, when the input
dimension is n dimension, which is reduced to m dimension
through the pre-sparse layer, and each dimension is divided
into amembership degrees, then the parameter number of the
pre-sparse neural network is,

Pre-Sparse Neural Network Number = n2 + n (19)

The parameter numbers of APSNFIS is:
APSNFIS numbers = 3× am + (m+ 1)× am + n2 + n

(20)

It can be seen clearly that when the dimension is large,
the parameters of the ANFIS model can be greatly reduced
by adding a pre-sparse layer, which just introduces a small
amount of network parameters (preposition parameters as
displayed in Fig.2) but can effectively avoid over fitting in
the process of optimization.

In the ANFIS model, a gradient-based method (least
squares, gradient descent) is usually applied to learn the
model parameters (premise and consequence parameters).
However, the gradient-based method is prone to falling
into the local optimum. Therefore, some researchers used
a meta-heuristic algorithm that uses the PSO or GA
with random search properties, i.e., the GA-optimized
ANFIS or PSO-optimized ANFIS, attempting to achieve the
optimal ANFIS model parameters.

In terms of the merits of STA, this paper proposes a
STA-induced APSNFIS model, termed STA-APSNFIS, for
the soft sensor modeling of KPIs in CIPs. Compared with
the GA or PSO-optimized ANFIS, STA-APSNFIS has better
parameter optimization effects and faster fitting speed. The
flowchart of STA-APSNFIS is displayed in Fig. 3.

Detailed steps of STA-APSNFIS are summarized as
follows.
Step 1: Prepare a set of historical process monitoring data

and use it to calculate the activation value by (15), and then
use the activation value as the input to the first layer of
APSNFIS.

Step 2: According to the input data dimension of the first
layer of APSNFIS, calculate the preposition, premise and
consequence parameters number and establish the FISmodel.
Step 3: Initialize the STA parameters such as rotation factor

α, translation factor β, expansion factor γ , axesion factor δ,
minimum error ε, and the maximum number of iterations T .
Set the current number of iteration, t = 0, population
number n.
Step 4: Randomly generate n group of D dimensional

APSNFIS model parameter set vector (preposition, premise
and consequence parameters), where D is the parameter set
size of the APSNFIS. Then, calculate the fitness function
value f of each parameter set based on the APSNFIS model.
The parameter set with the smallest fitness function value
is the parameter set of the optimal state, and it is recorded
as fbest. Finally, the optimal parameter set is achieved itera-
tively according to the four operators of the STA procedure.
Detailed steps are as follows.
Step 4.1: Copy n group of the optimal parameter set and

perform the extension operation based on (13) to generate
n group of new parameter sets and calculate their minimum
fitness function values fk . If fk < fbest, fbest ← fk and
execute Step 4.5, followed by Step 4.2, otherwise execute
Step 4.2 directly.
Step 4.2: Copy n group of the optimal parameter set and

perform the rotation operation based on (11) to generate n
group of new parameter set and calculate their minimum
fitness function values fk . If fk < fbest, fbest ← fk and go
to step 4.5 followed by the Step 4.3, otherwise execute Step
4.3 directly.
Step 4.3: Copy n group of the optimal parameter set and

perform the axesion operation based on (14) to generate n
group of new parameter sets and calculate their minimum
fitness function values fk . If fk < fbest, fbest← fk and execute
Step 4.5, followed by the Step 4.4; otherwise execute Step
4.4 directly
Step 4.4: If the current minimum fitness value is less than

the minimum error ε or the current number of iterations,
namely, t >= T , execute Step 5, otherwise record t = t + 1
and execute Step 4.2.
Step 4.5: Copy n group of the optimal parameter set and

perform the translation operation based on (12) to generate n
group new parameter sets and calculate their minimumfitness
function values fk . If fk < fbest, fbest← fk .
Step 5: The parameter set of the minimum fitness value is

used as a parameter set of the APSNFIS model to calculate
the output of the APSNFIS model.

B. COMPLEXITY ANALYSIS
A practical problem with regard to the soft sensor is the time
cost of the online testing. If the computational complexity of
the soft sensor model is too complex, the online inference
time is too long to provide an effective online monitoring
of KPIs.

For nonlinear models such as BP network, the
computational complexity depends mainly on the number
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FIGURE 3. Flowchart of STA-APSNFIS.

of nonlinear elements, such as sigmoid function and radial
basis functions. When the number of network layers is too
large, the complexity is increase in power law. With regard
to the support vector machines or the kernel tricks-based
methods, since the training samples support the regression
hyperplane, the computational complexity can be approxi-
mated as O (nsv), where nsv is the number of support vectors.
When the amount of data is larger, SVM will be affected by
the number of support vectors, and its computational cost will
increase exponentially.

Although the proposed STA-APSNFIS mode consists of
six layers of network structure, only the first layer, namely,
the pre-sparse network, is a fully connected neural network,
whose computational complexity is related to the number

of neuron nodes. The remainder five layers network of
the STA-APSNFIS model are consistent with the original
ANFIS and its time complexity is approximatelyO(n), where
n denotes the feature dimension of input samples. Thus,
the total computational complexity is related to the feature
dimension of input data.

This paper introduces a pre-sparse neural network to make
a sparse representation of the samples features, which can
effectively reduce the redundancy in the feature space of the
input data. In addition, the sparse constraint can minimize
the number of nodes in the pre-sparse layer. Consequently,
it can effectively reduce the computational complexity of the
FIS and is more conducive to the online soft sensor modeling
of CIPs.
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C. NUMERICAL SIMULATION AND MODEL
ROBUSTNESS VERIFICATION
To verify the effectiveness and robustness of STA-APSNFIS,
this section uses the STA-APSNFIS to extract the fuzzy rules
of a numeric simulation system, y = x21 + x22 , in rang of
{−10 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 10}. Firstly, 10,000 samples
by this system model with additive Gaussian noise are
generated. To validate the robustness of the proposed
STA- APSNFIS model, a redundant variable x3 is introduced
for model training, i.e., y = x21 + x

2
2 + 0× x3 + ξ , where ξ is

a Gaussian noise variable.
The STA-APSNFIS pre-sparse layer uses the sigmoid

activation function to make the feature reduction of input
data from 3 dimensions to 2 dimensions. According to (2),
the membership degree calculation of the pre-sparse layer
output variables is divided into four rules. Therefore, there
are 12 premise parameters and 12 consequence parameters.
However, if the original ANFIS model is used, according
to (3), the membership degree calculation should be divided
into eight rules. Therefore, there are 24 premise parameters
and 32 consequence parameters. Therefore, it can be seen that
the proposed STA-APSNFIS model effectively reduces the
complexity of the model. To achieve stable modeling results,
100 iterations were performed, and the final parameters are
shown in Tab. 1.

For a specific input {0.6, 7.1,−3.2}, adopt (15) to cal-
culate the pro-layer output as {0.1371, 0.0794}. According
to (2), the membership degrees of the four rules with the
pre-parameter calculation and its fuzzy model are shown
in Fig. 4.

Taking {0.8388, 0.4752, 0.3004, 0.8975} into (3) and (4),
we can achieve the activation strength of the four rules as
{0.1601, 0.4783, 0.0907, 0.2709}.

Substituting the consequence parameters and the activation
strength of each rule into (5) , calculate the output of the input
variable on each rule as {−2372.1, 2804.8,−1310.8, 1596.7}.
According to (6), the final output of the model is 718.6510,
which is very close to the true value 716.1820 of the test
system function y = x21 + x

2
2 on {0.6, 7.1}.

The calculation process has a certain error due to
the problem of the inaccuracy (noise interference) of
the variables, which is consistent to the real industrial
process monitoring. In the computer simulation process,
the precision is 14 digits after the decimal point, and the
output result is 716.1894. Experiments show that the pro-
posed STA-APSNFIS model can effectively fit the nonlinear
system and has strong robustness to the noise contamina-
tion and redundancy interference in the process monitoring
data.

IV. EXPERIMENTAL VALIDATION
To validate the performance of STA-APSNFIS, we car-
ried out experiments from three aspects. (1) Compare the
STA-APSNFIS with the fitting effects of ANFIS, GA-ANFIS
and PSO-ANFIS on some classic test functions. (2) Validate
the effect and compare its performancewith other soft sensors

TABLE 1. Rules and parameter setting of STA-APSNFIS.

FIGURE 4. Fuzzy membership.

on TE process. (3) Carry out comparative experiments on a
real flotation industrial process.

The experimental environment is as follows. The hardware
configuration is processor: Intel Core i7-8750H, memory:
16.0GB. The software environment is macOSwithMATLAB
R2018a.

A. MODEL PERFORMANCE EVALUATION
To verify the feasibility of STA-APSNFIS, this section
uses some high-dimensional nonlinear functions (listed in
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TABLE 2. Test functions.

Tab.2) to validate the fitting performance of nonlinear
systems.

Based on these numeric functions, we compare it with
GA-ANFIS [40], PSO-ANFIS [40] and ANFIS [40].
Determining coefficient R2 and root mean square errors
(RMSEs) of fitting results were used to evaluate the fitting
performance of the proposed STA-APSNFIS. In addition,
the running time was also recorded as an evaluation criterion
to compare the convergence speed.

If we denote the true function value as f and the model
estimation as f ′, the RMSE and R2 can be computed as,

RMSE =

√√√√√ n∑
i=1
(f − f ′)2

n
, (21)

R2 = 1−

n∑
i=1

(∣∣f − f ′∣∣)
n∑
i=1
(|f ′ − f m|)

. (22)

where f m =
n∑
i=1

f ′/n. In order to ensure the stability of

the experiment, above functions all have ten-dimensional
variables except f5, which is a two-dimensional function.
10000 samples were generated, and the data features were
reduced by the PCA algorithm to make a fair comparison.
70% samples were used for training and the remainder 30%
samples were used for testing. All results listed in Tab.3 are
the average value of 30 independent experiments.

It can be seen from Tab.3 that the STA-APSNFIS has good
performance both on the fitting result and the running time
on these testing functions. Since the optimization algorithm
has a certain randomness, in simple functions such as f1, f3,
the running time of the proposed method is a little longer than
the original ANFIS due to the introduction of the pre-sparse
layer in the original ANFIS model. However, the proposed
STA-APSNFIS can achieve better fitting accuracies. f2 is a
complex multi-peak function, whose 3-D profile are shown
in Fig. 5. The fitting scatter plot of the STA-APSNFIS and
other ANFIS algorithm is shown in Fig. 6

Comparing the statistical results on the test function f2
in Table 3, STA-APSNFIS can effectively avoid falling

TABLE 3. Test results.

FIGURE 5. Three-dimensional profile a two-variate version of f2.

FIGURE 6. Scatter plot of the fitting results on f2.

into the local optimum. Compared with GA-ANFIS and
PAO-ANFIS, STA-APSNFIS can achieve better fitting results
of the complex non-linear functions and has faster fitting
speed.

With regard to the performance index, STA-APSNFIS is
better than ANFIS and other optimization algorithm-induced
ANFIS models in the fitting ability of the nonlinear testing
functions. The training speed is faster and the calculation cost
is lower. Hence it is more suitable for the online soft sensor
modeling in the CIP monitoring.
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FIGURE 7. Purge % G fitting result.

TABLE 4. Comparison of KPI soft modeling result on TE Process.

B. CASE STUDY ON TE PROCESS
This section uses the complex industrial simulation data set
of TE process to verify the performance of STA-APSNFIS,
and compare it with some state-of-the-art soft sensor models,
including LS-SVM [17], TSA-BP [41], PSO-ANFIS [40],
GA-ANFIS [40] and ANFIS [40].

TE process is a widely used benchmark process in the
field of industrial control and monitoring [42]. The whole
process consists of five major units. The reaction contains
eight components, of which A, B, C, D, E are reactants and
additives, G, H are final products. The reaction is irreversible.
The experimental data set on TE process contains 41 mea-
surements, 12 operational variables. In the 41 measurements,
they include 22 continuous process variables and 19 sampling
process measurements. Since we only consider the key per-
formance indicators of products G and H (purge gas analysis
of G and H, in mol), only the data under normal conditions
are used for the KPI prediction.

To make a fair comparison, we performed the PCA-based
dimension reduction of the process monitoring data
for the ANFIS, GA-ANFIS and PSO-ANFIS model-
ing. 70% randomly-chosen samples were used for model
training and the remainder was used as the testing set.
Experimental results of these comparative methods are listed
in Table 4.

As can be seen from Tab. 4 that the KPI prediction
performance of the STA-APSNFIS model is more accurate
than the predictions produced by other soft sensor methods,
and the convergence time of the proposed STA-APSNFIS on
the data set is the shortest.

To make a more direct explanation, parts of test results
selected randomly are displayed in Fig.7 and Fig. 8. As shown
in the Fig.7 and Fig.8, the fitting effect between the predicted
value and the real value observed by the STA-APSNFIS
model is more precise than other soft sensor models. It is
worth noting that both GA-ANFIS and PSO-ANFIS have
certain optimization effects on the original ANFIS model
and the PSO-ANFIS model is superior to the GA-ANFIS
model. However, the proposed STA-APSNFIS model in this
paper has better predictive ability than other soft sensor
models in general in terms of the fitting preciseness and the
inferential time.

C. CASE STUDY ON A REAL FLOTATION PROCESS
The proposed STA-APSNFIS model was tentatively applied
to a real complex industrial process, industrial bauxite flota-
tion process, to further verify its practical performance. The
flowchart of the bauxite flotation process is shown in Fig. 9.
It is can be seen clearly that the bauxite flotation process is
a continuous complex industrial process involving multiple
sub-circuits.

This bauxite flotation circuit includes three basic
sub-processes: rougher, cleaner (including cleaner I and
cleaner II), and scavenger (including roughing scavenger and
cleaning scavenger) [7], [8], [43]–[45]. Wherein, the concen-
trate froth of the rougher sub-process is collected and pumped
to the cleaner I for further processing to improve the cleaner
grade. The bottom pulp stream of the rough is pumped into
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FIGURE 8. Purge % H fitting result.

FIGURE 9. Bauxite flotation circuit.

the roughing sweeper tank to recover the mineral particles
that have not been floated by the rough process. The coarse
froth (roughing sweep product) is pumped to the rough sub-
process for the re-treatment, and the bottom pulp of the coarse
sweep is discharged as the tailings. The froth layer of the
cleaner I is sent to the cleaner II sub-process, and the final
concentrate froth of the cleaner II are subjected to a series of
subsequent treatments such as thickening and drying as the
alumina beneficiation product of the floatation process. The
underflow of the cleaner I is sent to the concentrate sweeper
to further recover the unrecovered mineral particles and the
fine sweep bottom stream is discharged as tailings.

The froth layer of the cleaner II tank will be collected as the
final concentrate product and the concentrate grade (A/S) is
still currently unavailable for the on-line testing. Generally,
it can only rely on offline sampling and laboratory assays.
Laboratory assays are time consuming and labor intensive,
and generally only one or two detection values are obtained
per day. Therefore, due to the lack of on-line monitoring
value of concentrate grade, it is impossible to effectively
evaluate the product conditions, in other words, it is difficult

FIGURE 10. Concentrate grade prediction of bauxite flotation process.

to make effective operational adjustments in time to ensure
steady-state optimal operation of production.

Therefore, this paper mainly focuses on the beneficia-
tion index (A/S) of the cleaner II tank as the detection
object. In the experiment, the process parameters data during
the bauxite flotation process was collected for one moth
(26 days), including the characteristics of the flotation froth
images under various working conditions and the correspond-
ing metallurgical process parameters and concentrate grade
data by manual sampling. After the manual collection of
concentrate samples and analysis of 8 samples of A/S per
day and remove the bad data (process data collect on the
repair time of field equipment failure), a total of 197 valid
A/S data of manual testing was obtained. 120 of them were
randomly selected for model training, and the rest were used
for model testing. The monitoring effect on the data set of the
STA-APSNFIS is as shown in the Fig. 10.

In order to further evaluate the proposed STA-APSNFIS,
we carried out experiments comparing the concentrate
grade (A/S of cleaner II) prediction results with that of
the soft sensor methods based on ANFIS, PSO-ANFIS,
GA-ANFIS, LS-SVM, TSA-BP and STA-APSNFIS in this
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TABLE 5. Comparative result on Bauxite flotation Process.

flotation process. Quantitative evaluation results can be seen
in the Tab. 5.

As can be seen from Tab. 5, in terms of RMSE and R2,
STA-APSNFIS can achieve the best results. It indicates that
the soft sensor proposed in this paper is feasible in the
practical applications of CIPs and it has certain advantages
in high-dimensional complex system modeling compared
with other soft sensor models. With respect to the time
cost, it is slightly lower than the LS-SVM model. However,
the response time (around 11s on the test computer) can
meet the requirement of the real time industrial process
monitoring.

To summary, the application results on the bauxite flotation
process show that STA-APSNFIS can effectively predict the
concentrate grade of bauxite flotation process, which pro-
vides a technique support of online concentrate grade moni-
toring to ensure stable and optimal operation of the flotation
process. It provides an effective reference index for improv-
ing the product qualities and reducing the consumptions of
mineral resources in the mineral processing.

V. CONCLUSION
This paper proposes an end-to-end soft-measurement method
based on the STA-optimized adaptive pre-sparse neural-fuzzy
inference system for online KPI monitoring of CIPs, termed
STA-APSNFIS. STA-APSNFIS introduces a pre-sparse neu-
ral network to the traditional ANFIS to reduce the adverse
effect of data redundancy, measurement noise and inaccura-
cies in the industrial process data, which can reduce the com-
plexity of the FIS models and effectively solve the problem of
traditional ANFIS model being hard to fit high-dimensional
system. In addition, the optimal parameters of the APSNFIS
model are achieved by the STA optimization algorithm.
Experimental results show that the proposed method can
effectively avoid the local optimum solution, which has faster
convergence speed and better fitting effect than ANFIS,
PSO-ANFIS, GA-ANFIS and LS-SVM-based soft-sensor
methods, for the online KPI monitoring of CIPs. The pro-
posed method was also validated in a real industrial bauxite
flotation process for the online monitoring of the concentrate
grade. Experimental results on the real industrial process
show that the proposed method can effectively predict the
concentrate grade of bauxite flotation process in real time,
which lays a foundation to ensure the stable and optimal oper-
ation of flotation process to improve the beneficiation per-
formance. The next step is to combine STA-APSNFIS with
time series-based industrial process modeling andmonitoring
approaches to achieve more accurate monitoring results of
KPIs for the CIP monitoring. Then, the corresponding pro-
cess optimization setting method can be put forward to ensure

a stable and optimal operation of CIPs, e.g., the industrial
flotation process, which lays a foundation for improving the
quality of industrial process products and strengthening the
industrial control
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