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ABSTRACT The vibration signals of rolling bearing are often non-stationary and non-linear, and conse-
quently it is much more difficult to extract the deep characteristics in the time domain. In this paper, a
new fault diagnosis method is proposed to identify the fault types of rolling bearings combined the benefits
of the modified ensemble empirical mode decomposition (MEEMD), quantum particle swarm optimization
(QPSO) and least squares support vector machine (LSSVM) algorithms. In this method, the vibration signals
are decomposed by the MEEMD algorithm to obtain the intrinsic mode function (IMF) components. After
normalizing the energy moment characteristics of each IMF component, the feature vectors can be obtained
and conveniently input into the LSSVM model optimized by the QPSO algorithm to perform training and
identification. It can effectively improve the performance on decomposition and extraction of vibration
signals, and further improve the accuracy of the fault diagnosis. The proposed method is verified by the
results of the experiments. It shows that this technique can extract the characteristics of the vibration signals
effectively and identify them accurately.

INDEX TERMS Rolling bearing, MEEMD, feature extraction, QPSO, LSSVM, intelligent fault diagnosis.

I. INTRODUCTION
Rolling bearings are important parts of rotating machinery
equipment. Monitoring and diagnosing their internal latent
faults timely and correctly are of great significance for ensur-
ing their safe operation [1], [2]. Rolling bearings are often
exposed to harsh environments during long-term operation,
deteriorating bearing with failure conditions can cause abnor-
malities in mechanical equipment, and even terribly serious
injuries or deaths [3]. Therefore, it is very important to iden-
tify the fault state timely, necessarily and accurately.

Rolling bearing fault diagnosis has a long history of
development, and has made great progress. At present, it
has formed a multi branch research structure. Its detection
and diagnosis technologies mainly include vibration diagno-
sis technology, acoustic diagnosis technology, temperature
diagnosis technology, oil film resistance diagnosis technol-
ogy [4]. The vibration diagnosis is one of the most commonly
used techniques. The main objective of these methods is to
extract the essential characteristics from the vibration signals.
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Traditionalmethods of analyzing rolling bearing fault signals,
such as Fourier transform [5], Wigner-Ville [6], and wavelet
transform [7], are inherently flawed in the analysis of non-
linear steady state. Most of these methods cannot accurately
reflect the fault characteristics from the bearing signals [8].
Once Wu and Huang [9] proposed the EMD algorithm which
can adaptively process the time-frequency signals, it has been
widely used in many fields, including the process of vibration
signals [10]. However, the EMD algorithm has some prob-
lems, mainly the modal aliasing phenomenon. In response
to this problem, many scholars have proposed a series of
solutions. Among them, Wu and Huang [11] proposed the
EEMD algorithm by studying the characteristics of white
noise signals. In this method, the signals are firstly subjected
to adding white noise multiple times, and then the EMD algo-
rithm is performed to decompose the preprocessed signals
to obtain the IMF components. However, the treatment of
adding white noise will increase the amount of calculation.
In addition, the unreasonable choice of the amplitude and the
number of iterations of white noise will lead to the appearance
of pseudo components. Yeh et al. [12] proposed a comple-
mentary ensemble empirical mode decomposition (CEEMD)
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algorithm which mainly adds two opposite white noise sig-
nals to the original signal to be analyzed, and performs EMD
decomposition respectively. CEEMD can reduce the recon-
struction error caused by white noise when the decomposi-
tion effect is equivalent to EEMD. However, the amount of
computation is too large, and due to the limitation of the
number of iterations, the decomposed components may not
meet the conditions of IMF. The modified CEEMD algorithm
was put forward by adding a pair of white noise signals to the
original vibration signals, namely MEEMD [13]. The modal
aliasing phenomenon and reconstruction errors are effectively
suppressed. Then, the pseudo components are eliminated by
calculating the permutation entropy. Finally, EMD decom-
position is performed on the obtained residual signals, and
all the components are arranged from high frequency to low
frequency. This method can not only suppress the modal
aliasing phenomenon to a certain extent in the decomposition
process, but also reduces the amount of calculation, which
is a modification on the EEMD algorithm and has huge
advantages [14]. Due to these mentioned above, this paper
adopts the MEEMD algorithm to decompose the vibration
signals to be detected adaptively, and then the energy moment
normalization is performed to obtain the feature vectors that
can reflect the potential characteristics of the signals, which
are used as the input for later fault diagnosis.

In the field of pattern recognition, neural networks, expert
systems, and support vector machines are widely used with
the rapid development of machine learning [15] and deep
learning [16] in recent years. Although the fault diagnosis
methods based on expert systems [17] have achieved a very
good diagnostic performance in theory and applications, the
reasoning process is quite complicated and it is difficult to
meet the needs of practical issues. The fault diagnosis meth-
ods based on neural networks [18], [19] are widely known
for its self-learning and can handle many complex problems,
however its diagnostic capacity is quite limited by the number
of samples. When the sample data is insufficient, the process
of fault diagnosis is a little slow and it’s difficult to converge.
LSSVM, as an improved optimization algorithm of classical
SVM, not only has the same supervised learning ability as
SVM, but also performs fast calculations without specifying
the approximation accuracy [20]. The generalization ability
of LSSVM is closely related to its kernel function parameter
and penalty factor, so choosing the appropriate parameters
is the core to the successful establishment of the LSSVM
model. At present, the selection of parameters is mainly based
on experience and it depends too much on the user’s level,
which greatly limits its application. In recent years, fast cross-
validation, genetic algorithm, neural network, ant colony
algorithm, particle swarm optimization and other improved
algorithms have appeared to optimize the parameters of
support vector machines, but the effect of optimization has
a great relationship with the choice of optimization algo-
rithm. The particle swarm optimization (PSO) algorithm [21]
is an effective cluster intelligent optimization algorithm. It
shows outstanding advantages in solving practical application

problems, however, the particles trajectory is a limited and
gradually shrinking area, it cannot cover the entire feasible
region, and it inevitably has the defect of premature conver-
gence. With the continuous study of it, people have proposed
a modified PSO model from the perspective of quantum
mechanics, namely the QPSO algorithm [22]. It is believed
that the particles have quantum behaviors, which has higher
search efficiency, stronger robustness and shorter calculation
time. For the period of fault diagnosis and classification, the
LSSVM model optimized by the QPSO algorithm is used
to perform the state discrimination from the feature vectors
extracted by the MEEMD algorithm and the energy moment
normalization.

The above comprehensive technique which combines the
MEEMD algorithm and QPSO-PNN model so far have not
been applied in the field of rolling bearing fault diagnosis.
In this paper, the MEEMD algorithm is used to decompose
the vibration signals to a series of IMFs, and the IMF com-
ponents are normalized to obtain the energy moment feature
vectors. Then the QPSO algorithm is introduced to iteratively
optimize the parameters in the LSSVM model. Finally, the
QPSO-LSSVMmodel is performed to train and diagnose the
vibration signals. The technique is validated by the experi-
mental datasets as well.

The main contributions in this paper are summarized as
follows:

1) The MEEMD algorithm is an improved algorithm of
the EEMD and the CEEMD, and it has better com-
pleteness and orthogonality. It can not only decompose
and reconstruct the original signals more accurately,
but also reduce the calculation time and reconstruction
errors compared with the EEMD and CEEMD. By
combining the energy moment normalization, it is very
suitable for extracting and analyzing the useful charac-
teristics of vibration signals, which is more conducive
to later model input and fault discrimination.

2) Due to the iterative optimization by the QPSO algo-
rithm, the search ability and the quality of the can-
didate solutions are greatly improved, which makes
the parameters decision in the LSSVM model more
accurate and the model construction more reasonable.

3) A comprehensive algorithm combining the MEEMD
algorithm and the QPSO-LSSVMmodel is used to dis-
criminate faults, which greatly improves the diagnostic
accuracy and is applied to the classification of fault
signals acquired from the rolling bearings.

II. METHODOLOGY
A. THE PROPOSED METHOD
The proposed fault diagnosis process of rolling bearing based
on MEEMD and QPSO-LSSVM is shown in Fig.1. Firstly,
the original signals are decomposed into a series of IMF com-
ponents from high to low frequency by the MEEMD algo-
rithm, the energy moment feature vectors can be extracted by
integrating the transverse axis of all IMF components. Then

VOLUME 8, 2020 101477



F. Liu et al.: Fault Diagnosis Solution of Rolling Bearing Based on MEEMD and QPSO-LSSVM

FIGURE 1. The overall design of the proposed fault diagnosis process.

the QPSO algorithm is introduced to iteratively optimize the
parameters of the LSSVM model. Finally, train and identify
the fault types using the LSSVM model optimized by the
QPSO algorithm.

B. THE PRINCIPLE OF THE MEEMD ALGORITHM
MEEMD algorithm is a modified algorithm for EEMD and
CEEMD algorithms. EMD algorithm can adaptively decom-
pose complex non-stationary signals. The processed signals
can be decomposed into several intrinsic mode function
(IMF) components which mainly characterize the signals
and a residual component. Each IMF component from high
frequency to low frequency can effectively reflect the charac-
teristics of different frequency bands of the original vibration
signals [23]. In the EMD algorithm, the original vibration
signal x(t) can be decomposed into the following forms:

x(t) =
n∑
i=1

ci(t)+ rn(t) (1)

where {ci(t), i = 1, 2, . . . , n} is the i th IMF component,
n is the total of the IMF components, rn(t) is the residual
component which can reveal the mean trend of the x(t).
Although the EMD algorithm shows a good result when

processing non-stationary signals, however due to the exis-
tence of noise signals and pulse interference in the acquired
signals, the EMD also hasmany disadvantages, such asmodal

aliasing phenomenon. The impact signals are often mixed in
the vibration signals, so modal aliasing phenomenon is more
likely to occur when using the EMD algorithm to process
these signals, which will cause each IMF component to not
truly reflect its own physical meaning and reduce the accu-
racy of the decomposition results. As a modified algorithm,
the MEEMD algorithm [24] can not only effectively suppress
the modal aliasing phenomenon, but also eliminate the effects
of pseudo components and solve the problem of modal split-
ting. It mainly calculates the permutation entropy (PE) of
each IMF component based on the EEMD and CEEMD algo-
rithms, sets a corresponding threshold, removes the IMF com-
ponents larger than the threshold, and then performs EMD
decomposition on the remaining signals, finally arranges all
the IMF components from high frequency to low frequency.
For non-stationary signals, the steps of the MEEMD algo-
rithm are briefly explained as follows:

1) Add the positive and negative paired white noise ni(t)
and −ni(t) to the original signal x(t), that is:{

x+i (t) = x(t)+ aini(t)
x−i (t) = x(t)− aini(t)

(2)

where ai represents the amplitude of the white noise;
ni(t) represents the noise signal, and its amplitude gen-
erally takes 0.1 to 0.2 times the standard deviation of
the original signal; i = 1, 2, 3, · · · , n, n is the loga-
rithm of the white noise, the number of the ensembled
signals is 2n.

2) EMD algorithm is performed on the signals x+i (t) and
x−i (t) in the set, and each signal can be decomposed
into a set of IMF components.x+i (t)

EMD
−−−→ C+ij (t)

x−i (t)
EMD
−−−→ c−ij (t)

(3)

where c+ij (t) and c
−

ij (t) represent the jth IMF component
of the ith signal.

3) The IMF components of each order can be obtained by
means of multi-component ensemble averaging.

cj(t) =
1
2n

n∑
i=1

[
c+ij (t)+ c

−

ij (t)
]

(4)

where cj(t) is the jth IMF component.
4) Check whether the cj(t) is an abnormal signal in turn.

Detect the randomness of the signal by using permuta-
tion entropy. The larger the entropy value, the greater
the randomness of the signal. The signal can be deter-
mined whether it is randomly abnormal by setting the
permutation threshold θ0. Calculate the permutation
entropy of cj(t), and those with values greater than θ0
are considered abnormal signals.

5) The abnormal signals are separated from the original
signal, and then the remaining is decomposed by the
EMD algorithm.

s(t) = x(t)− x ′(t) (5)
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s(t)
EMD
−−−→

m∑
k=1

ck (t)+ r(t) (6)

where x ′(t) indicates the sum of all abnormal signals,
s(t) indicates the remaining signals, and ck (t) indicates
the kth IMF component obtained through the MEEMD
algorithm.

6) The process of the MEEMD algorithm can be
expressed briefly as follows:

x(t)
MEEMD
−−−−−→

m∑
k=1

ck (t)+ r(t) (7)

The above decomposition process shows that the MEEMD
algorithm can avoid unnecessary ensemble averaging in the
EMD and the EEMD algorithms. It canmake the decomposed
IMF components more meaningful. The calculation amount
of CEEMD and the reconstruction errors caused by adding
white noise are reduced which guarantees the completeness
of the decomposition. This method can effectively extract the
characteristics of the vibration signals, which is very bene-
ficial to the fault diagnosis of rolling bearings by intelligent
methods in the later stage.

C. THE EXTRACTION OF FEATURE VECTORS BY ENERGY
MOMENT NORMALIZATION
After the decomposition of vibration signals by the MEEMD
algorithm, a series of IMF components can be obtained.
In order to simplify the calculation, only the first six IMF
components with large correlation coefficient are selected,
which is enough to ensure the accuracy of reconstruction.
These IMF components contain some important information
that reflect the characteristics of the original signals. In order
to mine the deep feature information hidden in each IMF
component, the energy moment normalization [25] is used
to extract valid vectors of the vibration signals. The steps are
as follows:

1) Since the rolling bearing fault signals are discrete, the
energy of each IMF component is calculated according
to the following equation:

Ei =
∫
+∞

−∞

|di(t)|2dt =
n∑
j=1

∣∣Dij∣∣2 (8)

where di(t) is the energy of the ith IMF component, Dij
is the amplitude of the ith IMF at its jth discrete point,
the number of the discrete points is n.

2) Add the energy of all IMF components obtained in the
first step and perform normalization calculation by the
following equations to obtain the characteristic vectors
of the rolling bearing fault signals:

E =
6∑
i=1

Ei (9)

T = (E1/E,E2/E, · · ·E6/E) (10)

The energy moment calculation reflects the distribution
characteristics of each IMF energy on the time axis, which

can extract the essential characteristics of the signals effec-
tively and accurately. It can be seen that the calculation of the
energy moment takes into account not only the magnitude of
the IMF energy, but also the distribution of the IMF energy
over time. Therefore, compared with the simple calculation
of IMF energy, the energy moment calculation can better
reveal the energy distribution characteristics and facilitate the
extraction of fault characteristics.

D. THE PRINCIPLE OF THE LSSVM
1) SVM
The main idea of SVM is to take non-linear samples as input
vectors and transform them into high-dimensional feature
space through mapping transformation [26]. Then search
for a globally optimal hyperplane in the feature space and
classify the samples. Let the sample training set T =

{(x1, y1) , · · · , (xn, yn)}, where xi is the input vector and
xi ∈ Rn, yi is the classification label and yi ∈ {1,−1}(i =
1, 2, · · · , n).

The problem of finding the optimal classification surface
can be transformed into solving a quadratic programming
problem. The objective function and the constraint are as
follows:

min
ω,b

1
2
‖ω‖2 + C

l∑
i=1

ξi

s.t. yi (< xi, ω > +b) > 1− ξi (11)

where ω is the adjustable weight vector, b is bias coefficient,
< · > is inner product, ξi is a non-negative relaxation variable
which is used to measure the degree of deviation of data
points, C is penalty factor, the larger the value, the greater
the penalty for misclassification.

According to Mercer’s theorem, non-linear classification
can be achieved by using different kernel functions K (x, xi),
and the Lagrange multiplier αi is introduced. The decision
function of the optimal classification hyperplane can be
expressed as follows:

f (x) = sgn

[
l∑
i=1

αiyiK (x, xi)+ b

]
(12)

The schematic of the SVM model is shown in Fig.2.

2) LSSVM
The sample training of the standard SVM needs to solve
the quadratic programming problem, the training speed is
slow and greatly affected by the number of training samples.
To overcome these shortcomings, an extended SVM model
namely LSSVM comes into being. The LSSVM is a kernel-
based machine learning algorithm and has the principle of
risk minimization [27]. By solving linear equations instead
of solving the quadratic programming problem, it greatly
reduces the calculation complexity, and improves the oper-
ation efficiency and convergence accuracy. The optimization
problem can be expressed as follows: given a set of samples
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FIGURE 2. The schematic of the SVM model.

{xi, yi}mi=1, where xi is the input vector and yi is the corre-
sponding output of the samples. φ is nonlinear transforma-
tion function which maps the given input data to a higher-
dimensional feature space. It is represented as follows by
approximate linear approximation:

f (x) = ωTφ (x)+ b (13)

where ω is the adjustable weight vector, b is the bias coeffi-
cient.

In the original feature space, as an extension of the SVM
model, the LSSVM objective function under the constraint
condition is as follows:

min J (ω, ξi) =
1
2

(
ωTω + C

m∑
i=1

2
ξi

)
s.t. yi = ωTφ (x)+ b+ ξi (14)

where C is the penalty factor that balances the minimum
classification boundary and the minimum classification error,
ξi is a non-negative relaxation variable which is used to
measure the degree of deviation of data points, φ is nonlinear
transformation function which maps the given input data to a
higher-dimensional feature space.

At this time, the Lagrange function used is as follows:

L =
1
2
ωTω+

1
2
C

m∑
i=1

2
ξi −

m∑
i=1

ai
{
ωTϕ(x)+b+ξi − yi

}
(15)

where ai is the Lagrange multiplier, this function transforms
a constrained optimization problem into an unconstrained
optimization problem.

According to KKT conditions, find the partial derivative of
ω, b, ξi, ai and set it 0 to get:

∂L
∂ω
= 0→ ω =

m∑
i=1

aiϕ (xi)

∂L
∂b
= 0→

m∑
i=1

ai = 0

∂L
∂ξi
= 0→ ai = Cξi

∂L
∂ai
= 0→ ωTϕ (xi)+ b+ ξi − yi = 0 (16)

After eliminating ω, ξi, the optimization problem can be
transformed into the following linear equations:[

0 QT

Q K + C−1I

] [
b
A

]
=

[
0
Y

]
(17)

where

Q =
[
1, . . . 1 1

]T
A =

[
a1 a2, . . . am−1 am

]T
Y =

[
y1 y2, . . . ym

]
(18)

After the solution, ai, b can be obtained, then the optimal
linear regression function of the corresponding LSSVM is:

f (x) =
m∑
i=1

αiK (xi, x)+ b (19)

where K (xi, x) is the kernel function that satisfies the Mer-
cer’s theorem. In this paper, the BRF Gaussian Kernel is
chosen as the kernel function:

K (xi, x) = exp

(
−
‖xi − x‖2

σ 2

)
(20)

where σ 2 is the kernel width of the kernel function.
When using LSSVM for classification prediction, the

choice of the parameter σ of the RBF kernel function and
the penalty factor C has a greater impact on the learning
ability and classification results of the model. It’s necessary
to choose the appropriate parameters in order to get a better
classification accuracy [28]. These parameters are generally
obtained by the cross-validation method, which is not only
time-consuming but also blind. In this paper, the quantum par-
ticle swarm optimization (QPSO) is introduced to determine
the parameters to improve the accuracy and computation
speed of the fault diagnosis.

E. DESIGNED PRINCIPLE OF QPSO ALGORITHM
1) PARTICLE SWARM OPTIMIZATION (PSO)
PSO algorithm is a cluster intelligent algorithm based on
iterative optimization. It was proposed by Dr. Kennedy and
Dr. Eberhart in 1995 when simulating the migration and
cluster behavior of birds foraging [29].

The mathematical model of the PSO algorithm is as
follows:

In the d-dimensional search space, a population is com-
posed of N particles. The speed vector and position vector
of the ith particle are denoted as Vi = (vi1, vi2, · · · , vid ) and
Xi = (xi1, xi2, · · · , xid ), respectively. The optimal historical
position searched by this particle is pi = (pi1, pi2, · · · , pid ),
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and the optimal position searched by the entire population is
pg =

(
pg1, pg2, · · · , pgd

)
. For each generation of particles,

update their speed and position according to the following
equations respectively:

vid (k + 1) = ωvid (k)

+ c1r1 [pid (k)− xid (k)]

+ c2r2
[
pgd (k)− xid (k)

]
(21)

xid (k + 1) = xid (k)+ vid (k + 1) (22)

where ω is the inertia weight; k is the number of iterations;
c1 and c2 are positive learning factors; r1 and r2 are random
numbers uniformly distributed between 0 and 1; pid is an
individual extreme value; pgd is a global extreme value.

2) QUANTUM PARTICLE SWARM OPTIMIZATION (QPSO)
The PSO algorithm has several defects such as easy to pre-
mature, poor global optimization capability, and slow con-
vergence speed. From the perspective of quantummechanics,
Sun put forward the evolutionary algorithm based on the stan-
dard PSO to solve these problems, namely QPSO algorithm
[30]. In quantum space, the QPSO algorithm has the advan-
tages of fewer parameters and less randomness. Therefore,
it effectively solves the problems of the limited search space
and falling into the local optimal solution easily in the PSO
algorithm, which improves the search accuracy and search
speed. The QPSO algorithm can search across the entire
feasible solution space, so its global search performance is far
superior to the standard PSO algorithm. The wave function is
used to describe the state of the particles, and the probability
density function of the particles at a certain point of space is
obtained by solving the Schrodinger equation, and then the
position equation of the particles is obtained by Monte-Carlo
method:

x(t) = P±
L
2
ln
(
1
u

)
(23)

where u is a random number that ranges from 0 to 1; L is the
characteristic length of potential well, and the changing rules
with time t are as follows:

L(t + 1) = 2β |mbest − x(t)| (24)

mbest =
M∑
i=1

Pi
M
=

(
M∑
i=1

Pi1
M
,

M∑
i=1

Pi2
M
· · · ,

M∑
i=1

PiDdim

M

)
(25)

Pd = φ · Pid = (1− φ)Pgd (26)

where β is called the contraction expansion coefficient,M is
the number of particles,Ddim is the dimension of the particles,
φ is a random number uniformly distributed between 0 and
1, mbest is the average best position of all particles in the
population, and Pi is the Pbest of the ith particle, the position
equation of the particle is finally described as follows:

x(t + 1) = P± β |mbest − x(t)| ln
(
1
u

)
(27)

In the QPSO algorithm, the state of the particles is
described only by the position vectors, and there is only
one controlled parameter in the algorithm. The selec-
tion and control of this parameter is very important,
it is related to the convergence speed of the entire
algorithm.

F. THE PROCESS OF THE QPSO-LSSVM ALGORITHM FOR
THE FAULT DIAGNOSIS
The QPSO algorithm has parallel global optimization capa-
bilities. It can improve the classification accuracy using
the QPSO algorithm to perform parameters optimization of
LSSVM. In the process of parameters optimization of the
kernel function parameter σ and penalty factor C of LSSVM,
the QPSO algorithm can guarantee the convergence of the
algorithm during the search process and ensure that the algo-
rithm can avoid premature convergence while the algorithm is
convergent [31]. It has a very important impact on improving
the learning ability and generalization ability of the LSSVM
algorithm. Therefore, this paper proposed a LSSVM model
optimized by the QPSO algorithm. The specific steps are as
follows:

1) Set the number of particles to M , the dimension of the
quantum particle swarm to d , and the maximum num-
ber of iterations to Tmax and other related parameters.

2) According to the LSSVM algorithm and the parameters
to be optimized, the adaptive value of each particle
in the quantum population is evaluated, and the local
optimal value Pi and the global optimal value Pg are
updated.

3) Calculate the mbest of quantum particle swarm accord-
ing to Equation 25. Calculate the Pi according to mbest
and the global optimal particle Pg by Equation 26,
and then substitute Pi and mbest into Equation 27 to
update the position of each particle. In Equation 27,
take a negative when u < 0.5 and take a positive when
u > 0.5.

4) Determine whether the current number of iterations t
has reached the maximum number of iterations; if not,
go to Step 2 until the iteration termination condition is
met.

5) The parameters optimization is implemented based on
the QPSO algorithm, and the optimal particles are used
as parameters of the LSSVM model to construct the
QPSO-LSSVM model.

The flowchart of the QPSO-LSSVM is shown in Fig.3.
In this paper, the QPSO algorithm is introduced to iter-

atively optimize the parameters in the LSSVM model to
establish a fault diagnosis model. The fault feature vectors
extracted by the MEEMD algorithm and the energy moment
normalization are used as the input vectors of the QPSO-
LSSVM model to train and identify the fault of rolling
bearing.
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FIGURE 3. The flow chart of the QPSO-LSSVM model.

III. EXPERIMENTS VALIDATION
In order to verify the effectiveness and practicability of the
proposed method for rolling bearing fault diagnosis based
on the MEEMD algorithm for adaptive decomposition and
the QPSO-LSSVM algorithm for classification, two exper-
imental schemes were proposed for practical verification.
Firstly, the experimental data from the Case Western Reserve
University laboratory in the United States was used for ver-
ification. In order to further demonstrate the universality
and representativeness of the proposed method, the data in
the experimental bench was acquired for experiments. We
also analyzed them in combination with practical engineering
problems.

A. EXPERIMENT 1
Firstly, the experimental data of the Case Western Reserve
University laboratory in the United States was used for veri-
fication [32]. The experimental platform is shown in Fig.4.
The left side of the figure is a 2-hp motor, the middle is
a torque transducer, the right is a load motor, and some

FIGURE 4. The experimental platform of CWRU.

TABLE 1. The classification of the experimental data.

electronic controls are not included in the figure. The bearing
to be tested supports the motor shaft. The designation of the
bearing is SKF-6205 deep groove ball bearing.

Three types of faults, including inner race fault, outer
race fault and ball fault, were all subjected to single-point
damage of electro-discharge machining to simulate the state
of natural evolution damage. The speed of the bearing is
r = 1797r/min, the balls number of the bearing is n = 8,
the contact angle of the rolling elements is α = 0◦, the ball
diameter is d = 6.75mm, and the bearing pitch diameter is
D = 28.5mm. The sampling frequency of the digital signal
is 12000S/s. In each state, 90 sets of data was randomly
selected, the first 40 sets as training data, and the last 50 sets
as test data to verify the accuracy of the classification. In this
way, there was 360 sets of data including the normal state,
and each group of data contains 1024 sampling points. See
Table 1 for details of datasets.
The time-domain diagram of bearing vibration signals in

different states and the IMF components diagram obtained
after the MEEMD algorithm are shown in Fig.5-8. Among
them, Fig.5 is in a normal state, as a comparison group, and
Fig.6-8 are respectively in an inner race fault, an outer race
fault, and a ball fault, as a fault group.

The energy moment normalization calculation can be used
to obtain the energy moment feature vectors. The histogram
of the IMFs is shown in Fig.9. These vectors obtained can
be used as the input of the later QPSO-LSSVM model. In
the selected experimental data, each state contains 90 sets of
data. After decomposition, 90 sets of vectors can be obtained.
There are 4 states, a total of 360 sets, and the data is relatively
large. Here, only 3 sets of data randomly selected for each
state are listed in Table 2.
In order to more intuitively see the difference between the

input vectors decomposed by the MEEMD algorithm and the
energy moment normalization, we use the multidimensional
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FIGURE 5. The original vibration signal and the decomposed IMF components of the normal signal.

FIGURE 6. The original vibration signal and the decomposed IMF components of the inner race fault
signal.

FIGURE 7. The original vibration signal and the decomposed IMF components of the outer race fault
signal.

FIGURE 8. The original vibration signal and the decomposed IMF components of the ball fault signal.

scaling method (MDS) to observe the distribution character-
istics of the training data in a 2-dimensional space which
is shown in Fig.10. The effect of feature extraction is very
helpful for later fault identification.

Subsequently, the LSSVM model optimized by the QPSO
algorithm was used to classify and discriminate the data.
In the process of QPSO, the number of particles is M =

30, the dimension of the quantum particle swarm is d =
2, which represents the kernel function parameter σ and
the penalty factor C respectively, where σ ∈ [10, 100],
C ∈ [0.1, 1] and the maximum number of iterations is

Tmax = 200. It can be seen from the simulation experiments,
the best value σ and C of the LSSVM model optimized by
the QPSO algorithm is 98.0905 and 0.1013 respectively in
this experiment. Compared with the SVM and LSSVM and
PSO-LSSVM models. The detailed output results and the
accuracy are shown in Table 3. It can be seen that the accu-
racy rate of fault diagnosis performed by the QPSO-LSSVM
model is 98.5% better than several other comparison meth-
ods. It shows that the method proposed in this paper has
a good performance on feature extraction and classification
diagnosis.
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FIGURE 9. The histogram of the IMFs.

TABLE 2. The feature vectors by energy moment normalization.

FIGURE 10. The MDS distribution of the processed data.

B. EXPERIMENT 2
In order to further verify the universality and representa-
tiveness of the proposed method, the experimental data of
the QPZZ-II platform in the laboratory was used in this
section, and it is analyzed in combination with actual engi-
neering problems. The experimental platform is shown in
Fig.11. It consists of a variable-speed drive motor, bearings,

FIGURE 11. The QPZZ-II experimental platform in the laboratory.

gearboxes, shafts, eccentric turntables, and speed governors.
The designation of the bearing is N205. In order to main-
tain the consistency, 360 sets of data were also selected
for experimental verification. The classification information
is the same as the Experiment 1, and is still shown in
Table 1.

In the process of MEEMD decomposition, 100 sets of
white noise sequences are added to the vibration data,
the amplitude is 0.1, and the maximum number of modes
is set to 6. The time domain diagram and the MEEMD
decomposition diagram of bearing vibration signals under
the four states including the normal state, the inner race
fault, the outer race fault, and the ball fault are shown in
Fig.12-15. Based on the energy moment normalization cal-
culation, the histogram of the energy moment feature vectors
is shown in Fig.16, and the detailed values are shown in
Table 4. The MDS method is used to observe the distri-
bution characteristics of the training data which is shown
in Fig.17.

Subsequently, the LSSVM model optimized by the QPSO
algorithm was used to classify and discriminate the data. In
the process of QPSO, the number of particles is also chosen
as M = 30, the dimension of the quantum particle swarm is
d = 2, which also represents the kernel function parameter σ
and the penalty factor C respectively, where σ ∈ [10, 100],
C ∈ [0.1, 1] and themaximumnumber of iterations is Tmax =

200. The settings of these parameters are the same as the
Experiment 1. It can be seen from the simulation experiments,
the best value σ and C of the LSSVM model optimized by
the QPSO algorithm is 49.858 and 0.8009 respectively in this
experiment. Compared with the SVM, LSSVM and PSO-
LSSVM models, the output results of which are shown in
Fig.18-21.

The accuracy of the fault diagnosis using the QPSO-
LSSVM model is 98.0%, meanwhile, the accuracy of SVM
is 95.0%, the accuracy of LSSVM is 95.5%, and the accuracy
of PSO-LSSVM is 97.5%. The results are shown in Table 5.
We also compared the training time of the two methods.
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TABLE 3. The outputs by different models.

FIGURE 12. The original vibration signal and the obtained components by MEEMD algorithm of the
normal signal.

FIGURE 13. The original vibration signal and the obtained components by MEEMD algorithm of the inner
race fault signal.

FIGURE 14. The original vibration signal and the obtained components by MEEMD algorithm of the outer
race fault signal.

FIGURE 15. The original vibration signal and the obtained components by MEEMD algorithm of the ball
fault signal.

The results show that the training time of the QPSO-LSSVM
model is 6.397s, while that of the PSO-LSSVM model is
10.982s. Obviously, the proposed method in this paper is

more efficient. In order to illustrate the superiority of the
proposed model in this paper, RBF neural network algorithm
was used to compare with it. Its diagnostic accuracy is only
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FIGURE 16. The histogram of the feature vectors.

FIGURE 17. The distribution of the data by MDS.

FIGURE 18. The forest classification and the real classification by the
SVM model.

90.0%, and the performance is far less than the method pro-
posed in this paper.

At the same time, in order to highlight the advantages of
the proposed algorithm, the EMD-QPSO-LSSVM algorithm

FIGURE 19. The forest classification and the real classification by the
LSSVM model.

FIGURE 20. The forest classification and the real classification by the
PSO-LSSVM model.

TABLE 4. The energy moment feature vectors.

and the EEMD-QPSO-LSSVM algorithm were carried out
for fault diagnosis, with the accuracy of 94.5% and 96.0%,
respectively. It can be seen that the accuracy of the proposed
method is indeed higher than other EMD-based algorithms
mentioned in this paper.

The IMF components obtained by the MEEMD algorithm
can reflect the signal characteristics from different frequency
bands, and its decomposed time-frequency characteristics
can effectively reveal the differences from different states.
We can see from the data distribution characteristics of the
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TABLE 5. The classification of the fault diagnosis by different models.

FIGURE 21. The forest classification and the real classification by the
QPSO-LSSVM model.

2-dimensional space that several known faults can be effec-
tively distinguished, but there will be a few overlapping
phenomena, which does not affect the overall accuracy of
the fault diagnosis. In the later period, the parameters of
the LSSVM model are iteratively optimized by the QPSO
algorithm, and the optimal solution can be found in a limited
sample space, avoiding the blindness of parameters selection.
In short, from the perspective of experimental verification,
the fault diagnosis algorithm comprehensively combining the
MEEMD algorithm and the QPSO-LSSVMmodel does have
a good performance on signal characteristic extraction and
fault classification, and it can give ideal results intuitively.

IV. CONCLUSION
In this study, a new technique which comprehensively com-
bines the MEEMD algorithm for feature extraction and the
QPSO-LSSVMmodel for classification is applied in the fault
diagnosis of rolling bearing. The feature vectors of vibra-
tion signals extracted by the MEEMD algorithm and the
energy moment normalization can more effectively reflect
the potential information which can be easily put into the
QPSO-LSSVM model. Due to the introduction of the QPSO
algorithm, the candidate solutions in the LSSVM model are
better chosen. The performance on the accuracy of the fault
diagnosis is improved accordingly. The experiments validate
the effectiveness of the proposed method, which provides a
reference for the future study in feature extraction and fault
classification.

Future research will apply this method to the diagnosis
of mixed faults and complex faults. Even it can be applied
to other fields, such as inverter fault diagnosis, power load
prediction, power fault diagnosis and so on.
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