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ABSTRACT In this paper, we consider the current status and technical issues involved in the use of optical
camera communication (OCC)/visible light communication (VLC) technologies in vehicular communication
systems. Hybrid spatial phase-shift keying was introduced in IEEE 802.15.7-2018 as the standard hybrid
modulation scheme for vehicular OCC/VLC systems.We herein propose a functional communication system
architecture for vehicular systems based on this hybrid waveform, and we also present state-of-the-art
research work on an artificial intelligence (AI)-based vehicular OCC system. Every AI module within the
proposed system architecture is discussed in detail. Finally, our experimental procedures and results are
analyzed to evaluate the performance of the proposed system over a complex channel model in a vehicular
environment.We effectively employed the popular YouOnly LookOnce version 2 object detection algorithm
for real-time region-of-interest tracking in city driving (at a vehicular velocity of around 30 km/h and highway
night driving (at a vehicular velocity of > 60 km/h) scenarios. Moreover, our novel neural-network-based
decoder and AI-based error correction proved effective in improving the data decoding accuracy, resulting
in a best-case reduction of 2.2 and 9.0 dB, respectively, in the signal-to-noise ratio needed to achieve the
desired bit error rate of 10−4 in a vehicular OCC/VLC system.

INDEX TERMS Visible light communication (VLC), light-emitting diode (LED), image sensor (IS), deep
learning, optical camera communication (OCC).

I. INTRODUCTION
Intelligent transportation systems (ITSs) are currently a
promising area of research, whose key features include
autonomous vehicle management, traffic efficiency, road
safety, and inter-vehicle and inter-passenger communica-
tion [1]. Due to the rapid development of mobile communi-
cation systems, radiofrequency (RF) spectrum (30-75 MHz)
is not sufficient to support the requirements for high through-
put [2]. Moreover, along with the density of vehicles, com-
munications through tunnels and subway using RF based
GPS signals are becoming a challenging issues for ITS.
In this regard, visible light communication (VLC) can be
used as a complementary, hybrid, or heterogeneous system
alongside RF. VLC can provide vehicle-to-vehicle (V2V) and
infrastructure-to-vehicle or vehicle-to-infrastructure commu-
nications using the existing lighting infrastructures inside
tunnel or subway [3], [4]. This technology can support
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high-throughput data transmission due to the broad spectrum
of visible light (380-780 nm) and has great potential for
development because of its low cost, widespread availabil-
ity, and use of an unregulated radiation spectrum. Another
important advantage of VLC is that it is safe for human
health and can be used in RF-restricted areas [3]–[5]. VLC
plays an important role in ITSs because of the widespread
use of visible lighting infrastructures, such as vehicular front
and rear light-emitting diodes (LEDs), traffic LEDs, traffic
signage, and lamp post LEDs. Not only are these lighting
infrastructures cost-effective, but also consume less energy.
In VLC systems, LEDs are configured to transmit signals
via light emission. LED driver circuits are programmed to
modulate LEDs with input data according to a specified
modulation scheme. Vehicular front and rear lights can, thus,
be used to transmit ITS data, such as safety information, to
other vehicles.

Optical camera communication (OCC) is different from
VLC because of various types of receivers being used. PD
is used for VLC system, whereas OCC utilizes image sensor
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FIGURE 1. The reference vehicular OCC system architecture.

or camera as a receiver. Image sensor is beneficial compared
to PD as it can perform spatial separation of light using its
existing lens and can communicate with multiple sources.
In such systems, a high-speed camera is used to receive
lighting signals from both vehicle lights and street lighting
infrastructures. To receive signals from either the front or the
rear, cameras can be installed at both ends of the vehicle.
Cameras or image sensor receiver systems can perform a
number of tasks, including object tracking, data reception,
distance measurement from pedestrians, and reading traffic
signal statuses and LED signage. However, current low-speed
cameras (with frame rates of up to 60 fps) limit the data rate
to within the low bps to kbps range [6]–[8]. Undersampling-
based modulation schemes have been proposed to achieve
higher data rates in OCC systems, but they also limit
the communication range [9], [10]. High-speed cameras
can be installed to process data faster in high-mobility
vehicles [11], [12].

A. STATE OF THE ART
In [12], an optical communication image sensor with
DC-biased optical orthogonal frequency division multiplex-
ing was employed in automotive VLC. This system achieved
a data rate of 55 Mbps using an ultrahigh-speed camera, but
it also incurred very high deployment costs. A novel image-
sensor-based optical wireless communication system was
proposed by Takai et al. [13], for which they claimed a data
rate of 15 Mbps per pixel with 16.6 ms real-time LED detec-
tion for automotive applications. In [14], a novel VLC system
that could communicate over a 130 m link between a traffic
light and a vehicle was presented. The authors used a pho-
totransistor for improved sensitivity and a transimpedance
amplifier circuit to reduce noise. However, VLC-based auto-
motive applications can be affected by parasitic light from
sunlight and other outdoor light sources. These extraneous
light sources can have a significant impact on the system’s
bit error rate (BER). Additionally, the phenomenon of blur,
either motion blur or blurring due to rainy, foggy, or snowy
weather conditions, as what typically occurs in optical vehic-
ular communication systems, was analyzed in [15]. In such
cases, the VLC or optical camera communication (OCC)
receiver should perform region-of-interest (ROI) selection to

detect the target transmitter, in order to reduce the amount
of incident parasitic light. A test bed was designed in [16] to
evaluate infrastructure-to-vehicle VLC system performance
over a 50 m link in the presence of bright sunlight. The test
showed that bright sunlight affects the BER performance,
increasing the error rate from 10−7 to 10−4.

The recent related research works are summarized
in Table 1. In our most recent paper, we provided a vehic-
ular OCC system architecture [17], on which the devel-
opments mentioned in the next sections of this paper are
based. Fig. 1 illustrates the architecture of our vehicular OCC
system.

In the transmitter (Tx) of this system, vehicular head-
lights or tail lights can be used to transmit a hybrid low-
and high-rate data stream. The technique of simultaneously
sending two data streams in a single waveform is defined
as an ROI signaling method [4], [17], [18]. Low-rate data
streams often carry short data for vehicular identification,
whereas high-rate data streams provide supporting informa-
tion required to assist safe driving. The ROI signaling tech-
nique for OCC has recently been introduced as the PHY IV
standard in IEEE 802.15.7-2018, updated by IEEE 802.15.7m
OWC Task Group (TG). For this standard, Intel has proposed
and implemented Twinkle VPPM and Kookmin University
has introduced hybrid spatial phase-shift keying (HS-PSK)
as a hybrid waveform for use in OCC systems.

For the receiver (Rx), Tx light source identification and
high-rate data stream demodulation can be processed by a
single camera, provided that it is reasonably time-slotted.
The Rx camera first detects the ROI from among several
natural and artificial light sources based on the low-rate
identification signal, and then it focuses on the selected
ROI for high-speed data decoding. This demands skillful
programming of the camera control and image processing
software. Additionally, in the real world, movement of vehi-
cles is continuous and unpredictable, making a single-camera
receiver ineffective and difficult to implement. An alternative
approach is to use a dual-camera system, in which a low-
frame-rate camera is used to continuously detect and track
the Tx light source and a high-frame-rate camera focuses on
decoding the data transmitted from the identified ROI at high
speed [4], [18], [17].
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TABLE 1. Related research work.

VOLUME 8, 2020 102693



T. L. Pham et al.: Deep Learning for Optical Vehicular Communication

TABLE 1. (Continued.) Related research work.

Even though the space-time coding for high frame-rate
Nyquist sampling optical system could be implemented in
high speed camera and multi-LED array for optical MIMO
concept [4], however, to the best of our knowledge, we have
not found a research related to dimming support for those
related systems. It may be acceptable in using traffic light at
this time while the traffic light source is turned on and off at
a time without any dimming requirement.

The othermatter of oversampling technique is that the high
speed camera used in Rx need to maintain the high frame
rate even when detecting the Tx, which is computational
cost-ineffective compare with using the dual camera in RoI-
signaling OCC system. Due to those reason, HS-PSK, which
is the hybrid waveform of S2-PSK for carrying the low-
rate data stream and DS8-PSK for carrying the high-rate
data stream is chosen as a suitable modulation scheme for
implementing in vehicular-to-vehicular OCC system.

B. DEEP LEARNING-BASED OPTICAL VEHICULAR
COMMUNICATION: A POTENTIAL APPROACHING
Despite the enormous potential of OWC/OCC vehicular sys-
tems in the lucrative industrial market, there are several
challenges that need to be overcome in the development
of these technologies, as pointed out in [3]. One of the
main causes of degradation in OWC/OCC vehicular systems
is white noise from sources such as ambient light radia-
tion from the Sun, or street lighting. Many studies have
been performed to investigate the feasibility of OWC/OCC
technologies in V2V/V2X systems (see, e.g., [18]–[20]),
predominantly focusing on Gaussian white noise with differ-
ent signal-to-noise ratios (SNRs). Another type of distortion
that can reduce vehicular OWC/OCC system performance
is blur, which can occur in any camera or image process-
ing system. In an OWC/OCC vehicular scenario, vehicle
vibration and mobility, weather conditions (e.g., rain, fog,
and snow), and camera focusing issues are the main causes
of blur in the received images. Recent developments in AI
and deep-learning technologies have shed some light on

new approaches for dealing with such problems. A broad
range of AI tools are now available, supporting a diverse
range of applications. Fig. 2 illustrates the concept of a fully
AI-equipped system.

Our primary aim in applying AI technology to an optical
vehicular communication system is performance enhance-
ment in two key tasks: (1) ROI detection and tracking and
(2) communication functionality or data decoding. For the
first task, it is recommended to use the YOLO platform
for real-time multiple-light-source tracking before the low-
frame-rate camera is able to extract all the ROI information
from actual transmitters. Then, for further explicit high-rate
data communication, a neural network decoder [15] and an
AI-based error correction (AIEC) method [21] are proposed
to enhance the accuracy of the received data, particularly
when the signal is distorted by a complex channel model.
Further explanation and experimental results will be provided
in the following sections.

C. OUR CONTRIBUTIONS
In the previous section, we presented the current challenges
hindering the use of OCC technologies in vehicular commu-
nication systems. We will now move on to a detailed discus-
sion of the uses of AI to improve these systems’ performance.
We have previously described the blocks fromwhich our pro-
posed system is formed in other recent papers. Although some
of these areas of work are complete, with correspondingly
consistent results [15], others have thus far only been intro-
duced as concepts or early-stage research [21]. Moreover,
as AI-based modules demand a high computational power,
typically achieved using graphics processing units (GPUs)
to accelerate their performance, it is difficult to be fully
confident in the benefits of AI technology, particularly when
applied to very specific applications or stand-alone modules.

With the above considerations in mind, this paper serves
to present those previously documented technologies as a
single proposed system that can be comprehensively eval-
uated to ensure that all basic performance requirements
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FIGURE 2. The concept of optical vehicular communication system architecture with AI supporting.

are met. Comparing the performance enhancements provided
by each AI-supported functional block provides a systematic
approach for determining whether AI represents an excellent
alternative. Furthermore, as some adjacent blocks function in
similar ways, they can be combined to simplify the system.
We also verify the ability to use the same set of deep-learning
libraries for designing all the sections of the system, minimiz-
ing hardware costs.

The simulation environment used for the evaluation pur-
poses was a combination of additive white Gaussian noise
(AWGN) and blur phenomena, as described in [21]. As previ-
ously mentioned, although these are common issues in vehic-
ular OCC systems, very little research has been performed
to analyze the communication quality in noisy and blur-
inducing environments. In summary, our main contributions
in this paper are as follows:
• We briefly review our original concept of applying AI
techniques to camera-based communication systems.
The purpose of the proposed techniques is to mitigate
the effects of the vehicular environment on the com-
munication channel model. To concisely describe these
effects, blur is added to the primary AWGN channel,
which can be considered as representing the standard
channel model of a vehicular OCC system.

• For the first time, we achieved a highly AI-integrated
optical vehicular communication system by applying
several trending technologies and algorithms, including
LED detection and tracking method using the YOLO
framework as well as a combination of semantic seg-
mentation and fully-connected neural networks for fea-
ture extracting and data decoding process.

• To investigate the efficiency of the chosen parameters,
several metrics for evaluating AI and communication
systems will be analyzed. The corresponding experi-
ments will then be presented, with detailed information
provided on data preparation and annotation for model
training.

The rest of the paper is organized as follows: In Section 3,
we provide a detailed description of each enhanced receiver
module, in terms of the newly defined channel model for
vehicular environments. Finally, Section 4 describes our
experimental procedures and results, demonstrating the ben-
efits of deploying each proposed module in an optical vehic-
ular communication system.

II. PROPOSED SYSTEM DESIGN
A. CHANNEL MODEL APPROXIMATION OF OPTICAL
VEHICULAR COMMUNICATION
In the field of wireless communication, channel modeling
and coding theory have been studied and developed over
many decades. A lot of the current research is focused on
estimating the channel model from real-world data using
deep-learning technologies [22]–[24]. However, OCC is still
a relatively new area of research; thus, to be able to commer-
cialize OCC in vehicular wireless communication scenarios,
intensive research into channel models for vehicular OCC
systems is still required. Fig. 3 illustrates our idea ofmodeling
the channel in the V2X communication system.

The most fundamental and unavoidable cause of degrada-
tion in any communication system is Gaussian white noise.
In a vehicular OCC system,white noise sources include ambi-
ent light radiation from the Sun and street lighting. As the
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FIGURE 3. Channel model in vehicular OCC system.

receiver side of the OCC system is heavily reliant on cam-
eras and image sensors for its communication functionality,
blur is also a significant concern, particularly in a vehicular
environment. Sources of blur are varied, including motion
blur, loss of camera focus, and weather conditions (e.g., fog,
rain, or snow).

1) PIXEL NOISE MODELING AND SNR COMPUTATION
Pixel noise in charge-coupled device/complementary metal-
oxide semiconductor (CCD/CMOS) cameras can be approx-
imately modeled by

n ∼ N (0, σ s2), (1)

where s is the pixel value, σ 2(s) = s.a.α + β with a
representing the mark and space amplitude, and α and β
representing the fitting parameters obtained experimentally.
Here we used the values α = 0.01529 and β = 0.1973, which
were estimated experimentally from [25]. Assuming that one
symbol contains one bit, the pixel SNR (or Eb/N0) of an Rx
camera can be estimated by:

Pixel
Eb
N0
=

E[s2]
E[n2]

≈
a2.1

a.α.1+ β
, (2)

whereEb is the bit energy,N0 is the noise density, s is the pixel
value, a is the mark and space amplitude, δ = Texposure/Tbit
is the ratio of the camera’s exposure time and bit interval, and
α and β are the fitting parameters.

Pixel SNR estimation has to be performed for each camera
as there are no universal standard parameters for all cameras.
Using Eq. (2), a theoretical estimation for a chosen camera
with a shutter speed of 10 kHz and a transmitter with an
optical clock rate of 1 kHz, giving δ = 0.1, is shown in Fig. 4.
Even when no Tx signal is transmitted, white noise is still
present. When the received signal reaches the maximum
value of an 8-bit analog-to-digital converter, the pixel SNR
is approximately 40 dB.

To achieve a higher pixel SNR, we could increase the
received signal strength by either increasing the transmitter
power or using a longer camera exposure time. However,
neither solution is appropriate in this application, not only
because power saving is also of a high priority in wireless
communication systems, but also because increasing the cam-
era’s exposure time increases the probability of capturing

FIGURE 4. Calculation of the relationship between pixel SNR and BER.

fuzzy LED states, which occur when samples are obtained
during pulse transitions [15].

Moreover, single-carrier modulation schemes such as
S2-PSK and DS8-PSK require at least 10 dB of SNR to
achieve a BER of 10−4. The SNR measurement for vehicular
OCC in [17] also shows that the line-of-sight link quality
always guarantees this minimum SNR requirement.

2) BLUR PROCESS – PRINCIPLE AND SIMULATION
Based on the findings presented in [26]–[28], a received
image of LEDs, contaminated with blur and noise, can be
obtained by the convolution of a blur kernel with a clear image
of LEDs, followed by the addition of noise as follows:

y = h∗x + n, (3)

where y is the captured image matrix, h is the blur kernel
matrix, x is the original image matrix, and n is the noise
matrix. Note that all of the matrices here are two-dimensional
(2D), as the LEDs image will be converted to a grayscale
format.

In order to blur an image with a size of r × c pixels
(rows × columns), we use a 2D blur kernel matrix (the size
of the kernel (b) is crucial in determining the level of blur).
All cells in a blur kernel will take equal values and sum to
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one, so each cell will take a value of 1
b2
. The output matrix of

the convolution between the blur kernel and an LED image
will have a full size of: (b+ r − 1)× (b+ c− 1). To obtain a
blurred vision with the same size as the original, we crop the
product matrix c at a row and column index equal to b/2.

Based on our research in [15], a sample image of an eight-
LED group is used to analyze the effects of blur for different
sizes of convolutional kernel. Simulation work also shows
that the convolution-based mechanism results in blurring that
flattens all LED intensities within an image.

B. LED DETECTION AND TRACKING BASED
ON YOLO FRAMEWORK
The evolution of YOLO, the most popular convolutional-
neural-network-based object detection platform, has pro-
vided us with many customization options for our applica-
tion [29]. Herein, we discuss the customization and training
of different YOLO model (YOLOv2, YOLOv3 and their tiny
model) for vehicular front or tail light detection. From [30],
a comparison of state of the art YOLOv3 model with other
detectors, as well as the comparison on other version of
YOLO is provided in detailed. In our application of LED
detection and tracking for vehicular OCC system,minimizing
the processing time with reasonable trade back on accuracy
is our priority. Therefore, the tiny model of YOLOv2 or
YOLOv3 is considered to be modified for our application,
with only 9 or 7 convolution layers make it is lightweight and
could achieve 200fps detection performance. The number of
class for detection is only one, and the corresponding number
of filters in the final convolution layers is set as 30. To func-
tion within an OCC system, these light sources need to be
adapted to produce high-frequency flickering in accordance
with themodulation scheme. The transmitter could be a single
LED [31]–[33], or multiple small LEDs [34]. When using
the S2-PSK hybrid waveform and DS8-PSK for modulating
two data streams in optical vehicular communication [34],
the number of small LEDs in each group must be a multiple
of eight. Hence, our dataset for training the YOLOv3 model
had to be able to classify these two light source categories.

For the object tracking algorithm, in [35], the author pro-
posed a method based on the Euclidean distance from the
detected object in the current frame to n previous frames.
In most cases, this algorithm performs well while satisfying
the requirements for real-time object tracking with a high
accuracy. However, the labels of multiple objects can be
shuffled when object crossing occurs [36]. For more reliable
tracking results, the ROI signaling technique is consid-
ered to be preferable to an image-processing-based solution,
in which vehicle identity information is actively transmit-
ted to the receiver. The use of ROI signaling with OCC
has recently been introduced in IEEE 802.15.7m PHY IV
for OCC modes. Intel’s UFSOOK scheme [37] can deliver
short identities of multiple-input multiple-output (MIMO)
light sources. The aim of the S2-PSK scheme, proposed by
Kookmin University [18], is to support vehicles in terms
of tracking/identifying MIMO light sources. These two

modulation schemes support the detection and tracking of
numerous communication data light sources in a flicker-
free manner compatible with various types of low-frame-
rate cameras, supporting communication over large distances
among high levels of light noise on the road. However, with
RoI signaling, the low frame rate camera needs to entirely
decode the vehicular ID from the hybrid waveform before
the high frame rate camera can obtain further information
from the actual transmitter, which is suboptimal in terms of
of processing time. For example, by noting that an interval of
a bit (Tbit ) is multiple times the waveform cycle (T ):

Tbit = NT , (4)

In our practical system, a clock rate of no lower than
125 Hz is used to modulate the optical light source for miti-
gating against potential flicker outdoors [18]. Using a clock
rate of 200Hz andN = 20 [17], a 10 bps link can be provided,
which is feasible with a 20 fps camera at the receiver side.
This means that if around 32 cars need to be labeled for
simultaneous detection and tracking, the vehicle ID must at
least be 5 bits. After using half-rate line coding [18] the trans-
mitted codeword will be 10 bits, requiring 1 s to complete the
transmission, during which period the high-frame-rate cam-
era is completely idle. To minimize this idle time, the YOLO-
based tracking method is used to temporarily detect and
track all the connected OCC transmitters from the previous
communication session. Taking advantage of these primitive
ROIs, the high-frame-rate camera can continue decoding all
transmitting high-rate data streams simultaneously until they
are correctly labeled with each vehicular ID.

C. HYBRID RoI-SIGNALING MODULATION SCHEME
FOR MASSIVE-LEDs ARRAY
By using the HS-PSK modulation scheme in optical vehic-
ular communication system, each LED group in the OCC
vehicular system will be a combination of 8n LEDs, and the
number of LEDs will be the same for both the reference and
the data LED group. The PHY PIB attributes for HS-PSK
mode, as defined in IEEE 802.15.7-2018, only refer to a
basic implementation using eight LEDs within each light
source in phyHSpskNumLightSources, so the n number can
be modulated and transmitted using a low-rate modulation
scheme. Figure 5 provides an illustration of the sample LED
arrangement, with n = 20. Our hybrid waveform implemen-
tation is summarized below:

• A low-rate modulation scheme for carrying low-rate
data (vehicular ID, number of eight-LED groups) is
generated by controlling the dimming level of two LED
arrays. There may be a difference in the dimming level
between the two LED arrays, but the dimming of all the
LED groups within each array will be similar at every
sampling point and can be considered as the dimming
of the whole LED array. Using S2-PSK as the low-rate
modulation scheme, the Tx can only transmit 1 bit for
every sample taken by the low-frame-rate camera.
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FIGURE 5. LED arrangement in vehicular light source for OCC functionality.

FIGURE 6. PPDU format using in HS-PSK.

• A high-rate modulation scheme for carrying high-speed
data (e.g., vehicle speed, engine status) will be generated
by every data LED group, with each group containing
eight LEDs thanks to the use of DS8-PSK, within each
LED array. In our example, each LED array contains one
LED group for the reference phase and 19 LED groups
for high-speed data encoding. At every sampling point
of the high-frame-rate camera, each data LED group can
transmit 3 bits per symbol.

The physical protocol data unit and physical layer ser-
vice data unit (PSDU) using the HS-PSK format are shown
in Figure 6. The clock of the dimming control for this high-
rate communication is synchronized to the clock of the low-
rate ROI signaling stream. In more detail, the HS-PSK PSDU
field consists of multiple S2-PSK cycle times; each cycle is
a subframe with a low-dimming period and a high-dimming
period so that each period also consists of multiple DS8-PSK
data symbols.

The presence of another HS-PSK preamble indicates the
end of the HS-PSK PSDU. The configuration of the PSDU
length is implemented via the PHY PIB attribute phyPsd-
uLength and is announced by sending the updated PSDU
length via the PHY header subfield.

Based on the basic knowledge of transmitting data format,
Kookmin University already proposed a decoding method
using a dual-camera receiver system for HS-PSK in [17].
A low-frame-rate camera, of either a global shutter or a
rolling shutter type, is used for detecting the S2-PSK signal
from the variations in transmitter dimming; whether a high-
speed global shutter camera is used to receive DS8-PSK
transmitting symbols. In both contexts, the camera’s frame
rate should be higher than the modulation clock rate. A cross-
check-XOR model [17] and a matched filter [34] are two
effective decoding methods for the S2-PSK and DS8-PSK
modulation schemes, respectively, which have been proven
with the AWGN channel.

D. NEURAL NETWORK-BASED DECODER
A neural-network-based model for OCC signal decoding has
already been described in [15]. In summary, data decoding
from the light signal transmitted by vehicular LEDs can
be performed by extracting the central intensity point of
each LED within the group detected. As the YOLO-based
detection and tracking block will form a boundary on every
possible vehicular LED group, knowing the number of LEDs
inside each LED group as well as the LED arrangement is
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critical for extracting the intensity of every LED, as well as
for binary or fuzzy logic state mapping.

Despite the effectiveness of those conventional decoding
method over such common channel in wireless communica-
tion like AWGN, by considering the probability of fuzzy LED
state sampling and the significant effects of blur in the vehic-
ular communication channel, the neural network model could
improve the data decoding accuracy and reduce the frame rate
requirement for the high-speed camera, as per Nyquist’s theo-
rem [17]. Fig. 7 illustrates the neural-network-based decoder
model architecture employing an iterative learning process
with a real-world data feature map to adjust its parameters.

FIGURE 7. A neural network (NN)-based decoder for blurry and noisy.

The feature map extracted from the input data includes the
following:
• LED State: From each image of the transmitter LED
groups, we extract the intensity of central points of
every LED in each group. The approaching method
could be normally dividing the detected area based on
the shape of LED arrays, which could be informed
by using S2-PSK signage. Another approach could be
based on semantic segmentation [38], [39] or instance
segmentation [40], which could be built up from var-
ious of powerful object detection baselines. In our
application, we need a real-time LED segmentation
(at around 30 fps) solution with an acceptable mask
accuracy, for which either Mask-YOLO [38], [41] or
YOLACT [42] could be a suitable candidate. For those
system does not have the computational power from
GPU, intensity-threshold based segmentation represents
a simpler method for bright object segmentation which
can be deployed in CPU-only system in real time, and
this technique has already been functioned as an IMAQ
Count Objects block in LabVIEW’s Vision Develop-
ment Module (National Instruments, Austin, TX, USA).

• Standard Deviation of Noise: After measuring and esti-
mating the SNR value for use in a camera with a specific
distance and exposure time, as was done intensively
in [17], the standard deviation corresponding to the
presence of Gaussian white noise in a communication
channel can also be calculated by:

δ2 =
1

N − 1

N−1∑
i=0

(χi − µ)2, (5)

where χi is the intensity of the signal at the sampling
time i; µ is the signal’s mean; N is the number the of
samples, and δ is the standard deviation of the noise. The
signal’s mean can also be calculated by:

µ =
1
N

N−1∑
i=0

χi, (6)

• Blurred parameter (fbl ): This is the novel feature of input
data for the information of the dimming case and the
ratio of the blur kernel in a specific area of the image:

fbl = dimming
kernelarea
imagearea

, (7)

Here, the dimming value ranges from 1 to 7, kernelarea
is the number of pixels occupied by the blur kernel on
the LED image, and imagearea is the total number of
pixels in the LED image (200× 100 pixels). It is worth
noting that the kernel area in this equation is calculated
on the central point of each LED in the LED group.

In Fig. 8, we consider the case in which the blur kernel size
does not exceed the area of one LED in the image (50× 50 in
this case). Therefore, when calculating the post-blur intensity
of the LED’s central point, the whole area of the blur kernel
will be within the cropped image of the LED group.

FIGURE 8. The calculation of the ratio of the blur kernel area in the image
with kernel size = 40 × 40.

FIGURE 9. The calculation of the ratio of the blur kernel area in the image
with kernel size = 60 × 60.

In Fig. 9, the size of the blur kernel (60 × 60) exceeds
the area of one LED in the image (50 × 50). Therefore,
the exact area of the blur kernel inside the cropped image for
calculating the post-blur intensity of the LED’s central point
will be part of the blur kernel.

E. AIEC
Current forward error correction (FEC) technologies are
designed to reduce noise when transmitting data over
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FIGURE 10. Rhombus diagram for encoding the 1/3 code rate AIEC (v1).

long distances. However, if we take into account the effects
of blur on our communication channel, a model that can be
directly trained and adapted by real-world data might offer
a good solution. We herein propose an AIEC method that
includes a novel encoding and decoding strategy for use in
vehicular OCC applications. Symbols are encoded according
to a predefined error correction encoding rule before trans-
mitting. After neural network-based decoding process, these
output symbols will be grouped as cluster of symbols before
being passed through our pretrained AIEC decoder which is
expected to output our original transmitted bitstream.

1) AIEC ENCODER
Traditionally, for error correction purposes, the data bitstream
will be encoded using channel coding before being mapped
into symbols [18]. Our proposed error correction technique
is somewhat different. While it tries to transform each sym-
bol or group of symbols in transmitting the data stream to
a new form–a group of new symbols, following a prede-
fined mapping table. The number of symbols in each group
(original and transformed groups) forms the code rate used
for AIEC encoding.

In this section, we present our recently designed AIEC
encoding table for two code rates: 1/3, which maps each
data symbol into a group of three symbols, and 1/5, which
maps each data symbol into a group of five symbols. Note
that the AIEC encoding method presented here is designed
specifically for the DS8-PSK scheme. However, with some
minor modifications, the encoding and decoding principles
used for neural-network-based error correction could also be
applied to other modulation schemes.

a: CODE RATE 1/3
We recently designed and tested two encoder versions with
the same 1/3 code rate. The first was based on a rhom-
bus diagram that allocates eight symbols in the DS8-PSK
modulation scheme. The proposed rhombus diagram for
three-symbol group mapping is illustrated in Fig. 10.

FIGURE 11. DS8-PSK constellation diagram for symbol-to-pseudo-bit
mapping.

TABLE 2. AIEC encoding table for the 1/3 code rate (version 1).

The procedure for designing the encoding table is as
follows:
• Mapping 3 symbols follow diagram: each 3-symbol sub-
triangle will be served together as a symbol group, for
example (3-7-6), (4-7-3).

• Packet be built anti-clockwise: (3-7-6); (7-6-3); (6-3-7)
• Totally we can build up to 24 different groups labeled
from 0 to 23, as provided in Table 2.

The Hamming distance between two groups can be
calculated by:

d =
3∑
i=1

dHamming(Si(A), Si(B)), (8)

where Si(A) and Si(B) represents ith symbol of group A
and B respectively. Using the encoding method in Table 2,
we increase the minimum Hamming distance between sym-
bols to 3. This enables our first proposed coding technique to
deliver a significantly reduced symbol error rate (SER).

Our second encoder design aims to gradually build just
enough eight mapping groups for eight symbols of DS8-PSK
instead of 24 groups, which results in a significant increase
in the Hamming distance between symbols. The design pro-
cedure for this approach is summarized as follows:
• Symbol-to-pseudo-bit mapping: To directly analyze the
Hamming distance between symbols after AIEC encod-
ing, eight symbols defined in the DS8-PSK modulation
scheme are remapped into pseudo-4-bit form. These
pseudo-4-bit groups are defined in accordance with the
constellation diagram, as illustrated in Fig. 11.

• To form three-symbol groups for 1/3 code rate AIEC,
after the symbol-to-pseudo-bit mapping process, each
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TABLE 3. Mapping group design with s = 3.

TABLE 4. Mapping group design with s = 9.

symbol group will correspond to a 12-pseudo-bit
sequence. To design an efficient encoding table, we are
interested in the sum of the 12 bits in each sequence:

s =
12∑
i=1

bi, (9)

where s is the sum of the pseudo-bits in the sequence and
bi is the binary value (0 or 1) of the ith pseudo-bit.

• The sum of bits will have a minimum value of 0 when all
the pseudo-bits are 0, and a maximum value of 12 when
all the pseudo-bits are 1. Here we choose the sum values
of 3 and 9 for constructing the mapping table.
– For s = 3, four sequences are chosen—005, 050,

500 and 111—as provided in Table 3. The aim is to
maximize the Hamming distance while avoiding an
even distance (2 or 4) between two corresponding
symbols.

– For s = 9, by inverting four sequences in Table 3,
we obtain four sequences with s = 9 in Table 4.

• In total, we construct eight different groups for the eight
symbols in the DS8-PSK modulation scheme, as shown
in Table 5.

By applying our second AIEC encoding method, as shown
in Table 5, the minimum Hamming distance between groups
will be raised to 6. The next section provides a detailed
performance analysis of both of our encoding versions with a
1/3 code rate over the AWGN channel.

b: CODE RATE 1/5
For significantly more reliable data error correction, we can
increase the number of transmitted symbols to five symbols
for each original data symbol, AIEC with code rate 1/5. The
design of this method also follows a unique rhombus diagram,
as illustrated in Fig. 12.

TABLE 5. AIEC encoding table for the 1/3 code rate (version 2).

FIGURE 12. Rhombus diagram for AIEC encoding with code rate = 1/5.

The detailed procedure is as follows:

• Forming a group of three symbols: Four triangles will
be chosen in the rhombus diagram to form three-symbol
groups: (1-2-3), (3-4-5), (5-6-7), and (7-0-1).Working in
an anti-clockwise direction, we can build up to 12 differ-
ent three-symbol groups.

• Doubling the number of group - adding the fourth sym-
bol either 0 or 4: By adding a fourth symbol, either
0 or 4, the mapping group increases from 12 to 24. As a
trade-off, the minimum Hamming distance correspond-
ingly decreases from 6 to 4.

• Increase the Hamming distance between groups: A fifth
symbol can be added based on two trivalues: (0-3-6)
and (1-4-7).

In total, we have constructed 24 different groups, labeled
from 0 to 23, as showed in Table 6. The minimum Hamming
distance among eight symbols is now increased to 8, and
among 24 groups is 6.

2) AIEC DECODER
The AIEC decoder’s operating principle is also based on a
fully connected MLP neural network model. The symbols
output from the neural-network-based decoder described in
Section 3.3 will be gathered to each group of three or five
symbols, depending on the code rate used. Before feeding
these symbols group by group to the AIEC decoder model,
they must be passed through a data preprocessing process,
which remaps every symbol to its corresponding pseudo-4-bit
form, as shown in Fig. 11.
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TABLE 6. AIEC encoding table for the 1/5 code rate.

TABLE 7. Parameters set for the AIEC decoder model.

According to experimentation, to make the model rapidly
converge and deliver better performance on the test set, all
pseudo-bits of value zero are replaced by −1. The sample
set of parameters (number of hidden layers, number of neu-
rons, optimization algorithm, etc.) used for designing the
AIEC decoder, as shown in Table 7, is compatible with both
code rates proposed for AIEC encoding. Since the main task
of AIEC is to detect and correct the data decoding error
caused by the interference noise from communication chan-
nel, we propose a simple NN model to prevent the overfitting
of the model. The number of the hidden layer is kept at
four layers, robust enough to detect and classify the pattern
effectively. With 5 hidden layers or more, the accuracy on
test dataset decreases because of the overfitting. The number
of neural is also picked as small as possible. Based on the
requirement of the encoder, we propose three different NN
that can effectively detect and correct the data decoding error
caused by the interference noise. The version 2 model is
the most robust AIEC model come up with the high code

rate efficiency, compare with other proposed AIEC models.
The ADAM optimization also picked due to its effectiveness
and high convergence speed on shallow classification model
(2 hidden layers only) compare with other optimization. For
three AIEC decoder models, the practical NN training efforts
are 500 epochs. The accuracy of AIEC decreases signifi-
cantly with higher learning effort, as the model becoming
overfitting.

III. EXPERIMENTS SET UP AND PERFORMANCE
EVALUATION
A. LED DETECTION AND TRACKING BASED ON YOLO
FRAMEWORK
To detect vehicular LED groups, we used a 3 min portion of
a night driving video recorded on the highway from Daegu
to Seoul [44] and extracted 400 frames for the training
and validation datasets. The labeling procedure illustrated
in Fig. 13 employs the labeling tool developed by Manivan-
nan Murugavel in [45].

After 9,000 training epochs, the average loss of the
YOLOv2 model was approximately 0.14. We also tested the
performance of the trained model on two videos of night driv-
ing scenarios in Korea, which are provided in Fig. 14 and 15.
Our test video for the highway night driving case can
be found online at https://www.youtube.com/watch?v=
m0SGZHKukzk, and the test video for city driving in Seoul
at night can be found at https://www.youtube.com/watch?v=
sH7pRZPGNm4.

The results demonstrated that real-time object detection
could be achieved using the YOLOv2 model (in which the
acquired processing frame rate varied from 40 to 50 fps in our
experiment). For detecting those RoI with confidence score
higher than 60%, our first video show that we could detect
those RoI at a distance within 150m, with moving speed over
60 km/h in highway. The second video shows a weaker RoI
detecting ability (detection range is within 80 m, the RoI area
is also not correctly fit with confidence score above 40%)
in brighter background, since this lighting condition is not
included in our training set. However, it prove that YOLOv2,
which is based on CNN, can actually perform excellent for
RoI detecting task in optical vehicular communication even at
night time, given that it is trainedwith that type of background
condition. Therefore, we could use recent version of YOLO
framework as a solution for RoI detection in challenging
weather conditions such as rainy, foggy, snowy, which are all
currently presenting in Korea.

B. NEURAL NETWORK-BASED DECODER
As the input to the neural-network-based decoder, LED states
can be extracted from the central point intensity of each
LED area, or from the mean value of all intensities within
each LED area, by comparison to a threshold (binary logic
case) or mapping to a value between 0 and 1 (fuzzy logic
case). In this paper, we consider instance segmentation as an
efficient and practical method for extracting every LED area.
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FIGURE 13. Label tool interface for ground truth bounding box labelling on training image dataset.

FIGURE 14. A test on using YOLOv2 for highway night driving with rain.

Decoder performance analysis was carried out under different
blur and dimming conditions, with data in fuzzy logic form,
simulated using LabVIEW.

1) LED SEGMENTATION WITHIN THE RoI AREA
After object detection phase, we analyzed the LED seg-
mentation phase. The detected area which is defined within
the rectangular bounding box will be extracted as the input
of segmentation phase. Our LED segmentation algorithm
was developed in LabVIEW, which uses the IMAQ Count

Objects block to segment bright objects according to a pre-
defined intensity threshold value, as well as the minimum
andmaximum object size, to minimize unwanted detection of
bright areas other than vehicular LEDs. Following detection,
the LED area is marked from 0, so we need to sort all
of the detected LED numberings prior to central intensity
point extraction. Our strategy is to first detect the four corner
LEDs of a pair of LED arrays, located at the top left, top
right, bottom right, and bottom left of the array pair. These
corner LEDswill consequently be closest to the top-left point,
top-right point, bottom-right point, and bottom-left point of
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FIGURE 15. A test on using YOLOv2 for city driving inside Seoul at night.

TABLE 8. Parameters setting for LED segmentation from background
experiment.

the ROI bounding box. For reference, the parameter settings
in our experiment can be found in Table 8.

The process interface of this phase is illustrated
in Figure 16. After extracting the locations of the four corner
LEDs, other LEDs’ central point coordinates can be interpo-
lated from the coordinates of the four corner LEDs, and the
LED state matrix can be obtained from those central intensity
points to form the input to our proposed neural-network-
based decoder.

The distance is varied from 0.5 to 1m in our experiment.
In the real-world scenario, because we have not make test
on LED segmentation process after RoI detection, so it is
hard to conclude the boundary on achievable distance in real
world scenario. However, since the real-time RoI detection
and tracking task on high-mobility vehicles still be more
challenging and require more computational cost over whole
image, compare with the LED segmentation phase using

LabVIEW; therefore, it is also feasible to achieve the same
mobility and distance in segmentation phase as in the object
detection experiments. It is also noted that the RoI detection
phase is handle on the frames which are sampled from low-
frame rate rolling shutter camera, while segmentation and
data decoding phase will be handle on the frames which are
sampled from high-speed global shutter camera.

2) ANALYSIS OF THE EFFECTS OF BLUR AND DIMMING
LEVEL ON THE DECODING PERFORMANCE OF THE
NEURAL-NETWORK-BASED DECODER
To analyze the effects of the ratio of the area occupied
by the blur kernel over the total LED image area, several
datasets with different blur kernel sizes were generated using
LabVIEW to measure the SER performance. A comparison
between our proposed neural-network-based decoder and a
conventional matched filter model is shown in Fig. 17, with
the dimming level set to 4/8 or 50% throughout our experi-
ments.

In the nonblur case, using a neural-network-based decoder,
the required SNR for 10−4 SER level decreased by 2 dB
compare with the conventional decoder. For the 40× 40 blur
kernel case, the improvement was approximately 2.2 dB.
However, with a blur kernel size of 80 × 80, the proposed
scheme could achieve 10−4 SER level with an SNR of 40 dB,
whereas thematched filter could achieve only 10−3 SER level
for the same SNR condition.

In addition, the dimming level may also affect the blur
in sampling images, the impact of which could be signifi-
cant or trivial, depending on the blur kernel size. In our most
recent paper, it was demonstrated that, without blur, using
the matched filter for data decoding, performance lines cor-
responding to dimming from 2/8 to 6/8 were approximately
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FIGURE 16. Bright object segmentation using threshold on pixel intensities method for LED central points localization
within RoI.

FIGURE 17. The comparison of symbol error rate (SER) performance
between an NN-based decoder and a matched filter on difference blur
kernel size, dimming level is 50%.

similar, whereas dimming of 1/8 and 7/8 yielded the worst
SER performance with similar performance lines [10]. When
blurring occurred with an increase in the blur kernel size
exceeding the LED area, the distinction between performance
lines corresponding to each dimming level also increased.
Fig. 18 and 19 compare the BER performance between an
NN decoder and a matched filter for different dimming cases
with a blur kernel size either contained by (40 × 40 pixels

FIGURE 18. The comparison of symbol error rate (SER) performance
between an NN-based decoder and a matched filter on different dimming
cases with a blur kernel size of 40 × 40.

compared with 50 × 50 pixels for each LED) or exceeding
(60× 60 pixels compared with 50× 50 pixels for each LED)
the LED area.

C. AIEC
Experiments were devised to demonstrate the efficiency
of the new error correction scheme for two code rates:
1/3 and 1/5. For the 1/3 code rate, we used the second version
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FIGURE 19. The comparison of symbol error rate (SER) performance
between an NN-based decoder and a matched filter on different dimming
cases with a blur kernel size of 60 × 60.

FIGURE 20. Performance comparison on using AIEC with code rate
1/3 and 1/5 to the method of using Convolution Code (with blur kernel
size is 40 × 40).

of the mapping table previously provided for SER analysis
of the first encoding method in [11]. An SER performance
comparison using the new version of AIEC versus using the
convolution code for FEC is provided in Fig. 20.

Fig. 20 shows that, to achieve our desired SER perfor-
mance of less than 10−4 in an optical vehicular communi-
cation system, AIEC could significantly reduce the required
SNR, when compared with the convolution code. AIEC with
the 1/3 code rate is guaranteed to reduce the required SNR
by approximately 5 dB, whereas the 1/5 code rate can deliver
a 9 dB reduction in the required SNR, when compared with
just using a neural-network-based decoder.

Fig. 20 shows that to achieve our desire SER performance,
which is below 10−4, in an optical vehicular communication
system, the AIEC could reduce significantly the requirement
on SNR, compared with the use of the Convolution Code.

The AIEC with code rate 1/3 could guarantee to reduce the
require SNR value by 5 dB approximately, while code rate
1/5 could give the ability to reduce the require SNR value
by 9 dB, compare with just using a neural network-based
decoder.

D. SYSTEM COMPLEXITY AND HARDWARE
REQUIREMENTS
By taking consideration on the computational complexity
when designing any AI-based system, we have also calcu-
lated the FLOPS of each proposed in-use neural network-
based block in our implementation by using the method
which is described in [46].
• Neural network-based decoder (18-81-81-8):
14.7 kFLOPs

• AIEC code rate 1/3 (version 1) and code rate 1/5:
24.1 kFLOPs

• AIEC code rate 1/3 (version 2): 14.3 kFLOPs
Though these feed forward neural network models are

simple-designed and not require many computational power,
so the pre-trained model for Neural Network-based decoder
and AIEC could run faster on CPU also.

About using tinyYOLOv2/ v3 pretrainedmodel for setting
up a demo on real time LED detection and tracking, our GPU
specification is NVIDIAGTX 1080Ti, with CUDA version is
10.1 However, the lower generation of GPU with computing
capability above 3.5 still could be used. The comparison on
different object detection backbone about the accuracy and
the amount of required FLOPS could be found in [47]. The
tiny YOLOv3 could be found to achieve more than 200fps
with 33.1 mAP over COCO dataset, with number of required
FLOPs is approximately 5.5 billion. Therefore, it is feasible to
be used in detecting and tracking the RoI in vehicular optical
communication system.

IV. CONCLUSION
Our aim in this paper was to provide a comprehensive archi-
tecture for a vehicular OCC system with AI support. Based
on a conventional ROI signaling OCC system architecture
with two predefined tasks, different AI techniques were con-
sidered in terms of performance enhancement in the system
under investigation to address the challenges of vehicular
environments. For the ROI autodetection and tracking model,
YOLOv2 was identified as a suitable solution for real-time
applications, delivering an acceptable accuracy in boundary
box detection, intended to cover two front/tail vehicle lights
for decoding low-rate ROI signals. We also investigated the
process of LED segmentation within each bounding box
using the IMAQ Count Objects module within LabVIEW.
The average intensity of the light of two vehicles was com-
pared to a threshold value to determine whether each light
source was of a low or a high-dimming level following
the low-rate ROI signal. All LED center intensities within
two vehicle lights were extracted to form the input to our
neural-network-based decoder, which was used to decode
a high-rate data stream. Moreover, we proposed a novel
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end-to-end channel coding method and a neural-network-
based decoding technique, which provided significant
improvements in the SER performance compared to the use
of the convolution code over the vehicular channel model.
In the near future, the design of AI-based optical vehicular
communication systems could benefit from the development
of powerful computing hardware (e.g., the quantum com-
puting hardware being developed by the Google AI team)
and multiple megaframes-per-second cameras on the receiver
side, paving the way for future commercialization of vehicu-
lar OCC technologies.
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