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ABSTRACT LetR = Fpm [u]/〈u3〉 be the finite commutative chain ring, where p is a prime, m is a positive
integer and Fpm is the finite field with pm elements. In this paper, we determine all repeated-root constacyclic
codes of arbitrary lengths over R and their dual codes. We also determine the number of codewords in
each repeated-root constacyclic code over R.We also obtain Hamming distances, RT distances, RT weight
distributions and ranks (i.e., cardinalities of minimal generating sets) of some repeated-root constacyclic
codes over R. Using these results, we also identify some isodual and maximum distance separable (MDS)
constacyclic codes overR with respect to the Hamming and RT metrics.

INDEX TERMS Cyclic codes, local rings, negacyclic codes, optimal codes.

I. INTRODUCTION
Constructing codes that are easy to encode and decode, can
detect and correct many errors and have a sufficiently large
number of codewords is the primary aim of coding theory.
Several metrics (e.g. Hamming metric, Lee metric, RT met-
ric, etc.) have been introduced to study error-detecting and
error-correcting properties of a code with respect to various
communication channels. Among the prevalent metrics in
coding theory, the Hammingmetric is the most studied metric
and it is suitable for orthogonal modulated channels. The
Singleton bound [31] is an upper bound on the size M of an
arbitrary block code with respect to the Hamming metric:

M ≤ qn−d+1, (1)

where q is the cardinality of the code alphabet, n is the block
length and d is the Hamming distance of the code. Linear
codes that attain the Singleton bound are called maximum
distance separable (MDS) codes with respect to the Hamming
metric. Later, motivated by the problem to transmit messages
over several parallel communication channels with some
channels not available for transmission, a non-Hammingmet-
ric, called the Rosenbloom-Tsfasman metric (or RT metric),
was introduced by Rosenbloom and Tsfasman [30]; they also
derived Singleton bound for the RT metric. Linear codes
that attain the Singleton bound for the RT metric are called
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MDS codes with respect to the RT metric. MDS codes
have the highest possible error-detecting and error-correcting
capabilities for given code length, code size and alphabet
size, hence they are considered optimal codes in that sense.
This has encouraged many coding theorists to further study
and construct MDS codes with respect to various metrics
(see [20], [23], [39]). Recently, Li and Yue [24] determined
Hamming distances of all repeated-root cyclic codes of length
5ps over Fpm and identified all MDS codes within this class of
codes, where p is a prime, s,m are positive integers and Fpm is
the finite field of order pm. In this paper, we shall also find
MDS codes with respect to Hamming and RT metrics within
the family of constacyclic codes over Fpm [u]/〈u3〉.
Berlekamp [4] first introduced and studied constacyclic

codes over finite fields, which have a rich algebraic
structure and are generalizations of cyclic and negacyclic
codes. For recent works on constacyclic codes over finite
fields, please refer to [32], [33], [37]. Calderbank et al. [6],
Hammons et al. [21] and Nechaev [28] related binary
non-linear codes (e.g. Kerdock and Preparata codes) to linear
codes over the finite commutative chain ring Z4 of integers
modulo 4 with the help of a Gray map. Since then, codes over
finite commutative chain rings have received a great deal of
attention. However, their algebraic structures are known only
in a few cases. Towards this, Dinh and López-Permouth [17]
studied algebraic structures of simple-root cyclic and nega-
cyclic codes over finite commutative chain rings and their
dual codes. In the same work, they also determined all
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negacyclic codes of length 2t over the ring Z2m of integers
modulo 2m and their dual codes, where t ≥ 1 and m ≥ 2
are integers. In a related work, Batoul et al. [3] proved that
when λ is an nth power of a unit in a finite commutative chain
ring R, repeated-root λ-constacyclic codes of length n over R
are equivalent to cyclic codes of the same length overR.Apart
from this, many authors [1], [2], [5], [22], [36] investigated
algebraic structures of linear and cyclic codes over the finite
commutative chain ring F2[v]/〈v2〉.
To describe the recent work, let p be a prime, s,m be

positive integers, Fpm be the finite field of order pm, and
let Fpm [v]/〈v2〉 be the finite commutative chain ring with
unity. Dinh [15] determined all constacyclic codes of length
ps over Fpm [v]/〈v2〉 and their Hamming distances. Later,
Chen et al. [14] and Liu and Xu [25] determined all consta-
cyclic codes of length 2ps over the ring Fpm [v]/〈v2〉, where
p is an odd prime. Using a technique different from that
employed in [14], [15], [25], Cao et al. [8] determined all
α-constacyclic codes of length nps over Fpm [v]/〈v2〉 and their
dual codes by writing a canonical form decomposition for
each code, where α is a non-zero element of Fpm and n is
a positive integer with gcd(p, n) = 1. In a recent work,
Zhao et al. [38] determined all (α+βv)-constacyclic codes of
length nps over Fpm [v]/〈v2〉 and their dual codes, where n is a
positive integer coprime to p, and α, β are non-zero elements
of Fpm . This completely solved the problem of determina-
tion of all constacyclic codes of length nps over Fpm [v]/〈v2〉
and their dual codes, where n is a positive integer coprime
to p. In a recent work [34], we determined all repeated-root
constacyclic codes of arbitrary lengths over the Galois ring
GR(p2,m) of characteristic p2 and cardinality p2m, their sizes
and their dual codes. In the same work, we also listed some
isodual repeated-root constacyclic codes over GR(p2,m).
In a related work, Cao [7] established algebraic structures

of all (1 + aw)-constacyclic codes of arbitrary lengths over
a finite commutative chain ring R with the maximal ideal
as 〈w〉, where a is a unit in R. Later, Dinh et al. [18] studied
repeated-root (α + aw)-constacyclic codes of length ps over
a finite commutative chain ring R with the maximal ideal
as 〈w〉, where p is a prime number, s ≥ 1 is an integer and
α, a are units in R. The results obtained in Dinh et al. [18]
can also be obtained from the work of Cao [7] via the ring
isomorphism from R[x]/〈xp

s
−1−aα−1w〉 onto R[x]/〈xp

s
−

textalpha− aw〉, defined as A(x) 7→ A(α−10 x) for each
A(x) ∈ R[x]/〈xp

s
− 1 − aα−1w〉, where α = α

ps

0 (such
an element α0 always exists in Fpm ). The constraint that
a is a unit in R restricts their study to only a few special
classes of repeated-root constacyclic codes over R. When
a is a unit in R, codes belonging to these special classes
are direct sums of (principal) ideals of certain finite com-
mutative chain rings. However, when a is a non-unit in R,
there are repeated-root constacyclic codes over R, which
are direct sums of non-principal ideals. In another related
work, Sobhani [35] determined all (α + γ u2)-constacyclic
codes of length ps over Fpm [u]/〈u3〉 and their dual codes,

where α, γ are non-zero elements of Fpm . For more related
works, readers may refer to [9]–[13].

Themain goal of this paper is to determine all repeated-root
constacyclic codes of arbitrary lengths over the finite com-
mutative chain ring Fpm [u]/〈u3〉, their sizes and their dual
codes, where p is a prime and m is a positive integer. Ham-
ming distances, RT distances, RT weight distributions and
ranks (i.e., cardinalities of minimal generating sets) are also
determined for some repeated-root constacyclic codes over
Fpm [u]/〈u3〉. Some isodual and MDS codes over Fpm [u]/〈u3〉
with respect to Hamming and RT metrics are also identified
within this class of constacyclic codes.

This paper is organized as follows: In Section II, we state
some basic definitions and results that are needed to
derive our main results. In Section III, we determine
all repeated-root constacyclic codes of arbitrary lengths
over Fpm [u]/〈u3〉, their dual codes and their sizes
(Theorems 13-18). As an application, we also determine
some isodual repeated-root constacyclic codes over Fpm [u]/
〈u3〉 (Corollaries 14-19). In Section IV, we determine Ham-
ming distances, RT distances, RT weight distributions and
ranks (i.e., cardinalities of minimal generating sets) of some
repeated-root constacyclic codes over Fpm [u]/〈u3〉 (Theo-
rems 21, 23, 25, 26, 28, 30). We also list some MDS con-
stacyclic codes over Fpm [u]/〈u3〉 with respect to Hamming
and RT metrics (Theorems 22, 24, 27 and 29). In Section V,
we determine Hamming distances of all repeated-root con-
stacyclic codes of length 2ps over Fpm [u]/〈u3〉 (Theorem 33).
We also list all MDS repeated-root constacyclic codes of
length 2ps over Fpm [u]/〈u3〉 with respect to the Hamming
metric (Theorem 35). In Section VI, we mention a brief
conclusion and discuss some interesting open problems in
this direction.

II. SOME PRELIMINARIES
A commutative ring R with unity is called (i) a local ring if
it has a unique maximal ideal (consisting of all the non-units
of R), and (ii) a chain ring if all its ideals form a chain with
respect to the inclusion relation. Then the following result is
well-known.
Proposition 1 [17]: For a finite commutative ring R with

unity, the following statements are equivalent:

(a) R is a local ring whose maximal ideal M is principal,
i.e., M = 〈w〉 for some w ∈ R.

(b) R is a local principal ideal ring.
(c) R is a chain ring and all its ideals are given by 〈wi〉,

0 ≤ i ≤ e, where e is the nilpotency index of w. Fur-
thermore, we have |〈wi〉| = |R/〈w〉|e−i for 0 ≤ i ≤ e.
(Throughout this paper, |A| denotes the cardinality of
the set A.)

Now let R be a finite commutative ring with unity, and let
N be a positive integer. Let RN be the R-module consisting
of all N -tuples over R. For a unit λ ∈ R, a λ-constacyclic
code C of length N over R is defined as an R-submodule of
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RN satisfying the following property: (a0, a1, · · · , aN−1) ∈
C implies that (λaN−1, a0, a1, · · · , aN−2) ∈ C. The Ham-
ming distance dH (C) of the code C is given by dH (C) =
min{wH (c) : c( 6= 0) ∈ C}, where wH (c) is the number of
non-zero components of c and is called the Hamming weight
of c. The Rosenbloom-Tsfasman (RT) distance dRT (C) of the
code C is given by dRT (C) = min{wRT (c) : c(6= 0) ∈ C},
where wRT (c) is the RT weight of c and is defined as

wRT (c) =


1+max{j : cj 6= 0}

if c = (c0, c1, · · · , · · · , cN−1) 6= 0;
0 if c = 0.

Note that each R-submodule of RN need not be free. The
cardinality of a minimal generating set of the code C is called
the rank of C and is denoted by rank(C). The code C of length
N and rank k over R is referred to as an [N , k, dH (C)]-code
with respect to the Hamming metric, while the code C is
referred to as an [N , k, dRT (C)]-code with respect to the RT
metric.

The Rosenbloom-Tsfasman (RT) weight distribution of
the code C is defined as the list A0,A1, · · · ,AN , where
for 0 ≤ ρ ≤ N , Aρ is the number of codewords in C
having the RT weight as ρ. Further, the code C is called
(i) an MDS code with respect to the Hamming metric if it
satisfies |C| = |R|N−dH (C)+1, and (ii) an MDS code with
respect to the RT metric if it satisfies |C| = |R|N−dRT (C)+1.
Note that an MDS code has to be non-zero. The dual code
of C, denoted by C⊥, is defined as C⊥ = {u ∈ RN :
u.c = 0 for all c ∈ C}, where u.c = u0c0 + u1c1 +
· · · + uN−1cN−1 for u = (u0, u1, · · · , uN−1) ∈ RN and
c = (c0, c1, · · · , cN−1) ∈ C. It is easy to observe that the dual
code C⊥ is a λ−1-constacyclic code of length N over R. The
code C is said to be isodual if it is R-linearly equivalent to its
dual code C⊥.

Under the standard R-module isomorphism ψ : RN →
R[x]/〈xN−λ〉, defined asψ(a0, a1, · · · , aN−1) = a0+a1 x+
· · · + aN−1xN−1 + 〈xN − λ〉 for each (a0, a1, · · · , aN−1) ∈
RN , the code C can be identified as an ideal of the ring
R[x]/〈xN − λ〉. Thus the study of λ-constacyclic codes of
length N over R is equivalent to the study of ideals of the
quotient ring R[x]/〈xN − λ〉. From this point on, we shall
represent elements of R[x]/〈xN − λ〉 by their representatives
in R[x] of degree less thanN , and we shall perform their addi-
tion and multiplication modulo xN −λ.Under this identifica-
tion, the Hamming weight wH (c(x)) of c(x) ∈ R[x]/〈xN − λ〉
is the number of non-zero coefficients of c(x) and
the RT weight wRT (c(x)) of c(x) ∈ R[x]/〈xN − λ〉 is
given by

wRT (c(x)) =

{
1+ deg c(x) if c(x) 6= 0;
0 if c(x) = 0,

(throughout this paper, deg f (x) denotes the degree of a
non-zero polynomial f (x) ∈ R[x]). The dual code C⊥
of C is given by C⊥ = {u(x) ∈ R[x]/〈xN − λ−1〉 :

u(x)c∗(x) = 0 in R[x]/〈xN − λ−1〉 for all c(x) ∈ C},

where c∗(x) = xdeg c(x)c(x−1) for all c(x) ∈ C \ {0} and
c∗(x) = 0 if c(x) = 0. The annihilator of C is defined
as ann(C) = {f (x) ∈ R[x]/〈xN − λ〉 : f (x)c(x) =
0 in R[x]/〈xN − λ〉 for all c(x) ∈ C}. One can easily observe
that ann(C) is an ideal of R[x]/〈xN −λ〉. Furthermore, for any
ideal I of R[x]/〈xN − λ〉, we define I∗ = {f ∗(x) : f (x) ∈ I },
where f ∗(x) = xdeg f (x)f (x−1) if f (x) 6= 0 and f ∗(x) = 0
if f (x) = 0. It is easy to see that I∗ is an ideal of the ring
R[x]/〈xN − λ−1〉. Now the following holds.
Lemma 2 [14]: If C ⊆ R[x]/〈xN − λ〉 is a λ-constacyclic

code of length N over R, then we have C⊥ = ann(C)∗.
From this point on, throughout this paper, let R be the ring
R = Fpm [u]/〈u3〉. It is easy to observe that R = Fpm +
uFpm + u2Fpm with u3 = 0, and that any element λ ∈ R
can be uniquely expressed as λ = α + βu + γ u2, where
α, β, γ ∈ Fpm . Now we make the following observation.
Lemma 3 [14]: Let λ = α + βu + γ u2 ∈ R, where

α, β, γ ∈ Fpm . Then the following hold.
(a) λ is a unit inR if and only if α 6= 0.
(b) There exists α0 ∈ Fpm satisfying α

ps

0 = α.

The following three theorems are useful in the determi-
nation of Hamming distances of some repeated-root consta-
cyclic codes over R. In fact, the following theorem is an
extension of Theorem 3.4 of Dinh [15].
Theorem 4: For η ∈ Fpm \ {0}, there exists η0 ∈ Fpm

satisfying η = η
ps

0 . Suppose that the polynomial x
n
− η0

is irreducible over Fpm . Let C be an η-constacyclic code of
length nps over Fpm . Then we have C = 〈(xn − η0)υ〉, where
0 ≤ υ ≤ ps. Further, the Hamming distance dH (C) of the
code C is given by

dH (C) =



1 if υ = 0;
`+ 2 if `ps−1 + 1 ≤ υ ≤ (`+ 1)ps−1

with 0 ≤ ` ≤ p− 2;
(i+ 1)pk if ps − ps−k + (i− 1)ps−k−1 + 1

≤ υ ≤ ps − ps−k + ips−k−1 with
1 ≤ i ≤ p− 1 and 1 ≤ k ≤ s− 1;

0 if υ = ps.

Moreover, the code C is an MDS code if and only if exactly
one of the following conditions is satisfied:

• 0 ≤ υ ≤ p− 1 when n = s = 1;
• υ ∈ {0, 1, ps − 1} when n = 1 and s ≥ 2;
• υ = 0 when n ≥ 2.
Proof: Working in a similarmanner as in Theorem 3.4 of

Dinh [15], the desired result follows. �
Theorem 5 [27]: Let p be an odd prime, and let ω be a

non-zero square in Fpm . Then there exists ω0 ∈ Fpm satisfying
ω = ω

ps

0 . Further, ω0 is a square in Fpm , i.e., there exists
ζ ∈ Fpm such that ω0 = ζ

2.

Now let C be a non-zero ω-constacyclic code of length 2ps
over Fpm . Then we have C = 〈(x + ζ )υ1 (x − ζ )υ2〉, where
0 ≤ υ1, υ2 ≤ ps.
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When υ1 ≥ υ2, the Hamming distance dH (C) of the code C
over Fpm is given by

dH (C) =



1 if υ1 = υ2 = 0;
2 if υ2 = 0 and 0 < υ1 ≤ ps;
min{(`+ 2)pk , 2(`1 + 2)pk

′

} if
ps − ps−k + `ps−k−1 + 1 ≤ υ1 ≤ ps − ps−k

+ (`+ 1)ps−k−1 and ps − ps−k
′

+ `1ps−k
′
−1
+ 1 ≤ υ2 ≤ ps − ps−k

′

+ (`1 + 1)ps−k
′
−1 with 0 ≤ `, `1 ≤ p− 2,

and 0 ≤ k ′ ≤ k ≤ s− 1;
2(`1 + 2)pk

′

if υ1 = ps and ps − ps−k
′

+ `1ps−k
′
−1
+ 1 ≤ υ2 ≤ ps − ps−k

′

+ (`1 + 1)ps−k
′
−1 with 0 ≤ `1 ≤ p− 2

and 0 ≤ k ′ ≤ s− 1.

When υ2 ≥ υ1, the Hamming distance dH (C) of the code C
over Fpm is given by

dH (C) =



1 if υ1 = υ2 = 0;
2 if υ1 = 0 and 0 < υ2 ≤ ps;
min{(`+ 2)pk , 2(`1 + 2)pk

′

} if
ps − ps−k + `ps−k−1 + 1 ≤ υ2 ≤ ps − ps−k

+ (`+ 1)ps−k−1 and ps − ps−k
′

+ `1ps−k
′
−1
+ 1 ≤ υ1 ≤ ps − ps−k

′

+ (`1 + 1)ps−k
′
−1 with 0 ≤ `, `1 ≤ p− 2,

and 0 ≤ k ′ ≤ k ≤ s− 1;
2(`1 + 2)pk

′

if υ2 = ps and ps − ps−k
′

+ `1ps−k
′
−1
+ 1 ≤ υ1 ≤ ps − ps−k

′

+ (`1 + 1)ps−k
′
−1 with 0 ≤ `1 ≤ p− 2

and 0 ≤ k ′ ≤ s− 1.

Moreover, the code C is an MDS code if and only if exactly
one of the following conditions is satisfied:
• υ1 = υ2 = 0;
• υ1 = 1 and υ2 = 0;
• υ1 = 0 and υ2 = 0;
• υ1 = ps and υ2 = ps − 1;
• υ1 = ps − 1 and υ2 = ps.
Theorem 6 [29]: Let C be a linear code of length N

over R. Then Tor2(C) = {a ∈ FNpm : u2 a ∈ C} is a
linear code of length N over Fpm . Furthermore, we have
dH (C) = dH (Tor2(C)).

Next we proceed to study algebraic structures of all con-
stacyclic codes of length N = nps over the ring R = Fpm +
uFpm + u2Fpm , where u3 = 0, p is a prime and n, s,m are
positive integers with gcd(n, p) = 1.

III. CONSTACYCLIC CODES OF LENGTH nps OVER R
Throughout this paper, let p be a prime, and let n, s,m be
positive integers with gcd(n, p) = 1. Let Fpm be the finite
field of order pm, and let R = Fpm [u]/〈u3〉 be the finite

commutative chain ring with unity. Let λ = α + βu + γ u2,
where α, β, γ ∈ Fpm and α is non-zero. In this section,
we shall provide a method to construct all λ-constacyclic
codes of length nps overR for the purpose of error-detection
and error-correction. We shall also determine their dual codes
and the number of codewords in each code. Apart from this,
we shall list some isodual constacyclic codes of length nps

over R. These results are useful in encoding and decod-
ing these codes and in studying their error-detecting and
error-correcting capabilities with respect to various commu-
nication channels.

To do this, we recall that a λ-constacyclic code of length
nps over R is an ideal of the quotient ring Rλ = R[x]/
〈xnp

s
− λ〉. Furthermore, by Lemma 3(b), there exists α0 ∈

Fpm satisfying αp
s

0 = α.Now let xn−α0 = f1(x)f2(x) · · · fr (x)
be the irreducible factorization of xn − α0 over Fpm , where
f1(x), f2(x), · · · , fr (x) are monic pairwise coprime polyno-
mials over Fpm . In the following lemma, we factorize the
polynomial xnp

s
− λ into pairwise coprime polynomials

in R[x].
Lemma 7: There exist polynomials g1(x), g2(x), · · · ,

gr (x), h1(x), h2(x), · · · , hr (x) ∈ Fpm [x] such that

xnp
s
− λ =

r∏
j=1

(
fj(x)p

s
+ ugj(x)+ u2 hj(x)

)
,

where for 1 ≤ j ≤ r,

• gcd(fj(x), gj(x)) = 1 when β 6= 0.
• gj(x) = hj(x) = 0 when β = γ = 0.
• gj(x) = 0 and gcd(fj(x), hj(x)) = 1 in Fpm [x] when β =
0 and γ is non-zero.

Moreover, the polynomials f1(x)p
s
+ug1(x)+u2 h1(x), f2(x)p

s

+ug2(x) + u2 h2(x), · · · , fr (x)p
s
+ ugr (x) + u2 hr (x) are

pairwise coprime inR[x].
Proof: Working in a similar manner as in Lemma 3.1 of

Sharma and Sidana [34], the desired result follows. �
From now on, we define kj(x) = fj(x)p

s
+ ugj(x)+ u2hj(x)

for 1 ≤ j ≤ r . Then we have xnp
s
− λ =

r∏
j=1

kj(x). Further-

more, if deg fj(x) = dj, then we observe that deg kj(x) = djps

for each j. By Lemma 7, we see that k1(x), k2(x), · · · , kr (x)
are pairwise coprime in R[x]. This, by Chinese Remainder
Theorem, implies that

Rλ '

r⊕
j=1

Kj,

whereKj = R[x]/
〈
kj(x)

〉
for 1 ≤ j ≤ r . Then we observe the

following:
Proposition 8: (a) Let C be a λ-constacyclic code of

length nps over R, i.e., an ideal of the ring Rλ. Then
C = C1 ⊕ C2 ⊕ · · · ⊕ Cr , where Cj is an ideal of Kj for
1 ≤ j ≤ r .

(b) If Ij is an ideal of Kj for 1 ≤ j ≤ r, then I =
I1 ⊕ I2 ⊕ · · · ⊕ Ir is an ideal of Rλ (i.e., I is a
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λ-constacyclic code of length nps over R). Moreover,
we have |I | = |I1||I2| · · · |Ir |.
Proof: Proof is trivial. �

Next if C is a λ-constacyclic code of length nps over R,
then its dual code C⊥ is a λ−1-constacyclic code of length nps

over R. This implies that C⊥ is an ideal of the ring Rλ−1 =

R[x]/〈xnp
s
−λ−1〉. In order to determine C⊥ more explicitly,

we observe that xnp
s
− λ−1 = −α−1k∗1 (x)k

∗

2 (x) · · · k
∗
r (x).

By applying Chinese Remainder Theorem again, we get

Rλ−1 '

r⊕
j=1

K̂j, where K̂j = R[x]/〈k∗j (x)〉 for 1 ≤ j ≤ r .

Then we have the following:
Proposition 9: Let C be a λ-constacyclic code of length

nps over R, i.e., an ideal of the ring Rλ. If C = C1 ⊕ C2 ⊕
· · · ⊕ Cr with Cj an ideal of Kj for each j, then the dual code
C⊥ of C is given by C⊥ = C⊥1 ⊕ C⊥2 ⊕ · · · ⊕ C⊥r , where
C⊥j = {aj(x) ∈ K̂j : aj(x)c∗j (x) = 0 in K̂j for all cj(x) ∈ Cj}
is the orthogonal complement of Cj for each j. Furthermore,
C⊥j is an ideal of K̂j = R[x]/〈k∗j (x)〉 for each j.

Proof: Its proof is straightforward. �
In view of Propositions 8 and 9, we see that to determine

all λ-constacyclic codes of length nps over R, their sizes
and their dual codes, we need to determine all ideals of the
ringKj, their cardinalities and their orthogonal complements
in K̂j for 1 ≤ j ≤ r . To do so, throughout this paper, let
1 ≤ j ≤ r be a fixed integer. From now on, we shall represent
elements of the rings Kj and K̂j (resp. Fpm [x]/〈fj(x)p

s
〉) by

their representatives in R[x] (resp. Fpm [x]) of degree less
than djps, and we shall perform their addition and multi-
plication modulo kj(x) and k∗j (x) (resp. fj(x)

ps ), respectively.
To determine all ideals of the ringKj, we make the following
observation.
Lemma 10: Let 1 ≤ j ≤ r be fixed. In the ring Kj, the

following hold.

(a) Any non-zero polynomial g(x) ∈ Fpm [x] satisfying
gcd(g(x), fj(x)) = 1 is a unit in Kj. As a consequence,
any non-zero polynomial in Fpm [x] of degree less than
dj is a unit in Kj.

(b)
〈
fj(x)p

s 〉
=


〈u〉 if β 6= 0;〈
u2
〉

if β = 0 and γ 6= 0;
{0} if β = γ = 0.

As a consequence, fj(x) is a nilpotent element of Kj.

The nilpotency index of fj(x) is 3ps when β 6= 0,
the nilpotency index of fj(x) is 2ps when β = 0 and
γ 6= 0, while the nilpotency index of fj(x) is ps when
β = γ = 0.
Proof: Proof is trivial. �

Next for a positive integer k, let Pk (Fpm ) = {g(x) ∈
Fpm [x] : either g(x) = 0 or deg g(x) < k}. Note that
every element a(x) ∈ Kj can be uniquely expressed as
a(x) = a0(x)+ua1(x)+u2 a2(x),where a0(x), a1(x), a2(x) ∈
Pdjps (Fpm ). Further, by repeatedly applying the division
algorithm in Fpm [x], for ` ∈ {0, 1, 2}, we can write

a`(x) =
ps−1∑
i=0

A(a`)i (x)fj(x)i, where A(a`)i (x) ∈ Pdj (Fpm ) for

0 ≤ i ≤ ps − 1. That is, each element a(x) ∈ Kj

can be uniquely expressed as a(x) =
ps−1∑
i=0

A(a0)i (x)fj(x)i +

u
ps−1∑
i=0

A(a1)i (x)fj(x)i + u2
ps−1∑
i=0

A(a2)i (x)fj(x)i, where A
(a`)
i (x) ∈

Pdj (Fpm ) for each i and `. Now to determine cardinalities of
all ideals of Kj, we observe the following:
Lemma 11: Let 1 ≤ j ≤ r be a fixed integer. For an ideal

I of Kj, let us define Tor0(I) = {a0(x) ∈ Fpm [x]/〈fj(x)p
s
〉 :

a0(x) + ua1(x) + u2 a2(x) ∈ I for some a1(x), a2(x) ∈
Fpm [x]/〈fj(x)p

s
〉}, Tor1(I) = {a1(x) ∈ Fpm [x]/〈fj(x)p

s
〉 :

ua1(x)+u2 a2(x) ∈ I for some a2(x) ∈ Fpm [x]/〈fj(x)p
s
〉} and

Tor2(I) = {a2(x) ∈ Fpm [x]/〈fj(x)p
s
〉 : u2 a2(x) ∈ I}. Then

Tor0(I),Tor1(I) and Tor2(I) are ideals of Fpm [x]/〈fj(x)p
s
〉.

Moreover, we have

|I| = |Tor0(I)||Tor1(I)||Tor2(I)|.
Proof: Proof is trivial. �

To determine orthogonal complements of all ideals of Kj,

we need the following lemma.
Lemma 12: Let 1 ≤ j ≤ r be a fixed integer. Let I be an

ideal of the ring Kj with the orthogonal complement as I⊥.
Then the following hold.
(a) I⊥ is an ideal of K̂j.

(b) I⊥ = {a∗(x) ∈ K̂j : a(x) ∈ ann(I)} = ann(I)∗.
(c) If I = 〈f (x), ug(x), u2 h(x)〉, then we have I∗ =
〈f ∗(x), ug∗(x), u2 h∗(x)〉.

(d) For non-zero f (x), g(x) ∈ Kj, let us define
(fg)(x) = f (x)g(x) and (f + g)(x) = f (x) +
g(x). If (fg)(x) 6= 0, then we have f ∗(x)g∗(x) =
xdeg f (x)+deg g(x)−deg (fg)(x)(fg)∗(x). If (f + g)(x) 6= 0,
then we have

(f + g)∗(x) =


f ∗(x)+ xdeg f (x)−deg g(x)g∗(x) if
deg f (x) > deg g(x);
xdeg (f+g)(x)−deg f(x)(f ∗(x)+ g∗(x))
if deg f (x) = deg g(x).

Proof: Its proof is straightforward. �
From the above lemma, we see that to determine I⊥, it is

enough to determine ann(I) for each ideal I of Kj. Further,
to write down all ideals of Kj, we see, by Lemma 11, that
for each ideal I of Kj, Tor0(I), Tor1(I) and Tor2(I) all are
ideals of the ring Fpm [x]/〈fj(x)p

s
〉, which is a finite commu-

tative chain ring with the maximal ideal as 〈fj(x)〉. Next by
Proposition 1, we see that all the ideals of Fpm [x]/〈fj(x)p

s
〉

are given by 〈fj(x)i〉 with 0 ≤ i ≤ ps and that |〈fj(x)i〉| =
pmdj(p

s
−i) for each i. This implies that Tor0(I) = 〈fj(x)a〉,

Tor1(I) = 〈fj(x)b〉 and Tor2(I) = 〈fj(x)c〉 for some integers
a, b, c satisfying 0 ≤ c ≤ b ≤ a ≤ ps.
First of all, we shall consider the case β 6= 0. Here

we see that when α0 = µn for some µ ∈ Fpm , each
λ-constacyclic code of length nps over R can be determined
by using the results derived in Cao [7] and by applying the
ring isomorphism fromR[x]/〈xnp

s
− 1− α−1βu− α−1γ u2〉

ontoR[x]/〈xnp
s
−α−βu−γ u2〉, defined as a(x) 7→ a(µ−1x)

for each a(x) ∈ R[x]/〈xnp
s
− 1 − α−1βu − α−1γ u2〉.
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However, when α0 (and hence α) is not an nth power of an
element in Fpm , the same technique can not be employed to
determine all (α+βu+γ u2)-constacyclic codes of length nps

overR. In fact, the problem of determination of all (α+βu+
γ u2)-constacyclic codes of length nps over R and their dual
codes is not yet completely solved. Propositions 8 and 9 and
the following theorem completely solves this problem when
β is non-zero.
Theorem 13: When β 6= 0, the following hold.

(a) All ideals of the ring Kj are given by
〈
fj(x)`

〉
, where

0 ≤ ` ≤ 3ps. Furthermore, for 0 ≤ ` ≤ 3ps, we have
|
〈
fj(x)`

〉
| = pmdj(3p

s
−`) and ann(

〈
fj(x)`

〉
)=

〈
fj(x)3p

s
−`
〉
.

(b) When kps ≤ ` ≤ (k + 1)ps with k ∈

{0, 1, 2}, the set {uk fj(x)`−kp
s
, ukxfj(x)`−kp

s
, · · · ,

ukxdj((k+1)p
s
−`)−1fj(x)`−kp

s
} ∪{uk+1, uk+1x, · · · ,

uk+1xdj(`−kp
s)−1
} is a minimal generating set of the

ideal
〈
fj(x)`

〉
when viewed as anR-module.

Proof: Proof of part (a) is similar to that of Theorem 3.3
and Corollary 3.5 of Chen et al. [14], while part (b) is an easy
exercise. �
As a consequence of the above theorem, we deduce the

following:
Corollary 14: Let n ≥ 1 be an integer and α0 ∈ Fpm be

such that the binomial xn − α0 is irreducible over Fpm . Let
α = α

ps

0 , and β(6= 0), γ ∈ Fpm . Then there exists an isodual
(α + βu + γ u2)-constacyclic code of length nps over R if
and only if p = 2. Moreover, when p = 2, the ideal 〈(xn −
α0)3·2

s−1
〉 is the only isodual (α + βu + γ u2)-constacyclic

code of length n2s overR.
Proof: On taking fj(x) = xn − α0 in Theorem 13,

we see that all (α + βu + γ u2)-constacyclic codes of length
nps over R are given by

〈
(xn − α0)`

〉
, where 0 ≤ ` ≤ 3ps.

Furthermore, for 0 ≤ ` ≤ 3ps, the code
〈
(xn − α0)`

〉
has

pmn(3p
s
−`) elements and the annihilator of

〈
(xn − α0)`

〉
is

given by
〈
(xn − α0)3p

s
−`
〉
. Next we see that if the code C =〈

(xn − α0)`
〉
is isodual, then we must have |C| = |C⊥|. This

gives pmn(3p
s
−`)
= pmn`. This implies that 3ps = 2`, which

holds if and only if p = 2. So when p is an odd prime, there
does not exist any isodual (α+ βu+ γ u2)-constacyclic code
of length nps overR.When p = 2,we get ` = 3·2s−1.On the
other hand, when p = 2, we observe that 〈(xn − α0)3·2

s−1
〉 is

an isodual (α + βu + γ u2)-constacyclic code of length n2s

over R, which completes the proof. �
Remark 15: By Theorem 3.75 of [26], we see that the

binomial xn − α0 is irreducible over Fpm if and only if the
following two conditions are satisfied: (i) each prime divisor
of n divides the multiplicative order e of α0, but not (pm−1)/e
and (ii) pm ≡ 1 (mod 4) if n ≡ 0 (mod 4).
In the following theorem, we consider the case β = γ = 0,

and we determine all non-trivial ideals of the ring Kj, their
cardinalities, their annihilators and their minimal generating
sets.
Theorem 16: Let β = γ = 0, and let I be a non-trivial

ideal of the ring Kj with Tor0(I) = 〈fj(x)a〉, Tor1(I) =
〈fj(x)b〉 and Tor2(I) = 〈fj(x)c〉 for some integers a, b, c

satisfying 0 ≤ c ≤ b ≤ a ≤ ps. Suppose that
Bi(x),Ck (x),Q`(x),We(x) run over Pdj (Fpm ) for each rele-
vant i, k, ` and e. Then the following hold.
• Type I: When a = b = ps, we have

I = 〈u2 fj(x)c〉,

where c < ps. Moreover, we have

|I| = pmdj(p
s
−c), ann(I) = 〈fj(x)p

s
−c, u〉,

and the set

{u2 fj(x)c, u2 xfj(x)c, · · · , u2 xdjp
s
−djc−1fj(x)c}

is a minimal generating set of the ideal I when viewed
as anR-module.

• Type II: When a = ps and b < ps, we have

I = 〈ufj(x)b + u2fj(x)tG(x), u2 fj(x)c〉,

wheremax{0, c+ b− ps} ≤ t < c if G(x) 6= 0 and G(x)

is either 0 or a unit in Kj of the form
c−t−1∑
i=0

Bi(x)fj(x)i.

Moreover, we have

|I| = pmdj(2p
s
−b−c), ann(I) = 〈fj(x)p

s
−c

− ufj(x)p
s
−c+t−bG(x), ufj(x)p

s
−b, u2〉

and the set

{ufj(x)b + u2fj(x)tG(x), x(ufj(x)b + u2fj(x)tG(x)),

· · · , xdjp
s
−djb−1(ufj(x)b + u2fj(x)tG(x))}

∪ {u2 fj(x)c, u2 xfj(x)c, · · · , u2 xdjb−djc−1fj(x)c}

is a minimal generating set of the ideal I when viewed
as anR-module.

• Type III: When a < ps, we have

I = 〈fj(x)a + ufj(x)t1D1(x)+ u2 fj(x)t2D2(x),

ufj(x)b + u2 fj(x)θV (x), u2 fj(x)c〉,

where max{0, a + b − ps} ≤ t1 < b if D1(x) 6= 0,
0 ≤ t2 < c if D2(x) 6= 0, max{0, b + c − ps} ≤ θ < c
if V (x) 6= 0, D1(x) is either 0 or a unit in Kj of the form
b−t1−1∑
k=0

Ck (x)fj(x)k ,D2(x) is either 0 or a unit inKj of the

form
c−t2−1∑̀
=0

Q`(x)fj(x)` and V (x) is either 0 or a unit in

Kj of the form
c−θ−1∑
i=0

Wi(x)fj(x)i. Furthermore, we have

u2
(
fj(x)p

s
−a+t1−b+θV (x)D1(x)

− fj(x)p
s
−a+t2D2(x)

)
∈ 〈u2fj(x)c〉,

i.e., there exists A(x) ∈ Fpm [x]/〈fj(x)p
s
〉 such that

u2
(
fj(x)p

s
−a+t1−b+θV (x)D1(x)

− fj(x)p
s
−a+t2D2(x)

)
= u2fj(x)cA(x).
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Moreover, we have

|I| = pmdj(3p
s
−a−b−c),

the annihilator of I is given by

ann(I) = 〈fj(x)p
s
−c
− ufj(x)p

s
−c+θ−bV (x)

+u2 A(x), ufj(x)p
s
−b
−u2 fj(x)p

s
−a+t1−bD1(x),

u2 fj(x)p
s
−a
〉,

and the set

{F1(x), xF1(x), · · · , xdjp
s
−dja−1F1(x)} ∪ {F2(x),

xF2(x), · · · , xdja−djb−1F2(x)} ∪ {u2 fj(x)c,

u2 xfj(x)c, · · · , u2 xdjb−djc−1fj(x)c}

is a minimal generating set of the ideal I when viewed
as anR-module, where F1(x) = fj(x)a+ufj(x)t1D1(x)+
u2 fj(x)t2D2(x) and F2(x) = ufj(x)b + u2 fj(x)θV (x).
Proof: As I is a non-trivial ideal of Kj, we note that

neither a = 0 nor a = b = c = ps hold. Further,
by Lemma 11, we have |I| = pmdj(3p

s
−a−b−c). Now to write

down all such non-trivial ideals of Kj and to determine their
annihilators, we shall distinguish the following three cases:
(i) a = b = ps, (ii) a = ps and b < ps, and (iii) a < ps.
(i) When a = b = ps, we have I ⊆ 〈u2〉. In this

case, we have 0 ≤ c < ps. Here we observe that
I = 〈u2 fj(x)c〉. Now to find ann(I), we consider
the ideal B1 = 〈fj(x)p

s
−c, u, u2〉, and we see that

B1 ⊆ ann(I) and that |B1| = pmdj(2p
s
+c). As

pmdj(p
s
−c)
= |I| =

|Kj|

|ann(I)|

≤
p3mdjp

s

|B1|
= pmdj(p

s
−c),

we get ann(I) = B1 = 〈fj(x)p
s
−c, u, u2〉.

(ii) When a = ps and b < ps, we have I ⊆ 〈u〉 and
I 6⊆ 〈u2〉. Here we observe that

I = 〈ufj(x)b + u2r(x), u2fj(x)c〉

for some r(x) ∈ Kj. Let us write u2 r(x) =

u2
ps−1∑
i=0

Gi(x)fj(x)i, where Gi(x) ∈ Pdj (Fpm ) for 0 ≤

i ≤ ps − 1. Note that for all i ≥ c, we have
u2 fj(x)i = u2fj(x)cfj(x)i−c ∈ I, which implies that

I =< ufj(x)b + u2
c−1∑
i=0

Gi(x)fj(x)i, u2fj(x)c > .

If u2
c−1∑
i=0

Gi(x)fj(x)i 6= 0 in Kj, then choose the

smallest integer t (0 ≤ t < c) satisfying Gt (x) 6= 0,

which gives u2
c−1∑
i=0

Gi(x)fj(x)i = u2fj(x)tG(x),

where G(x) =
c−1∑
i=t

Gi(x)fj(x)i−t is a unit in Kj.

On the other hand, when u2
c−1∑
i=0

Gi(x)fj(x)i = 0

in Kj, let us choose G(x) = 0. From this, it follows
that

I = 〈ufj(x)b + u2fj(x)tG(x), u2fj(x)c〉,

where G(x) is either 0 or a unit in Kj of the form
c−t−1∑
i=0

ai(x)fj(x)i with ai(x) ∈ Pdj (Fpm ) for 0 ≤ i ≤

c− t − 1.
Further, as fj(x)p

s
−b
{ufj(x)b + u2fj(x)tG(x)} =

u2 fj(x)p
s
−b+tG(x) ∈ I, we must have ps − b +

t ≥ c when G(x) 6= 0. Moreover, let B2 =

〈fj(x)p
s
−c
−ufj(x)p

s
−c+t−bG(x), ufj(x)p

s
−b, u2〉.We

observe that B2 ⊆ ann(I) and |B2| ≥ pmdj(p
s
+b+c).

Since

pmdj(2p
s
−b−c)

= |I| =
|Kj|

|ann(I)|

≤
p3mdjp

s

|B2|
≤ pmdj(2p

s
−b−c),

we obtain |ann(I)| = |B2| = pmdj(p
s
+b+c). This

implies that

ann(I) = B2 = 〈fj(x)p
s
−c
− ufj(x)p

s
−c+t−bG(x),

ufj(x)p
s
−b, u2〉.

(iii) When a < ps,we have I 6⊆ 〈u〉. In this case, we see
that a > 0. Here we observe that

I = 〈fj(x)a + ur1(x)+ u2r2(x), ufj(x)b

+ u2 q(x), u2fj(x)c〉

for some r1(x), r2(x), q(x) ∈ Kj. Further, working
as in the previous case, one can show that

I = 〈fj(x)a + ufj(x)t1D1(x)+ u2fj(x)t2D2(x),

ufj(x)b + u2 fj(x)θV (x), u2fj(x)c〉,

where D1(x) is either 0 or a unit in Kj of the form
b−1∑
`=t1

A`(x)fj(x)`−t1 , D2(x) is either 0 or a unit in Kj

of the form
c−1∑
k=t2

Bk (x)fj(x)k−t2 and V (x) is either

0 or a unit in Kj of the form
c−1∑
i=θ

Wi(x)fj(x)i−θ with

A`(x),Bk (x),Wi(x) ∈ Kj for each `, k and i.
In order to determine ann(I), we first observe
that ufj(x)p

s
−a+t1D1(x)+ u2fj(x)p

s
−a+t2D2(x) ∈ I,

which implies that ps−a+ t1 ≥ bwhenD1(x) 6= 0.
Next we see that fj(x)p

s
−b
{ufj(x)b+u2fj(x)θV (x)} ∈

I, which gives ps − b + θ ≥ c when V (x) 6= 0.
Moreover, as ufj(x)a + u2fj(x)t1D1(x) ∈ Iand
fj(x)a−b{ufj(x)b + u2fj(x)θV (x)} ∈ I, we note
that u2{fj(x)t1D1(x) − fj(x)a−b+θV (x)} ∈ I, which
implies that

u2{fj(x)t1D1(x)− fj(x)a−b+θV (x)} ∈ 〈u2 fj(x)c〉.
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From this, we obtain u2 fj(x)p
s
−c
{fj(x)t1D1(x) −

fj(x)a−b+θV (x)} = 0. Further, we see that

ufj(x)p
s
−a+t1D1(x)+ u2fj(x)p

s
−a+t2D2(x) ∈ I

can be rewritten as

fj(x)p
s
−a+t1−bD1(x){ufj(x)b + u2fj(x)θV (x)}

− u2fj(x)p
s
−a+t1−b+θD1(x)V (x)

+ u2fj(x)p
s
−a+t2D2(x),

which implies that

u2{fj(x)p
s
−a+t1−b+θD1(x)V (x)

− fj(x)p
s
−a+t2D2(x)} ∈ I.

This further implies that

u2{fj(x)p
s
−a+t1−b+θD1(x)V (x)

− fj(x)p
s
−a+t2D2(x)} ∈ 〈u2fj(x)c〉.

Let us write u2{fj(x)p
s
−a+t1−b+θD1(x)V (x) −

fj(x)p
s
−a+t2D2(x)} = u2fj(x)cA(x), where A(x) ∈

Fpm [x]/〈fj(x)p
s
〉.

Next consider the ideal

B3 = 〈fj(x)p
s
−c
− ufj(x)p

s
−c+θ−bV (x)

+ u2 A(x), ufj(x)p
s
−b
−u2 fj(x)p

s
−a+t1−bD1(x),

u2 fj(x)p
s
−a
〉.

Here we note that |B3| ≥ pmdj(a+b+c) and B3 ⊆

ann(I). Further, as

pmdj(3p
s
−a−b−c)

= |I| =
|Kj|

|ann(I)|

≤
p3mdjp

s

|B3|
≤ pmdj(3p

s
−a−b−c),

we get |ann(I)| = |B3| = pmdj(a+b+c) and
ann(I) = B3.

The determination of minimal generating sets of non-trivial
ideals of Kj is a straightforward exercise. �

In the following corollary, we obtain some isodual
α-constacyclic codes of length nps overRwhen the binomial
xn − α0 is irreducible over Fpm .
Corollary 17: Let n ≥ 1 be an integer and α0 ∈ Fpm \ {0}

be such that the binomial xn−α0 is irreducible over Fpm . Let
α = α

ps

0 . Following the same notations as in Theorem 16,
we have the following:
(a) There does not exist any isodual α-constacyclic code of

Type I overR.
(b) There exists an isodual α-constacyclic code of Type II

over R if and only if p = 2. In fact, when p = 2,
the code 〈u(xn − α0)2

s−1
, u2〉 is the only isodual

α-constacyclic code of Type II overR.
(c) There exists an isodual α-constacyclic code of Type III

over R if and only if p = 2. Moreover, when p = 2,
the codes C = 〈(xn − α0)a + u2(xn − α0)t2D2(x),

u(xn − α0)2
s−1
, u2(xn − α0)2

s
−a
〉, 2s−1 ≤ a < 2s, are

isodual α-constacyclic codes of Type III overR.
Proof: Let C be an α-constacyclic code of length nps

over R. For the code C to be isodual, we must have |C| =
|C⊥| = |ann(C)|.
(a) Let C be of Type I, i.e., C = 〈u2(xn − α0)c〉 for some

integer c satisfying 0 ≤ c < ps.By Theorem 16, we see
that |C| = pmn(p

s
−c) and |ann(C)| = pmn(2p

s
+c). Now if

the code C is isodual, thenwemust have |C| = |ann(C)|.
This implies that ps+2c = 0,which is a contradiction.
Hence there does not exist any isodual α-constacyclic
code of Type I over R.

(b) Suppose that the code C is of Type II, i.e., C = 〈u(xn−
α0)b + u2(xn − α0)tG(x), u2(xn − α0)c〉, where 0 ≤
c ≤ b < ps and 0 ≤ t < c if G(x) 6= 0. By Theo-
rem 16, we have |C| = pmn(2p

s
−b−c), ann(C) = 〈(xn −

α0)p
s
−c
−u(xn−α0)p

s
−c+t−bG(x), u(xn−α0)p

s
−b, u2〉

and |ann(C)| = pmn(p
s
+b+c). Now if the code C is

isodual, then we must have |C| = |ann(C)|, which
gives p = 2 and c = 2s−1 − b. Further, if the code
C is R-linearly equivalent to ann(C), then Tor0(C) =
{0} must be F2m -linearly equivalent to Tor0(ann(C)) =
〈(xn − α0)2

s
−c
〉, which implies that c = 0. This gives

b = 2s−1 − c = 2s−1.
On the other hand, when p = 2, c = 0 and b = 2s−1,
by Theorem 16 again, we see that C = ann(C) holds,
which implies that the codes C(⊆ Rα) and C⊥(⊆ R̂α)
areR-linearly equivalent.

(c) Suppose that the code C is of Type III, i.e., C = 〈(xn −
α0)a+u(xn−α0)t1D1(x)+u2(xn−α0)t2D2(x), u(xn−
α0)b+u2(xn−α0)θV (x), u2(xn−α0)c〉,where 0 ≤ c ≤
b ≤ a < ps, 0 ≤ t1 < b if D1(x) 6= 0, 0 ≤ t2 < c if
D2(x) 6= 0 and 0 ≤ θ < c if V (x) 6= 0.
Here by Theorem 16, we have |C| = pmn(3p

s
−a−b−c)

and |ann(C)| = pmn(a+b+c). From this, we see that if the
code C is isodual, then wemust have 3ps = 2(a+b+c),
which implies that p = 2.
On the other hand, when p = 2, we see, by The-
orem 16 again, that for 2s−1 ≤ a < 2s, the code
C = 〈(xn − α0)a + u2(xn − α0)t2D2(x), u(xn −
α0)2

s−1
, u2(xn − α0)2

s
−a
〉 satisfies C = ann(C), from

which part (c) follows.
�

In the following theorem, we consider the case β = 0
and γ 6= 0, and we determine all non-trivial ideals of the
ringKj, their orthogonal complements, their cardinalities and
their minimal generating sets.
Theorem 18: Let β = 0 and γ be a non-zero element

of Fpm . Let I be a non-trivial ideal of the ring Kj with
Tor0(I) = 〈fj(x)a〉, Tor1(I) = 〈fj(x)b〉 and Tor2(I) = 〈fj(x)c〉
for some integers a, b, c satisfying 0 ≤ c ≤ b ≤ a ≤ ps.
Suppose that Bi(x),Ck (x),Q`(x),We(x) run over Pdj (Fpm )
for each relevant i, k, ` and e. Then the following hold.
• Type I: When a = b = ps, we have

I = 〈u2 fj(x)c〉,
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where 0 ≤ c < ps. Furthermore, we have

|I| = pmdj(p
s
−c), ann(I) = 〈fj(x)p

s
−c, u〉

and the set{
u2 fj(x)c, u2 xfj(x)c, · · · , u2 xdjp

s
−djc−1fj(x)c

}
is a minimal generating set of the ideal I when viewed
as anR-module.

• Type II: When a = ps and b < ps, we have

I = 〈ufj(x)b + u2fj(x)tG(x), u2 fj(x)c〉,

wheremax{0, c+ b− ps} ≤ t < c if G(x) 6= 0 and G(x)

is either 0 or a unit in Kj of the form
c−t−1∑
i=0

Bi(x)fj(x)i.

Furthermore, we have

|I| = pmdj(2p
s
−b−c), ann(I) = 〈fj(x)p

s
−c

− ufj(x)p
s
−c+t−bG(x), ufj(x)p

s
−b, u2〉.

and the set

{ufj(x)b + u2fj(x)tG(x), x(ufj(x)b + u2fj(x)tG(x)),

· · · , xdjp
s
−djb−1(ufj(x)b + u2fj(x)tG(x))}

∪ {u2 fj(x)c, u2 xfj(x)c, · · · , u2 xdjb−djc−1fj(x)c}

is a minimal generating set of the ideal I when viewed
as anR-module.

• Type III: When a < ps, we have I = 〈fj(x)a+
ufj(x)t1D1(x) +u2 fj(x)t2D2(x), ufj(x)b + u2 fj(x)θV (x),
u2 fj(x)c〉, wheremax{0, a+b−ps} ≤ t1 < b if D1(x) 6=
0, 0 ≤ t2 < c if D2(x) 6= 0,max{0, b+ c− ps} ≤ θ < c
if V (x) 6= 0, D1(x) is either 0 or a unit in Kj of the form
b−t1−1∑
k=0

Ck (x)fj(x)k ,D2(x) is either 0 or a unit inKj of the

form
c−t2−1∑̀
=0

Q`(x)fj(x)` and V (x) is either 0 or a unit in

Kj of the form
c−θ−1∑
i=0

Wi(x)fj(x)i. Furthermore, we have

u2
(
hj(x)+ fj(x)p

s
−a+t1−b+θV (x)D1(x)

− fj(x)p
s
−a+t2D2(x)

)
∈ 〈u2fj(x)c〉,

i.e., there exists B(x) ∈ Fpm [x]/〈fj(x)p
s
〉 such that

u2
(
hj(x) + fj(x)p

s
−a+t1−b+θV (x)D1(x) − fj(x)p

s
−a+t2

D2(x)
)
= u2fj(x)cB(x). Moreover, we have

|I| = pmdj(3p
s
−a−b−c),

the annihilator of I is given by

ann(I) = 〈fj(x)p
s
−c
− ufj(x)p

s
−c+θ−bV (x)

+u2 B(x), ufj(x)p
s
−b
−u2 fj(x)p

s
−a+t1−bD1(x),

u2 fj(x)p
s
−a
〉

and the set

{F1(x), xF2(x), · · · , xdjp
s
−dja−1F1(x)} ∪ {F2(x),

xF2(x), · · · , xdja−djb−1F2(x)} ∪ {u2 fj(x)c,

u2 xfj(x)c, · · · , u2 xdjb−djc−1fj(x)c}

is a minimal generating set of the ideal I when viewed
as anR-module, where F1(x) = fj(x)a+ufj(x)t1D1(x)+
u2 fj(x)t2D2(x) and F2(x) = ufj(x)b + u2 fj(x)θV (x).
Proof: Working as in Theorem 16 and by applying

Lemmas 10(c) and 11, the desired result follows. �
In the following corollary, we list some isodual (α+ γ u2)-

constacyclic codes of length nps overR when γ 6= 0 and the
binomial xn − α0 is irreducible over Fpm .
Corollary 19: Let n ≥ 1 be an integer and α0 ∈ Fpm \ {0}

be such that the binomial xn − α0 is irreducible over Fpm .
Let α = αp

s

0 ∈ Fpm , and let γ be a non-zero element of Fpm .
Following the same notations as in Theorem 18, we have the
following:

(a) There does not exist any isodual (α+γ u2)-constacyclic
code of Type I overR.

(b) There exists an isodual (α+ γ u2)-constacyclic code of
Type II overR if and only if p = 2. Furthermore, when
p = 2, the code 〈u(xn−α0)2

s−1
, u2〉 is the only isodual

(α + γ u2)-constacyclic code of Type II overR.
(c) There exists an isodual (α + γ u2)-constacyclic code

of Type III over R if and only if p = 2. Further-
more, when p = 2, the codes C = 〈(xn − α0)a +
u(xn − α0)a−2

s−1
γ 2m−1

+ u2(xn − α0)t2D2(x), u(xn −
α0)2

s−1
+ u2γ 2m−1 , u2(xn − α0)2

s
−a
〉, 2s−1 ≤ a < 2s,

are isodual (α + γ u2)-constacyclic codes of Type III
overR.
Proof: Working in a similar manner as in Corollary 17

and by applying Theorem 18, the desired result follows. �

IV. RANKS, HAMMING DISTANCES, RT DISTANCES AND
RT WEIGHT DISTRIBUTIONS
Let α, β, γ ∈ Fpm be such that α is non-zero. By Lemma 3(b),
we see that there exists α0 ∈ Fpm such that α = α

ps

0 .Through-
out this section, we assume that n ≥ 1 is an integer and
α0 ∈ Fpm \ {0} is such that the binomial xn−α0 is irreducible
over Fpm . In this section, we shall determine ranks, Hamming
distances, RT distances and RT weight distributions of all
(α + βu + γ u2)-constacyclic codes of length nps over R.
We shall also list all MDS (α+βu+γ u2)-constacyclic codes
of length nps over R with respect to the Hamming and RT
metrics.

In the following theorem, ranks of all non-zero (α +
βu + γ u2)-constacyclic codes of length nps over R are
determined.
Theorem 20: The following hold.

(a) Let β ∈ Fpm \ {0}, and let C = 〈(xn − α0)ν〉 be an
(α + βu + γ u2)-constacyclic code of length nps over
R, where 0 ≤ ν ≤ 3ps− 1. Then the rank of C is given
by

rank(C) =
{
nps if 0 ≤ ν ≤ 2ps − 1;
n(3ps − ν) if 2ps ≤ ν ≤ 3ps − 1.
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(b) Let C be an (α + γ u2)-constacyclic code of length nps
over R with Tor2(C) = 〈(xn − α0)c〉 , where 0 ≤ c ≤
ps − 1. Then we have rank(C) = nps − nc.
Proof: It follows immediately from Theorems 13(b),

16 and 18. �
In the following theorem, Hamming distances of all

non-zero (α + βu + γ u2)-constacyclic codes of length nps

over R are determined when β is non-zero.
Theorem 21: Let β ∈ Fpm \ {0}, and let C = 〈(xn − α0)ν〉

be an (α+βu+γ u2)-constacyclic code of length nps overR,
where 0 ≤ ν ≤ 3ps − 1. Then with respect to the Hamming
metric, the following hold.

(a) When 0 ≤ ν ≤ 2ps, the code C is an [nps, nps, 1]-code
overR.

(b) When 2ps + 1 ≤ ν ≤ 3ps − 1, the code C is an
[nps, n(3ps − ν), dH (C)]-code overR, where

dH (C) =



`+ 2 if 2ps + `ps−1 + 1 ≤ ν ≤ 2ps

+ (`+ 1)ps−1 with 0 ≤ ` ≤ p− 2;
(i+ 1)pk if 3ps − ps−k + (i− 1)ps−k−1

+ 1 ≤ ν ≤ 3ps − ps−k + ips−k−1 with
1 ≤ i ≤ p− 1 and 1 ≤ k ≤ s− 1.

Proof: The Hamming distance of the code C can be
determined by applying Theorems 4 and 6, while Theo-
rem 20(a) gives the rank of the code C. �
In the following theorem, we show that there does not exist

any non-trivial MDS (α + βu + γ u2)-constacyclic code of
length nps over R when β 6= 0.
Theorem 22: Let β ∈ Fpm \ {0}. With respect to the Ham-

mingmetric, the code C = 〈1〉 is the onlyMDS (α+βu+γ u2)-
constacyclic code of length nps overR.

Proof: Let C be a non-zero (α+βu+γ u2)-constacyclic
code of length nps overR. Then by Theorem 13, we see that
C = 〈(xn − α0)ν〉, where 0 ≤ ν ≤ 3ps − 1. By Theorem 13
again, we see that |C| = pmn(3p

s
−ν).

Now by (1), the code C is MDS if and only if pmn(3p
s
−ν)
=

|C| = p3m(np
s
−dH (C)+1), which holds if and only if

nν = 3{dH (C)− 1}. (2)

When 0 ≤ ν ≤ 2ps, we see, by Theorem 21, that dH (C) = 1.
This, by (2), implies that the code C is MDS if and only if
ν = 0.

Next let 2ps + 1 ≤ ν ≤ 3ps − 1. Here working as in
Theorem 21, we see that dH (C) is equal to the Hamming
distance of the α-constacyclic code D = 〈(xn − α0)ν−2p

s
〉

of length nps over Fpm . By Proposition 1, we see that |D| =
pmn(p

s
−ν+2ps). By (1), we have |D| ≤ pm(np

s
−dH (D)+1). This

implies that nν− 2nps ≥ dH (D)− 1 = dH (C)− 1. From this
and using the fact that nps ≥ dH (C) > dH (C) − 1, we get
nν > 3{dH (C) − 1}. This, by (2), implies that the code C is
not MDS when 2ps + 1 ≤ ν ≤ 3ps − 1.

This shows that C = 〈1〉 is the only MDS (α+ βu+ γ u2)-
constacyclic code of length nps over R with respect to the
Hamming metric. �

In the following theorem, we determine RT distances of all
non-zero (α + βu + γ u2)-constacyclic codes of length nps

over R when β is non-zero.
Theorem 23: Let β ∈ Fpm \ {0}, and let C = 〈(xn − α0)ν〉

be an (α+βu+γ u2)-constacyclic code of length nps overR,
where 0 ≤ ν ≤ 3ps − 1. With respect to the RT metric,
the following hold.

(a) When 0 ≤ ν ≤ 2ps, the code C is an [nps, nps, 1]-code
overR.

(b) When 2ps + 1 ≤ ν ≤ 3ps − 1, the code C is an
[nps, n(3ps − ν), nν − 2nps + 1]-code overR.
Proof: By Lemma 10(b), we have 〈(xn − α0)p

s
〉 = 〈u〉,

which implies that u2 ∈ 〈(xn − α0)ν〉 for 1 ≤ ν ≤ 2ps. This
implies that dRT (C) = 1 for 1 ≤ ν ≤ 2ps.
Next for 2ps + 1 ≤ ν ≤ 3ps − 1, we note that C = 〈(xn −

α0)ν〉 = 〈u2(xn−α0)ν−2p
s
〉 = {u2(xn−α0)ν−2p

s
f (x) : f (x) ∈

Fpm [x]}. From this, it follows that wRT (Q(x)) ≥ wRT (u2(xn−
α0)ν−2p

s
) = nν−2nps+1 for eachQ(x) ∈ C \{0}.Moreover,

we see that wRT ((xn − α0)ν) = wRT (u2(xn − α0)ν−2p
s
) =

nν − 2nps + 1, which gives dRT (C) = nν − 2nps + 1.
From this and by Theorem 20(a), we get the desired

result. �
In the following theorem, we show that there does not

exist any non-trivial MDS (α + βu + γ u2)-constacyclic
code of length nps over R with respect to the RT metric
when β 6= 0.
Theorem 24: Let β ∈ Fpm \ {0}. Then the code C = 〈1〉 is

the only MDS (α+βu+γ u2)-constacyclic code of length nps

overR with respect to the RT metric.
Proof: Let C be a non-zero (α+βu+γ u2)-constacyclic

code of length nps over R. Then by Theorem 13, we have
C = 〈(xn − α0)ν〉, where 0 ≤ ν ≤ 3ps − 1. By Theorem 13
again, we see that |C| = pmn(3p

s
−ν). Further, the code C is

MDSwith respect to the RTmetric if and only if pmn(3p
s
−ν)
=

|C| = p3m(np
s
−dRT (C)+1), which holds if and only if

nν = 3{dRT (C)− 1}. (3)

Now for 0 ≤ ν ≤ 2ps, by Theorem 23, we see that
dRT (C) = 1. By (3), we note that the code C is MDS if and
only if ν = 0.
On the other hand, when 2ps + 1 ≤ ν ≤ 3ps − 1,

by Theorem 23, we see that dRT (C) = nν − 2nps + 1. One
can easily verify that (3) does not hold in this case. This shows
that the code C is not MDS when 2ps + 1 ≤ ν ≤ 3ps − 1. �
In the following theorem, we determine RT weight distri-

butions of all (α + βu + γ u2)-constacyclic codes of length
nps overR when β is non-zero.
Theorem 25: Let β ∈ Fpm\{0}, and let C = 〈(xn−α0)ν〉 be

an (α + βu + γ u2)-constacyclic code of length nps over R,
where 0 ≤ ν ≤ 3ps. For 0 ≤ ρ ≤ nps, let Aρ denote the
number of codewords in C having the RT weight as ρ.
(a) For ν = 3ps, we have

Aρ =

{
1 if ρ = 0;
0 otherwise.
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(b) For 2ps + 1 ≤ ν ≤ 3ps − 1, we have

Aρ =


1 if ρ = 0;
0 if 1 ≤ ρ ≤ nν − 2nps;
(pm − 1) pm(ρ−nν+2np

s
−1)

if nν − 2nps + 1 ≤ ρ ≤ nps.

(c) For ν = yps with y ∈ {0, 1, 2}, we have

Aρ =

{
1 if ρ = 0;
(pm(3−y) − 1)pm(3−y)(ρ−1) if 1 ≤ ρ ≤ nps.

(d) For (k − 1)ps + 1 ≤ ν ≤ kps − 1 with k ∈ {1, 2}, we
have

Aρ =



1 if ρ = 0;
(pm(3−k) − 1)pm(3−k)(ρ−1)

if 1 ≤ ρ ≤
nν − (k − 1)nps;
pm((k−1)np

s
−nν−4+k)(pm(4−k) − 1)pm(4−k)ρ

if nν − (k − 1)nps + 1 ≤ ρ ≤ nps.
Proof: It is easy to see that A0 = 1. So from now

onwards, throughout the proof, we assume that 1 ≤ ρ ≤ nps.
(a) When ν = 3ps, we have C = {0}. This gives Aρ = 0

for 1 ≤ ρ ≤ nps.
(b) Let 2ps + 1 ≤ ν ≤ 3ps − 1. Here by Theorem 23,

we see that dRT (C) = nν − 2nps + 1, which gives
Aρ = 0 for 1 ≤ ρ ≤ nν − 2nps. Next let nν −
2nps + 1 ≤ ρ ≤ nps. Here by Lemma 10(b), we see
that 〈(xn − α0)p

s
〉 = 〈u〉. This implies that C =

〈u2(xn − α0)ν−2p
s
〉 = {u2(xn − α0)ν−2p

s
F(x) : F(x) ∈

Fpm [x]}. From this, we observe that the RT weight of
the codeword u2(xn − α0)ν−2p

s
F(x) ∈ C is ρ if and

only if deg F(x) = ρ − nν + 2nps − 1. This gives
Aρ = (pm − 1)pm(ρ−nν+2np

s
−1).

(c) Next let ν = yps, where y ∈ {0, 1, 2}. Here by
Lemma 10(b), we see that C = 〈(xn−λ0)yp

s
〉 = 〈uy〉 =

{uyF(x) : F(x) ∈ Pnps (R)}. From this, we see that
Aρ = (pm(3−y) − 1)pm(3−y)(ρ−1) for 1 ≤ ρ ≤ nps.

(d) Next let (k−1)ps+1 ≤ ν ≤ kps−1,where k ∈ {1, 2}.
Here also, by Lemma 10(b), we have 〈(xn − α0)p

s
〉 =

〈u〉, which implies that uk ∈ C and C = 〈uk−1(xn −
α0)ν−(k−1)p

s
〉. Further, we observe that any codeword

Q(x) ∈ C can be uniquely written asQ(x) = uk−1(xn−
α0)ν−(k−1)p

s
FQ(x)+ukHQ(x),whereHQ(x) ∈ Pnps (R)

and FQ(x) ∈ Pknps−nν(Fpm ).
When 1 ≤ ρ ≤ nν − (k − 1)nps, we see that the
RT weight of the codeword Q(x) ∈ C is ρ if and
only if FQ(x) = 0 and deg HQ(x) = ρ − 1. From
this, we obtain Aρ = (pm(3−k) − 1)pm(3−k)(ρ−1) for
1 ≤ ρ ≤ nν.
Next let nν − (k − 1)nps + 1 ≤ ρ ≤ nps. In this
case, we see that the RT weight of the codeword
Q(x) ∈ C is ρ if and only if exactly one of the
following two conditions is satisfied: (i) deg FQ(x) =
ρ − nν + (k − 1)nps − 1 and HQ(x) ∈ Pρ(R), and

(ii) FQ(x) ∈ Pρ−nν+(k−1)nps−1(Fpm ) and deg HQ(x) =
ρ − 1. From this, we obtain

Aρ = (pm − 1)pm(ρ−nν+(k−1)np
s
−1)pm(3−k)ρ

+ pm(ρ−nν+(k−1)np
s
−1)(pm(3−k) − 1)pm(3−k)(ρ−1)

= pm((k−1)np
s
−nν−4+k)(pm(4−k) − 1)pm(4−k)ρ .

This completes the proof of the theorem. �
In the following theorem, Hamming distances of all

non-trivial (α + γ u2)-constacyclic codes of length nps over
R are determined.
Theorem 26: Let C be a non-trivial (α+γ u2)-constacyclic

code of length nps over R with Tor2(C) = 〈(xn − α0)c〉 for
some integer c satisfying 0 ≤ c < ps (as determined in
Theorems 16 and 18). Then with respect to the Hamming
metric, the code C is an [nps, n(ps− c), dH (C)]-code overR,
where

dH (C) =



1 if c = 0;
`+ 2 if `ps−1 + 1 ≤ c ≤ (`+ 1)ps−1

with 0 ≤ ` ≤ p− 2;
(i+ 1)pk if ps − ps−k + (i− 1)ps−k−1 + 1
≤ c ≤ ps − ps−k + ips−k−1 with 1 ≤ i ≤
p− 1 and 1 ≤ k ≤ s− 1.

Proof: By Theorem 20(b), we see that rank(C) =
nps − nc. Further, by applying Theorems 4 and 6, one can
determine the Hamming distance of the code C. �
One can easily observe that the (α+γ u2)-constacyclic code

C = 〈1〉 of length nps over R is MDS with respect to both
Hamming and RT metrics. In the following theorem, we list
all non-trivial MDS (α + γ u2)-constacyclic codes of length
nps overR with respect to the Hamming metric.
Theorem 27: With respect to theHammingmetric, we have

the following:

(a) When γ 6= 0, there exists a non-trivial MDS (α+γ u2)-
constacyclic code of length nps over R if and only if
p = 2 and n = s = 1. Furthermore, when p = 2 and
n = s = 1, all the distinct non-trivial MDS (α + γ u2)-
constacyclic codes of length 2 overR are given by 〈x−
α0 + uγ 2m−1

+ u2D2〉, where D2 ∈ F2m .

(b) When γ = 0, there exists a non-trivial MDS
α-constacyclic code of length nps over R if and only
if n = 1. Furthermore, when n = 1, all the distinct
non-trivial α-constacyclic codes of length ps over R
are given by

〈(x − α0)a + u(x − α0)t1D1(x)+ u2(x − α0)t2D2(x)〉,

where 1 ≤ a ≤ p − 1 if s = 1 while a ∈ {1, ps − 1}
if s ≥ 2, max{0, 2a − ps} ≤ t1 < a if D1(x) 6= 0,
0 ≤ t2 < a if D2(x) 6= 0, D1(x) is either 0 or a unit in

Rα of the form
a−t1−1∑
k=0

Ck (x − α0)k and D2(x) is either

0 or a unit in Rα of the form
a−t2−1∑̀
=0

Q`(x − α0)` with
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Ck ,Q` ∈ Fpm for each relevant k and `, satisfying the
following:

u2(x − α0)p
s
−a+t2D2(x)− u2(x − α0)p

s
−2a+2t1

D1(x)2 ∈ 〈u2(x − α0)a〉.
Proof: Let C be a non-trivial (α+γ u2)-constacyclic code

of length nps over R with Tor2(C) = 〈(xn − α0)c〉, where
0 ≤ c < ps (as determined in Theorems 16 and 18). Here
by Theorem 26, we note that dH (C) = dH (Tor2(C)). By (1),
we have pmn(p

s
−c)
= |Tor2(C)| ≤ pmn(p

s
−dH (Tor2(C))+1). This

gives

nc ≥ dH (Tor2(C))− 1 = dH (C)− 1. (4)

(i) First let C be of Type I. Here by Theorems 16 and 18,
we have C = 〈u2(xn − α0)c〉. By Theorems 16 and 18
again, we see that |C| = pmn(p

s
−c). Now by (1), the

code C is MDS if and only if pmn(p
s
−c)
= |C| =

p3m(np
s
−dH (C)+1), which holds if and only if

2nps + nc = 3{dH (C)− 1}. (5)

By (4) and using the fact that ps > c, we get 2nps +
nc > 3{dH (C)− 1}. This, by (5), implies that the code
C is not MDS in this case.

(ii) Now let C be of Type II. Here by Theorems 16 and 18,
we have C = 〈u(xn−α0)b+u2(xn−α0)tG(x), u2(xn−
α0)c〉,where 0 ≤ c ≤ b < ps,max{0, c+b−ps} ≤ t <
c ifG(x) 6= 0 andG(x) is either 0 or a unit inRα+γ u2 of

the form
c−t−1∑
i=0

Bi(x)(xn−α0)i with Bi(x) ∈ Pn(Fpm ) for

each i. By Theorems 16 and 18 again, we have |C| =
pmn(2p

s
−b−c). Now the code C is MDS if and only if

pmn(2p
s
−b−c)

= |C| = p3m(np
s
−dH (C)+1), which holds if

and only if

nps + nb+ nc = 3{dH (C)− 1}. (6)

Now by (4) and using the fact that ps > b ≥ c, we get
nps+nb+nc > 3{dH (C)−1}. This, by (6), shows that
the code C is not MDS in this case.

(iii) Next let C be of Type III. Here by Theorems 16 and 18,
we have C = 〈(xn−α0)a+u(xn−α0)t1D1(x)+u2(xn−
α0)t2D2(x), u(xn − α0)b + u2(xn − α0)θV (x), u2(xn −
α0)c〉, where a > 0, 0 ≤ c ≤ b ≤ a < ps, max{0, a+
b−ps} ≤ t1 < b ifD1(x) 6= 0, 0 ≤ t2 < c ifD2(x) 6= 0,
max{0, b+c−ps} ≤ θ < c if V (x) 6= 0,D1(x) is either

0 or a unit in Rα+γ u2 of the form
b−t1−1∑
k=0

Ck (x)(xn −

α0)k , D2(x) is either 0 or a unit in Rα+γ u2 of the

form
c−t2−1∑̀
=0

Q`(x)(xn − α0)` and V (x) is either 0 or

a unit in Rα+γ u2 of the form
c−θ−1∑
i=0

Wi(x)(xn − α0)i

with Ck (x),Q`(x),Wi(x) ∈ Pn(Fpm ) for each relevant
k, ` and i. Furthermore, by Theorems 16 and 18 again,

we see that

u2{(xn − α0)p
s
−a+t1−b+θV (x)D1(x)

− (xn − α0)p
s
−a+t2D2(x)− γ } ∈ 〈u2(xn − α0)c〉,

(7)

and that |C| = pmn(3p
s
−a−b−c).Now the code C is MDS

if and only if pmn(3p
s
−a−b−c)

= |C| = p3m(np
s
−dH (C)+1),

which holds if and only if

na+ nb+ nc = 3{dH (C)− 1}. (8)

By (4) and using the fact that a ≥ b ≥ c, we have
na+ nb+ nc ≥ 3{dH (C)− 1} and equality holds if and
only if na = nb = nc = dH (C)−1 = dH (Tor2(C))−1.
Now when a = b = c, we see that u2{(xn −
α0)t1D1(x)− (xn−α0)θV (x)} ∈ 〈u2(xn−α0)a〉, which
implies that t1 = θ and D1(x) = V (x). From this and
using (7), we see that

u2{(xn − α0)p
s
−2a+2t1D1(x)2 − (xn − α0)p

s
−a+t2

D2(x)− γ } ∈ 〈u2(xn − α0)a〉.

This holds if and only if t1 = 0, p = 2, a = 2s−1 and
D1(x) 6= 0 in the case when γ 6= 0.
Further, we see, by (1) and Theorem 4, that the code
〈(xn − α0)a〉, 0 ≤ a < ps, of length nps over Fpm is
MDS with respect to the Hamming metric if and only
if
• 0 ≤ a ≤ p− 1 when n = s = 1;
• a ∈ {0, 1, ps − 1} when n = 1 and s ≥ 2;
• a = 0 when n ≥ 2.

Using this, the desired result follows immediately.
�

In the following theorem, we determine RT distances of
all non-trivial (α + γ u2)-constacyclic codes of length nps

overR.
Theorem 28: Let C be a non-trivial (α+γ u2)-constacyclic

code of length nps over R with Tor2(C) = 〈(xn − α0)c〉 for
some integer c satisfying 0 ≤ c < ps (as determined in
Theorems 16 and 18). Then the code C is an [nps, n(ps −
c), nc+ 1]-code with respect to the RT metric.

Proof: To prove the result, we first observe that

wRT (Q(x)) ≥ wRT (uQ(x)) for each Q(x) ∈ Rα+γ u2 . (9)

(i) When C is of Type I, we have C = 〈u2(xn −
α0)c〉. Here we note that C = 〈u2(xn − α0)c〉 =
{u2(xn − α0)cf (x) : f (x) ∈ Fpm [x]}. Now for each
non-zeroQ(x) ∈ C, by (9), we see thatwRT (Q(x)) ≥
wRT (u2(xn − α0)c) = nc + 1, which implies that
dRT (C) ≥ nc+1. Since u2(xn−α0)c ∈ C,we obtain
dRT (C) = nc+ 1.

(ii) When C is of Type II, we have C = 〈u(xn − α0)b +
u2(xn−α0)tG(x), u2(xn−α0)c〉,where c ≤ b < ps,
max{0, c+ b− ps} ≤ t < c if G(x) 6= 0 and G(x) is
either 0 or a unit in Fpm [x]/〈fj(x)p

s
〉. Here by (9),
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we note that wRT (Q(x)) ≥ wRT (uQ(x)) for each
Q(x) ∈ C \ 〈u2〉, which implies that wRT (Q(x)) ≥
dRT (〈u2(xn − α0)c〉) for each Q(x) ∈ C \ 〈u2〉.
From this, we get dRT (C) ≥ dRT (〈u2(xn − α0)c〉).
Since 〈u2(xn − α0)c〉 ⊆ C, we have dRT (〈u2(xn −
α0)c〉) ≥ dRT (C). This implies that dRT (C) =
dRT (〈u2(xn − α0)c〉). From this and by case (i),
we get dRT (C) = nc+ 1.

(iii) When C is of Type III, we have C = 〈(xn − α0)a +
u(xn − α0)t1D1(x) + u2(xn − α0)t2D2(x), u(xn −
α0)b + u2(xn − α0)θV (x), u2(xn − α0)c〉, where
c ≤ b ≤ a < ps, max{0, a + b − ps} ≤ t1 < b
if D1(x) 6= 0, 0 ≤ t2 < c if D2(x) 6= 0, max{0, b+
c−ps} ≤ θ < c if V (x) 6= 0 andD1(x),D2(x),V (x)
are either 0 or a units in Fpm [x]/〈fj(x)p

s
〉. For

each Q(x) ∈ C \ 〈u〉, by (9), we see that
wRT (Q(x)) ≥ wRT (u2 Q(x)). From this, we get
wRT (Q(x)) ≥ dRT (〈u2(xn − α0)c〉) for each Q(x) ∈
C \〈u〉. Further, for a codewordQ(x) ∈ C \〈u2(xn−
α0)c〉 with Q(x) ∈ 〈u〉, by (9) again, we see that
wRT (Q(x)) ≥ wRT (uQ(x)) ≥ dRT (〈u2(xn − α0)c〉).
This implies that dRT (C) ≥ dRT (〈u2(xn − α0)c〉).
On the other hand, as 〈u2(xn − α0)c〉 ⊆ C, we have
dRT (u2(xn − α0)c〉) ≥ dRT (C), which implies that
dRT (C) = dRT (〈u2(xn − α0)c〉). From this and by
case (i), we get dRT (C) = nc+ 1.

From this and by Theorem 20(b), the desired result follows.�
In the following theorem, we determine all non-trivial

MDS (α+γ u2)-constacyclic codes of length nps overRwith
respect to the RT metric.
Theorem 29: With respect to the RT metric, we have the

following:
(a) When γ 6= 0, there exists a non-trivial MDS (α+γ u2)-

constacyclic code of length nps over R if and only if
p = 2. Furthermore, when p = 2, all the distinct (α +
γ u2)-constacyclic codes of length 2sn overR are given
by
〈(xn − α0)2

s−1
+ uD1(x)+ u2(xn − α0)t2D2(x)〉,

where 0 ≤ t2 < 2s−1 if D2(x) 6= 0, D1(x) is

a unit in Rα+γ u2 of the form
2s−1−1∑
k=0

Bk (x)(xn − α0)k

and D2(x) is either 0 or a unit in Rα+γ u2 of the

form
2s−1−t2−1∑̀
=0

C`(x)(xn − α0)` with Bk (x),C`(x) ∈

Pn(F2m ) for each relevant k and `, satisfying the
following:

u2{γ − D1(x)2} ∈ 〈u2(xn − α0)2
s−1
〉.

(b) When γ = 0, all the distinct non-trivial MDS
α-constacyclic codes of length nps over R are given
by

〈(xn−α0)a+u(xn − α0)t1D1(x)+ u2(xn − α0)t2D2(x)〉,

where 1 ≤ a ≤ ps − 1, max{0, 2a − ps} ≤ t1 < a
if D1(x) 6= 0, 0 ≤ t2 < a if D2(x) 6= 0, D1(x) is

either 0 or a unit in Rα of the form
a−t1−1∑
k=0

Qk (x)(xn −

α0)k and D2(x) is either 0 or a unit in Rα of the form
a−t2−1∑̀
=0

W`(x)(xn − α0)` with Qk (x),W`(x) ∈ Pn(Fpm )

for each relevant k and `, satisfying the following:

u2{(xn − α0)p
s
−a+t2D2(x)− (xn − α0)p

s
−2a+2t1

D1(x)2} ∈ 〈u2(xn − α0)a〉.
Proof: To prove this, let C be a non-trivial (α + γ u2)-

constacyclic code of length nps over R with Tor2(C) =
〈(xn − α0)c〉, where 0 ≤ c < ps (as determined in
Theorems 16 and 18). Then by Theorem 28, we see that
dRT (C) = nc+ 1.
(i) First let C be of Type I. Here by Theorems 16 and 18,

we have C = 〈u2(xn − α0)c〉. By Theorems 16 and 18
again, we see that |C| = pmn(p

s
−c). Now the code C

is MDS with respect to the RT metric if and only if
pmn(p

s
−c)
= |C| = p3m(np

s
−dRT (C)+1), which holds if

and only if

2nps + nc = 3{dRT (C)− 1} = 3nc. (10)

As ps > c, we get 2nps + nc > 3nc. From this and
by (10), we see that the code C is not MDS in this
case.

(ii) Let C be of Type II. Here by Theorems 16 and 18,
we have C = 〈u(xn−α0)b+u2(xn−α0)tG(x), u2(xn−
α0)c〉, where 0 ≤ b < ps, max{0, c+ b− ps} ≤ t < c
if G(x) 6= 0 and G(x) is either 0 or a unit inRα+γ u2 of

the form
c−t−1∑
i=0

Bi(x)(xn − α0)i with Bi(x) ∈ Pn(Fpm )

for each i. By Theorems 16 and 18 again, we have
|C| = pmn(2p

s
−b−c). Now the code C is MDS with

respect to the RT metric if and only if pmn(2p
s
−b−c)

=

|C| = p3m(np
s
−dH (C)+1), which holds if and only

if

nps + nb+ nc = 3{dRT (C)− 1} = 3nc. (11)

Now as ps > b ≥ c, we have nps + nb + nc > 3nc.
From this and by (11), we see that the code C is not
MDS in this case.

(iii) Let C be of Type III. Here by Theorems 16 and 18,
we have C = 〈(xn−α0)a+u(xn−α0)t1D1(x)+u2(xn−
α0)t2D2(x), u(xn − α0)b + u2(xn − α0)θV (x), u2(xn −
α0)c〉, where 0 ≤ b ≤ a < ps, max{0, a + b − ps} ≤
t1 < b if D1(x) 6= 0, 0 ≤ t2 < c if D2(x) 6= 0,
max{0, b+c−ps} ≤ θ < c if V (x) 6= 0,D1(x) is either

0 or a unit in Rα+γ u2 of the form
b−t1−1∑
k=0

Ck (x)(xn −

α0)k , D2(x) is either 0 or a unit in Rα+γ u2 of the

form
c−t2−1∑̀
=0

Q`(x)(xn − α0)` and V (x) is either 0 or

a unit in Rα+γ u2 of the form
c−θ−1∑
i=0

Wi(x)(xn − α0)i

with Ck (x),Q`(x),Wi(x) ∈ Pn(Fpm ) for each relevant
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k, ` and i. By Theorems 16 and 18 again, we see
that

u2{(xn − α0)p
s
−a+t1−b+θV (x)D1(x)

− (xn − α0)p
s
−a+t2D2(x)− γ } ∈ 〈u2(xn − α0)c〉,

(12)

and that |C| = pmn(3p
s
−a−b−c). Now the code C is

MDS with respect to the RT metric if and only if
pmn(3p

s
−a−b−c)

= |C| = p3m(np
s
−dRT (C)+1), which

holds if and only if

na+ nb+ nc = 3{dRT (C)− 1} = 3nc. (13)

Using the fact that a ≥ b ≥ c,we obtain na+nb+nc ≥
3nc, and the equality holds if and only if a = b = c.
Now when a = b = c, we see that u2{(xn−α0)t1D1(x)
−(xn − α0)θV (x)} ∈ 〈 u2(xn − α0)a〉, which implies
that t1 = θ and D1(x) = V (x). From this and using
(12), we get u2{(xn − α0)p

s
−2a+2t1D1(x)2 − (xn −

α0)p
s
−a+t2D2(x) −γ } ∈ 〈u2(xn − α0)a〉. This holds if

and only if t1 = 0, p = 2, a = 2s−1 and D1(x) 6= 0 in
the case when γ 6= 0.
From this, the desired result follows.

�
In the following theorem, we determine RT weight dis-

tributions of all (α + γ u2)-constacyclic codes of length nps

overR.
Theorem 30: Let C be an (α + γ u2)-constacyclic code of

length nps over R with Tor0(C) = 〈(xn − α0)a〉, Tor1(C) =
〈(xn − α0)b〉 and Tor2(C) = 〈(xn − α0)c〉 for some integers
a, b, c satisfying 0 ≤ c ≤ b ≤ a ≤ ps (as determined in
Theorems 16 and 18). For 0 ≤ ρ ≤ nps, let Aρ denote the
number of codewords in C having the RT weight as ρ.
(a) If C = {0}, then we have A0 = 1 and Aρ = 0 for

1 ≤ ρ ≤ nps.
(b) If C = 〈1〉, then we have A0 = 1 and Aρ = (p3m −

1)p3m(ρ−1) for 1 ≤ ρ ≤ nps.
(c) If C = 〈u2(xn − α0)c〉 is of Type I, then we have

Aρ =


1 if ρ = 0;
0 if 1 ≤ ρ ≤ nc;
(pm − 1)pm(ρ−nc−1) if nc+ 1 ≤ ρ ≤ nps.

(d) If C = 〈u(xn− α0)b+ u2(xn− α0)tG(x), u2(xn− α0)c〉
is of Type II, then we have

Aρ =



1 if ρ = 0;
0 if 1 ≤ ρ ≤ nc;
(pm − 1)pm(ρ−nc−1) if nc+ 1 ≤ ρ ≤ nb;
(p2m − 1)
pm(2ρ−nb−nc−2) if nb+ 1 ≤ ρ ≤ nps.

(e) If C = 〈(xn − α0)a + u(xn − α0)t1D1(x) +
u2(xn − α0)t2D2(x), u(xn − α0)b + u2(xn − α0)θV (x),

u2(xn − α0)c〉 is of Type III, then we have

Aρ =



1 if ρ = 0;
0 if 1 ≤ ρ ≤ nc;
(pm − 1)
pm(ρ−nc−1) if nc+ 1 ≤ ρ ≤ nb;
(p2m − 1)
pm(2ρ−nb−nc−2) if nb+ 1 ≤ ρ ≤ na;
(p3m − 1)
pm(3ρ−na−nb−nc−3) if na+ 1 ≤ ρ ≤ nps.

Proof: Proofs of parts (a) and (b) are trivial. To prove
parts (c)-(e), by Theorem 28(c), we see that dRT (C) = nc+1,
which implies thatAρ = 0 for 1 ≤ ρ ≤ nc. So from now on,
we assume that nc+ 1 ≤ ρ ≤ nps.
(c) Let C = 〈u2(xn−α0)c〉.Here we see that C = 〈u2(xn−

α0)c〉 = {u2(xn − α0)cF(x) : F(x) ∈ Fpm [x]}. This
implies that the codeword u2(xn − α0)cF(x) ∈ C has
RT weight ρ if and only if deg F(x) = ρ − nc − 1.
From this, we obtain Aρ = (pm − 1)pm(ρ−nc−1).

(d) Let C = 〈u(xn − α0)b + u2(xn − α0)tG(x), u2(xn −
α0)c〉. Here we observe that each codeword Q(x) ∈ C
can be uniquely expressed as Q(x) = (u(xn − α0)b +
u2(xn − α0)tG(x))AQ(x) + u2(xn − α0)cBQ(x), where
AQ(x),BQ(x) ∈ Fpm [x] satisfy deg AQ(x) ≤ n(ps −
b)− 1 if AQ(x) 6= 0 and deg BQ(x) ≤ n(ps − c)− 1 if
BQ(x) 6= 0. From this, we see that if nc+ 1 ≤ ρ ≤ nb,
then the RT weight of the codeword Q(x) ∈ C is ρ if
and only if AQ(x) = 0 and deg BQ(x) = ρ − nc − 1.
This implies that Aρ = (pm − 1)pm(ρ−nc−1) for nc +
1 ≤ ρ ≤ nb. Further, if nb + 1 ≤ ρ ≤ nps, then
the RT weight of the codeword Q(x) ∈ C is ρ if and
only if one of the following two conditions are satisfied:
(i) deg AQ(x) = ρ − nb − 1 and BQ(x) is either 0 or
deg BQ(x) ≤ ρ − nc − 1 and (ii) AQ(x) is either 0 or
deg AQ(x) ≤
textrho− nb − 2 and deg BQ(x) = ρ − nc − 1. From
this, we getAρ = (p2m−1)pm(2ρ−nb−nc−2) for nb+1 ≤
ρ ≤ nps.

(e) Let C = 〈(xn − α0)a + u(xn − α0)t1D1(x) + u2(xn −
α0)t2D2(x), u(xn − α0)b + u2(xn − α0)θV (x),
u2(xn− α0)c〉. Here we see that each codeword Q(x) ∈
C can be uniquely expressed as Q(x) = ((xn − α0)a +
u(xn − α0)t1D1(x) + u2(xn − α0)t2D2(x))MQ(x) +
(u(xn − α0)b + u2(xn − α0)θV (x))NQ(x) + u2(xn −
α0)cWQ(x), whereMQ(x),NQ(x),WQ(x) ∈ Fpm [x] sat-
isfy degMQ(x) ≤ n(ps − a) − 1 if MQ(x) 6= 0,
deg NQ(x) ≤ n(ps − b) − 1 if NQ(x) 6= 0, and
deg WQ(x) ≤ n(ps − c)− 1 if WQ(x) 6= 0.
If nc + 1 ≤ ρ ≤ nb, then the codeword Q(x) ∈ C
has RT weight ρ if and only if MQ(x) = NQ(x) = 0
and deg WQ(x) = ρ − nc− 1. This implies that Aρ =

(pm − 1)pm(ρ−nc−1).
Further, if nb + 1 ≤ ρ ≤ na, then the RT weight of
the codeword Q(x) ∈ C is ρ if and only if MQ(x) = 0
and one of the following two conditions are satisfied:
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(i) deg NQ(x) = ρ − nb − 1 and WQ(x) is either 0 or
deg WQ(x) ≤ ρ − 1− nc; and (ii) NQ(x) is either 0 or
deg NQ(x) ≤ ρ−nb−2 and deg WQ(x) = ρ−nc−1.
This implies that Aρ = (p2m − 1)pm(2ρ−nω−nµ−2).
Next let na + 1 ≤ ρ ≤ nps. Here the RT weight
of the codeword Q(x) ∈ C is ρ if and only if
exactly one of the following three conditions is satis-
fied: (i) degMQ(x) = ρ − na − 1, NQ(x) is either 0
or deg NQ(x) ≤ ρ − nb − 1 and WQ(x) is either 0 or
deg WQ(x) ≤ ρ − nc − 1; (ii) MQ(x) is either 0 or
deg MQ(x) ≤ ρ − na − 2, deg NQ(x) = ρ − nb − 1
andWQ(x) is either 0 or deg WQ(x) ≤ ρ − nc− 1; and
(iii) MQ(x) is either 0 or degMQ(x) ≤ ρ − na − 2,
NQ(x) is either 0 or deg NQ(x) ≤ ρ − nb − 2 and
deg WQ(x) = ρ − nc − 1. This implies that Aρ =

(p3m − 1)pm(3ρ−na−nb−nc−3) for na+ 1 ≤ ρ ≤ nps.
This completes the proof of the theorem. �

V. HAMMING DISTANCES OF CONSTACYCLIC CODES OF
LENGTH 2ps OVER R AND DETERMINATION
OF MDS CODES
Throughout this section, let p be an odd prime. Here we
will determine Hamming distances of all constacyclic codes
of length 2ps over R, and we will also identify all MDS
constacyclic codes of length 2ps over R with respect to the
Hamming metric. For this, we recall that λ = α + βu +
γ u2, where α, β, γ are elements of Fpm and α is non-zero.
By Lemma 3(b), we see that there exists α0( 6= 0) ∈ Fpm such
that α = αp

s

0 . Here we have Rλ = R[x]/〈x2p
s
− λ〉.

When α0 ∈ Fpm is not a square in Fpm , the binomial
x2 − α0 is irreducible over Fpm , and one can determine Ham-
ming distances of all (α + βu + γ u2)-constacyclic codes of
length 2ps over R and identify all MDS codes within this
class of codes on taking n = 2 in Theorems 21, 22, 26 and 27.
So from now on, throughout this section, we assume that

α0( 6= 0) ∈ Fpm is a square in Fpm , i.e., there exists ζ ( 6= 0) ∈
Fpm such that α0 = ζ 2. This implies that x2 − α0 = (x +
ζ )(x − ζ ). From this and working as in Section III, we get

Rλ ' K1 ⊕K2,

whereK1 = R[x]/
〈
(x + ζ )p

s
+ ug1(x)+ u2h1(x)

〉
andK2 =

R[x]/
〈
(x − ζ )p

s
+ ug2(x)+ u2h2(x)

〉
, where for j ∈ {1, 2},

the polynomials gj(x), hj(x) ∈ Fpm [x] satisfy gcd(x +
ζ, g1(x)) = gcd(x − ζ, g2(x)) = 1 when β 6= 0, gj(x) =
hj(x) = 0 when β = γ = 0, while gj(x) = 0 and
gcd(x + ζ, h1(x)) = gcd(x − ζ, h2(x)) = 1 when β = 0
and γ 6= 0.
Now let C be an (α + βu + γ u2)-constacyclic code of

length 2ps over R, i.e., an ideal of the ring Rλ. Then by
Proposition 8, we have

C = C1 ⊕ C2, (14)

where Cj is an ideal of Kj for j ∈ {1, 2}. Further,
we note that an element a(x) ∈ Rλ can be written as
a(x) = a0(x) + ua1(x) + u2 a2(x), where a0(x), a1(x),

a2(x) ∈ Fpm [x]/〈(x2 − α0)p
s
〉. Let us define Tor0(C) =

{c0(x) ∈ Fpm [x]/〈(x2−α0)p
s
〉 : c0(x)+uc1(x)+u2 c2(x) ∈ C

for some c1(x), c2(x) ∈ Fpm [x]/〈(x2 − α0)p
s
〉}, Tor1(C) =

{c1(x) ∈ Fpm [x]/〈(x2 − α0)p
s
〉 : uc1(x) + u2 c2(x) ∈

C for some c2(x) ∈ Fpm [x]/〈(x2 − α0)p
s
〉} and Tor2(C) =

{c2(x) ∈ Fpm [x]/〈(x2 − α0)p
s
〉 : u2 c2(x) ∈ C}. Then we

make the following observation.
Proposition 31: Let C = C1 ⊕ C2 be an (α + βu + γ u2)-

constacyclic code of length 2ps over R (i.e., an ideal of the
ring Rλ), where Cj is an ideal of Kj for j ∈ {1, 2}. Then
Tor0(C), Tor1(C) and Tor2(C) are ideals of Fpm [x]/〈(x2 −
α0)p

s
〉. Moreover, we have Tori(C) = Tori(C1)⊕ Tori(C2) for

0 ≤ i ≤ 2, where for i ∈ {0, 1, 2}, Tori(C1) and Tori(C2)
are ideals of Fpm [x]/〈(x + ζ )p

s
〉 and Fpm [x]/〈(x − ζ )p

s
〉,

respectively.
Proof: Proof is trivial. �

Remark 32: Each (α + βu+ γ u2)-constacyclic code C of
length 2ps over R can be expressed as C = C1 ⊕ C2, where
Cj is an ideal of Kj for j ∈ {1, 2}. By Proposition 31, we see
that Tor0(C), Tor1(C) and Tor2(C) are ideals of Fpm [x]/〈(x2−
α0)p

s
〉, and that Tori(C) = Tori(C1) ⊕ Tori(C2) for 0 ≤ i ≤

2, where for i ∈ {0, 1, 2}, Tori(C1) and Tori(C2) are ideals
of Fpm [x]/〈(x + ζ )p

s
〉 and Fpm [x]/〈(x − ζ )p

s
〉, respectively.

Further, as Fpm [x]/〈(x + ζ )p
s
〉 and Fpm [x]/〈(x − ζ )p

s
〉 are

finite commutative chain rings with the respective maximal
ideals as 〈x+ζ 〉 and 〈x−ζ 〉,we have Tor0(C1) = 〈(x+ζ )a1〉,
Tor0(C2) = 〈(x − ζ )a2〉, Tor1(C1) = 〈(x + ζ )b1〉, Tor1(C2) =
〈(x−ζ )b2〉, Tor2(C1) = 〈(x+ζ )c1〉 and Tor2(C2) = 〈(x−ζ )c2〉
for some integers a1, b1, c1, a2, b2, c2 satisfying 0 ≤ c1 ≤
b1 ≤ a1 ≤ ps and 0 ≤ c2 ≤ b2 ≤ a2 ≤ ps. Now by
applying the Chinese Remainder Theorem, we get Tor0(C) =
〈(x + ζ )a1 (x − ζ )a2〉, Tor1(C) = 〈(x + ζ )b1 (x − ζ )b2〉 and
Tor2(C) = 〈(x + ζ )c1 (x − ζ )c2〉.
In the following theorem, Hamming distances of all

non-zero (α + βu + γ u2)-constacyclic codes of length 2ps

overR are determined.
Theorem 33: Let C be a non-zero (α + βu + γ u2)-

constacyclic code of length 2ps over R with Tor2(C) =
〈(x + ζ )c1 (x − ζ )c2〉 for some integers c1, c2 satisfying
0 ≤ c1, c2 ≤ ps.

(a) When c1 ≥ c2, the Hamming distance dH (C) of the
code C is given by

dH (C) =



1 if c1 = c2 = 0;
2 if c2 = 0 and 0 < c1 ≤ ps;
min{(`+ 2)pk , 2(`1 + 2)pk

′

} if
ps−ps−k+`ps−k−1 + 1≤c1 ≤ ps − ps−k

+ (`+ 1)ps−k−1 and ps − ps−k
′

+ `1ps−k
′
−1
+ 1 ≤ c2 ≤ ps − ps−k

′

+ (`1+1)ps−k
′
−1 with 0≤`, `1≤p− 2,

and 0 ≤ k ′ ≤ k ≤ s− 1;
2(`1 + 2)pk

′

if c1 = ps and ps − ps−k
′

+ `1ps−k
′
−1
+ 1 ≤ c2 ≤ ps − ps−k

′

+ (`1 + 1)ps−k
′
−1 with 0 ≤ `1 ≤ p− 2

and 0 ≤ k ′ ≤ s− 1.
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(b) When c2 ≥ c1, the Hamming distance dH (C) of the
code C is given by

dH (C) =



1 if c1 = c2 = 0;
2 if c1 = 0 and 0 < c2 ≤ ps;
min{(`+ 2)pk , 2(`1 + 2)pk

′

} if
ps−ps−k+`ps−k−1 + 1≤c2 ≤ ps − ps−k

+ (`+ 1)ps−k−1 and ps − ps−k
′

+ `1ps−k
′
−1
+ 1 ≤ c1 ≤ ps − ps−k

′

+ (`1+1)ps−k
′
−1 with 0≤`, `1≤p− 2,

and 0 ≤ k ′ ≤ k ≤ s− 1;
2(`1 + 2)pk

′

if c2 = ps and ps − ps−k
′

+ `1ps−k
′
−1
+ 1 ≤ c1 ≤ ps − ps−k

′

+ (`1 + 1)ps−k
′
−1 with 0 ≤ `1 ≤ p− 2

and 0 ≤ k ′ ≤ s− 1.
Proof: It follows immediately by applying Theorems 5

and 6. �
In the following theorem, we derive a necessary and suf-

ficient conditions for an (α + βu + γ u2)-constacyclic code
of length 2ps over R to be an MDS code with respect to the
Hamming metric.
Theorem 34: Let C be an (α+βu+γ u2)-constacyclic code

of length 2ps over R with Tor0(C) = 〈(x + ζ )a1 (x − ζ )a2〉,
Tor1(C) = 〈(x+ ζ )b1 (x− ζ )b2〉 and Tor2(C) = 〈(x+ ζ )c1 (x−
ζ )c2〉 for some integers a1, b1, c1, a2, b2, c2 satisfying 0 ≤
c1 ≤ b1 ≤ a1 ≤ ps and 0 ≤ c2 ≤ b2 ≤ a2 ≤ ps. Then the
code C is an MDS code with respect to the Hamming metric
if and only if a1 = b1 = c1, a2 = b2 = c2 and Tor2(C) is an
MDS α-constacyclic code of length 2ps over Fpm with respect
to the Hamming metric.

Proof: To prove this, we see, by (14), that C = C1⊕ C2,
where Cj is an ideal of Kj for j ∈ {1, 2}. Further, by applying
Proposition 31 and the Chinese Remainder Theorem, we get
Tor0(C1) = 〈(x + ζ )a1〉, Tor0(C2) = 〈(x − ζ )a2〉, Tor1(C1) =
〈(x + ζ )b1〉, Tor1(C2) = 〈(x − ζ )b2〉, Tor2(C1) = 〈(x + ζ )c1〉
and Tor2(C2) = 〈(x − ζ )c2〉.
Now since C = C1 ⊕ C2, by Lemma 11, we have

|C| = |C1||C2| = |Tor0(C1)||Tor1(C1)||Tor2(C1)||Tor0(C2)|
× |Tor1(C2)||Tor2(C2)| = pm(6p

s
−a1−a2−b1−b2−c1−c2)

From this, we observe that the code C is MDS with respect to
the Hamming metric if and only if

pm(6p
s
−a1−a2−b1−b2−c1−c2) = |C| = p3m(2p

s
−dH (C)+1),

which holds if and only if

a1 + a2 + b1 + b2 + c1 + c2 + 3 = 3dH (C).

Next by Theorem 6, we see that the Hamming distance
dH (C) of the code C is equal to the Hamming distance
dH (Tor2(C)) of the α-constacyclic code Tor2(C) = 〈(x +
ζ )c1 (x − ζ )c2〉 of length 2ps over Fpm . Now by the Sin-
gleton bound (1) for Tor2(C), we have pm(2p

s
−c1−c2) ≤

pm(2p
s
−dH (Tor2(C))+1), which implies that c1 + c2 + 1 ≥

dH (Tor2(C)) = dH (C). From this and using the fact that

ps ≥ a1 ≥ b1 ≥ c1 ≥ 0 and ps ≥ a2 ≥ b2 ≥ c2 ≥ 0,
we obtain a1 + a2 + b1 + b2 + c1 + c2 + 3 ≥ 3dH (C), with
the equality holds if and only if a1 = b1 = c1, a2 = b2 = c2
and Tor2(C) is an MDS code of length 2ps over Fpm with
respect to the Hamming metric. This completes the proof of
the theorem. �

In the following theorem, we list all non-trivial MDS (α+
βu + γ u2)-constacyclic codes of length 2ps over R with
respect to the Hamming metric.
Theorem 35: With respect to theHammingmetric, we have

the following:

(a) When either β is non-zero or γ is non-zero, there
does not exist any non-trivial MDS (α + βu + γ u2)-
constacyclic code of length 2ps overR.

(b) When β = γ = 0, all the distinct non-trivial α-
constacyclic codes of length 2ps over R are as listed
below:

• 〈(x+ζ )a1+u(x+ζ )t1D1(x)+u2(x+ζ )t2D2(x)〉⊕C2,
where either a1 = ps − 1 and C2 = {0} or a1 = 1
and C2 = 〈1〉 = K2 with max{0, 2a1 − ps} ≤ t1 <
a1 if D1(x) 6= 0, 0 ≤ t2 < a1 if D2(x) 6= 0,D1(x) is

either 0 or a unit in K1 of the form
a1−t1−1∑
k=0

Ck (x +

ζ )k and D2(x) is either 0 or a unit in K1 of the

form
a1−t2−1∑̀
=0

Q`(x+ζ )` with Ck ,Q` ∈ Fpm for each

relevant k and `, satisfying the following:

u2(x + ζ )p
s
−a1+t2D2(x)− u2(x + ζ )p

s
−2a1+2t1

D1(x)2 ∈ 〈u2(x + ζ )a1〉.

• C1⊕〈(x−ζ )a2+u(x−ζ )k1V1(x)+u2(x−ζ )k2V2(x)〉,
where either a2 = ps − 1 and C1 = {0} or a2 = 1
and C1 = 〈1〉 = K1 withmax{0, 2a2− ps} ≤ k1 <
a2 if V1(x) 6= 0, 0 ≤ k2 < a2 if V2(x) 6= 0, V1(x) is

either 0 or a unit in K2 of the form
a1−t1−1∑
k=0

Ck (x −

ζ )k and V2(x) is either 0 or a unit inK2 of the form
a2−k2−1∑̀
=0

Q`(x − ζ )` with Ck ,Q` ∈ Fpm for each

relevant k and `, satisfying the following:

u2(x − ζ )p
s
−a2+k2V2(x)− u2(x − ζ )p

s
−2a2+2k1

V1(x)2 ∈ 〈u2(x − ζ )a2〉.
Proof: To prove the result, let C be a non-zero (α +

βu + γ u2)-constacyclic code of length 2ps over R with
Tor0(C) = 〈(x+ζ )a1 (x−ζ )a2〉,Tor1(C) = 〈(x+ζ )b1 (x−ζ )b2〉
and Tor2(C) = 〈(x + ζ )c1 (x − ζ )c2〉 for some integers
a1, b1, c1, a2, b2, c2 satisfying 0 ≤ c1 ≤ b1 ≤ a1 ≤ ps and
0 ≤ c2 ≤ b2 ≤ a2 ≤ ps. Then by (14), we have C = C1⊕C2,
where Cj is an ideal of Kj for j ∈ {1, 2}. Further, by applying
Proposition 31 and the Chinese Remainder Theorem, we have
Tor0(C1) = 〈(x + ζ )a1〉, Tor0(C2) = 〈(x − ζ )a2〉, Tor1(C1) =
〈(x + ζ )b1〉, Tor1(C2) = 〈(x − ζ )b2〉, Tor2(C1) = 〈(x + ζ )c1〉
and Tor2(C2) = 〈(x − ζ )c2〉.

VOLUME 8, 2020 101335



T. Sidana, A. Sharma: Repeated-Root Constacyclic Codes Over the Chain Ring Fpm [u]/〈u3
〉

ByTheorem 34, we see that the code C isMDSwith respect
to the Hamming metric if and only if a1 = b1 = c1, a2 =
b2 = c2 and Tor2(C) is anMDS α-constacyclic code of length
2ps over Fpm with respect to the Hamming metric. Now we
shall distinguish the following two cases: (i) β 6= 0 and (ii)
β = 0.
(i) First let β 6= 0. Here by Lemma 10(b), we note that〈

(x + ζ )p
s 〉
= 〈u〉 in K1 and

〈
(x − ζ )p

s 〉
= 〈u〉 in K2.

This implies that when 1 ≤ a1, a2 ≤ ps − 1, we have
u ∈ C1 and u ∈ C2, which implies that b1 = c1 = 0
and b2 = c2 = 0. In view of this and by applying
Theorems 34 and 5, we observe that the code C is MDS
if and only if a1 = b1 = c1 = 0 and a2 = b2 = c2 = 0.
So the code C = 〈1〉 is the only MDS (α + βu+ γ u2)-
constacyclic code of length 2ps over R with respect to
the Hamming metric.

(ii) Next let β = 0. Here we see that (x + ζ )p
s
(2ζ p

s
)−1 −

(x − ζ )p
s
(2ζ p

s
)−1 = 1, which gives

x2p
s
− α − γ u2 =

(
(x + ζ )p

s
+ u2γ (2ζ p

s
)−1
)

×

(
(x − ζ )p

s
− u2γ (2ζ p

s
)−1
)
.

From this, we have g1(x) = g2(x) = 0, h1(x) =
γ (2ζ p

s
)−1 and h2(x) = −γ (2ζ p

s
)−1. Now we proceed

to determine all MDS codes in this case.
To do this, by Theorems 34 and 5, we observe that the
code C is an MDS code if and only if exactly one of the
following conditions is satisfied:
• a1 = b1 = c1 = ps − 1 and a2 = b2 = c2 = ps.
• a1 = b1 = c1 = ps and a2 = b2 = c2 = ps − 1;
• a1 = b1 = c1 = 1 and a2 = b2 = c2 = 0;
• a1 = b1 = c1 = 0 and a2 = b2 = c2 = 1; and
• a1 = b1 = c1 = a2 = b2 = c2 = 0.

Let us first consider the case a1 = b1 = c1 = ps − 1
and a2 = b2 = c2 = ps. In this case, we must have
C2 = {0}. As a1 = b1 = c1, by Theorems 16 and 18,
we observe that the code C1 must be of Type III. So we
have C = 〈(x + ζ )a1 + u(x + ζ )t1D1(x) + u2(x +
ζ )t2D2(x), u(x + ζ )a1 + u2(x + ζ )θV (x), u2(x + ζ )a1〉,
where max{0, 2a1 − ps} ≤ t1 < a1 if D1(x) 6= 0,
0 ≤ t2 < a1 if D2(x) 6= 0, max{0, 2a1 − ps} ≤ θ < a1
if V (x) 6= 0, D1(x) is either 0 or a unit in K1 of

the form
a1−t1−1∑
k=0

Ck (x + ζ )k , D2(x) is either 0 or a

unit in K1 of the form
a1−t2−1∑̀
=0

Q`(x + ζ )` and V (x) is

either 0 or a unit in K1 of the form
a1−θ−1∑
i=0

Wi(x + ζ )i

with Ck ,Q`,Wi ∈ Fpm for each relevant k, ` and i.
Furthermore, by Theorems 16 and 18 again, we see that

u2{γ (2ζ p
s
)−1 + (x + ζ )p

s
−2a1+t1+θV (x)D1(x)

− (x + ζ )p
s
−a1+t2D2(x)} ∈ 〈u2(x + ζ )a1〉. (15)

We also note that u2{(x + ζ )t1D1(x) −(x + ζ )θV (x)}
∈ 〈u2(x + ζ )a1〉, which implies that t1 = θ and

D1(x) = V (x). From this and by (15), we get

u2{γ (2ζ p
s
)−1 + (x + ζ )p

s
−2a+2t1D1(x)2

− (x + ζ )p
s
−a+t2D2(x)} ∈ 〈u2(x + ζ )a1〉.

This holds if and only if t1 = 0, p = 2, a = 2s−1 and
D1(x) 6= 0 in the case when γ 6= 0. Hence we get a
contradiction in this case when γ is non-zero.
Working in a similar manner as above in the remaining
four cases, the desired result follows immediately.

�

VI. CONCLUSION AND FUTURE WORK
Let p be a prime, n, s,m be positive integers with
gcd(n, p) = 1, Fpm be the finite field of order pm, and let
R = Fpm [u]/〈u3〉 be the finite commutative chain ring with
unity. Let α, β, γ ∈ Fpm and α 6= 0. When α is an nth
power of an element in Fpm and β 6= 0, one can determine all
(α + βu + γ u2)-constacyclic codes of length nps over R by
applying the results derived in Cao [7] and by establishing a
ring isomorphism fromR[x]/〈xnp

s
− 1− α−1βu− α−1γ u2〉

onto R[x]/〈xnp
s
− α − βu − γ u2〉. However, when α is not

an nth power of an element in Fpm , algebraic structures of
all (α + βu + γ u2)-constacyclic codes of length nps over
R and their dual codes were not established. In this paper,
we determined all (α+βu+γ u2)-constacyclic codes of length
nps overR and their dual codes. We also listed some isodual
(α + βu + γ u2)-constacyclic codes of length nps over R
when the binomial xn − α0 is irreducible over Fpm . We also
obtained Hamming distances, RT distances and RT weight
distributions of all (α + βu + γ u2)-constacyclic codes of
length nps overR and determined all MDS (α + βu+ γ u2)-
constacyclic codes of length nps over R with respect to the
Hamming and RT metrics when the binomial xn − α0 is
irreducible over Fpm . Besides this, we obtained Hamming
distances of all constacyclic codes of length 2ps over R and
identified all MDS codes within this class of constacyclic
codes with respect to the Hamming metric.

It would be interesting to determine their Hamming dis-
tances, RT distances and RT weight distributions in the case
when n ≥ 3 and the binomial xn − α0 is reducible over Fpm .
Another interesting problem would be to study their duality
properties and to determine their homogeneous distances.
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