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ABSTRACT The large mass of various products/services accessible on the Internet has motivated the
development of recommender systems to refine the selection of items aligned with users’ expectations.
Recommender systems have been developed to tackle the item targeting problem. They are crucial tools that
quickly target items fitting users’ needs, thus allowing them to easily identify the items that fit their tastes and
preferences. Following state-of-the-art methods, a distinction is made between content-based recommender
approaches and collaborative filtering-based recommender approaches. Collaborative filtering-based rec-
ommender approaches are the most widely adopted methods. They are divided into memory-based methods
that show the advantage of their easy-understandability, and model-based methods that are data sparsity
resilient and high-accurate. In this paper, we propose a hybrid model-based recommendation approach,
a combination of a user-based approach and an item-based approach. Our method estimates the probability
with which a user would rate an item. It performs a Bayesian inference of future end-user interests and shows
the advantage of the easy-understandability of memory-based methods and the effectiveness of model-based
methods. Experiments are conducted on real-world datasets and show that our method outperforms several
state-of-the-art recommendationmethods regarding the prediction accuracy and the recommendation quality.

INDEX TERMS Bayesian inference, recommender system, Dirichlet distribution, collaborative filtering,
maximum a posteriori estimation.

I. INTRODUCTION
The rapid growth of the Internet has boosted the increase
of rich and varied content (videos, films, music, articles,
services etc.). However, the diversity and the large num-
ber of items accessible by users complexify the selection
of items aligned with users’ needs [1], [2]. To address the
information overload problem, Recommender Systems (RS)
have been developed to refine the items’ targeting. Therefore,
RS are decision support tools for end-users. According to
the literature, RS are organized into content-based methods
and Collaborative Filtering (CF)-basedmethods [3]. Content-
based methods rely on the past users’ experiences in order to
predict their future interests. They are strongly focused on
the target user’s profile, and therefore they are not effective
in case of poor user profile [4]. To overcome content-based
methods limitations, CF-based approaches lay on profiles of a
group of users who share the same or similar tastes. CF-based
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methods are built on the assumption that within a group of
users with preferences identical or similar to those of a target
user, the historical data of some of them can be used to predict
the future interests of the target user [5]. CF-based approaches
are very popular and organized into memory-based CF and
model-based CF [6]. From a users’ rating matrix, memory-
based methods rely on computations of inter-user similari-
ties according to user-based CFs, or inter-item similarities
regarding item-based CFs [7]. They are easy-explainable and
simple-implementable but show poor performances in case
of users’ data sparseness [8]. Meanwhile, model-based meth-
ods are complex but show a high precision even for large
datasets [9]. They alleviate the data sparsity problem and the
cold start problem [10]. Indeed, they are effective even when
users’ data are insufficient or when a new user or a new item is
added to the system and no relevant information are available
to improve the related recommendation.

The matrix factorization technique is widely adopted for
the implementation of model-based CFs [11]. This tech-
nique performs a reduction of the original data matrix.
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Following the matrix factorization technique, the prediction
of the target user’s interests is carried out on a reduced data
matrix. Consequently, relevant data are lost during the latent
feature modeling that is a hard masterable process [7]. The
data lost during the matrix factorization process affects the
prediction accuracy and therefore the item targeting preci-
sion. To alleviate the item targeting problem, in this paper,
we propose a hybrid recommender system that uses Bayesian
estimation to predict users’ interests. Our proposal combines
a user-based approach and an item-based approach to assess
the probabilitywithwhich a user rates an item. In other words,
the user’s sensitivity relative to a given item is estimated by
maximizing the posterior probability with which a user rates
an item. Recall that, the user-based approach of our model
refers to infer the probability with which a user rates an item
knowing that users with similar profiles have rated the item;
while the item-based approach of our model refers to estimate
the probability with which an item is rated by a user knowing
that similar items have been rated by the user.

Our contribution in this paper is highlighted by the pro-
posal of a hybrid Bayesian recommender model showing the
advantage of the easy-explainability of memory-based CFs
and the effectiveness of model-based CFs. Indeed, although
high-effective, the hard-understandability of model-based
CFs complexifies their implementation. Our method is easy-
explainable and high-accurate. In this paper, our contributions
are declined as follows:
• A novel Bayesian inference-based model (BIHRS) is
proposed to predict users’ interests. Our model uses a
Dirichlet distribution to accurately model a priori infor-
mation such as the item’s popularity, the usual behavior
adopted by a large number of users, the consumption
habits, and preferences shared by a majority of users.

• An easy-explainable and high-accurate recommendation
approach is developed by combining assets of memory-
based CFs and model-based CFs. Indeed, the proposed
recommender approach benefits from a hybridization
process that enables the inclusion of all various aspects
raised by interactions between users and items; and
therefore increases the resilience of our method to
the data sparsity problem. With an increased data-
sparseness resilience thanks to an effective hybridiza-
tion, our method shows a valuable recommendation
accuracy.

• Extensive experimentations are conducted on various
real-world datasets to highlight the effectiveness and the
scalability of our proposal.

The remainder of this paper is organized as follows:
section II surveys state-of-the-art recommendation methods,
section III details our recommendation approach. Section IV
describes the conducted experiments and obtained results.
Section V concludes this paper and presents our perspectives.

II. RELATED WORK
The information overload on the Internet has complexi-
fied the selection of items relevant regarding users’ needs.

The challenges in the RS’s field havemotivated researchers to
develop recommendation methods. In this section, we survey
state-of-the-art methods employed in CF-based approaches
as CFs are part of the most influential recommendation algo-
rithms [8] and are related to our proposal.

A. MEMORY-BASED METHODS
Memory-based CFs exploit users’ ratings relative to items
to make the recommendation. For this purpose, a user-item
matrix is built from the collected ratings. Afterwards, inter-
user similarities are computed to assess the proximity of
tastes between users [7]. Finally, the recommendation is
based on a weighted average of ratings of users having
similar preferences [8]. Another variant of memory-based
CF focuses on items and computes inter-item similarities to
assess the proximity of users’ interests raised by items [12].

In [13], the authors propose a recommender system based
on inter-user trust relationships. They define a measure of
inter-user similarity from a customized Pearson Correlation
Coefficient (PCC) and the Jaccard Correlation Coefficient
(JCC) [14]. Subsequently, the inter-user trustworthiness is
assessed in order to guarantee the recommendation reliability.

The authors in [15] propose a cloud service recommen-
dation approach based on the evaluation of inter-user sim-
ilarity using the Spearman Rank Correlation Coefficient
(SRCC). The authors’ proposal presents the advantage of
ranking prediction accuracy. In [16], the authors propose a
similar recommendation approach but they apply the data
smoothing technique to improve the recommendation quality.
Following [17], the authors propose a recommendationmodel
based on a customized K-means algorithm combined with
the cuckoo search to aggregate users with similar profiles.
Regarding [18], the authors propose a measure of inter-user
similarity based on Bayes concordance rate to improve the
recommendation precision. In [12], the authors propose an
efficient privacy-preserving recommendation approach. The
authors’ method is based on an item-based CF. To pre-
serve user privacy, the authors assess inter-item similarity
using a customized PCC. Memory-based CFs used in the
aforementioned researches present the advantage of being
easy-understandable and easy-implementable. However, they
are unsuitable for large datasets because they are high-
computational cost methods, and therefore non-scalable and
low-accurate. Indeed, the similarity computations are per-
formed on a full high-dimensional rating matrix inducing an
increase of the computational cost. In addition, referring to
the data sparsity problem, these proposals show poor perfor-
mances when a large amount of relevant data is missing.

B. MODEL-BASED METHODS
Model-based CFs apply machine learning techniques to build
from users’ data, a model that better fits observations [19].
Model-based methods are high-accurate and data sparsity-
resilient. It means that they are effective even when facing
the missingness of significant information relevant to the
recommendation refinement [20].

VOLUME 8, 2020 101683



A. N. Ngaffo et al.: Bayesian Inference Based Hybrid Recommender System

The matrix factorization technique is widely used in
model-based CFs due to its efficiency in modeling users’
preferences from a small number of latent factors [21]. This
technique consists in reducing high-dimensional users’ data
matrix into low-dimensional matrices thanks to an accurate
selection of relevant latent features [22]. Thereafter, an opti-
mization method is applied to minimize the error due to the
matrix reduction [11].

Assuming that users’ data can be modeled by low-
dimensional latent factors matrices, in [23], the authors use
the matrix factorization technique to improve the recommen-
dation accuracy. To tackle the data sparsity problem and the
cold-start problem, in [24], the authors propose a probabilistic
matrix factorization framework for an online recommenda-
tion. The authors in [25], present a non-negative variant of
matrix factorization that integrates social trust information in
amodel that addresses data sparsity and cold start issues.With
a similar trend, the authors in [26] integrate social information
into their recommender system based on a matrix factoriza-
tion method. From implicit feedbacks, the authors in [27]
propose a personalized ranking method using a Bayesian
pairwise learning to improve the recommendation perfor-
mances that are based on the matrix factorization technique.
The authors in [28], propose a time-aware recommendation
approach that uses a matrix factorization technique and a
Long Short Term Memory (LSTM) model for the selection
of services from the Quality of Service (QoS) prediction.
In [29], [30], authors propose a matrix factorization based
method that uses a Bayesian strategy. In [29], they propose
a probabilistic matrix factorization based recommendation
approach that they extend in [30] by applying the Gibbs
sampling strategy that speeds up the algorithm convergence
and therefore enhances the execution time of their method.

To alleviate the data sparseness issue, the authors in [31]
propose a hybrid recommendation approach for tourist spots.
Their proposal assesses the correlation between image fea-
tures using a Bayesian ranking algorithm. In [32], the authors
propose a model-based CF using a parallel naive Bayesian
approach implemented on a Hadoop distributed infrastruc-
ture. While researchers in [33] infer the potential risk
of disease using Bayesian collaborative filtering. In [34],
the authors develop an electricity plan recommender system
using a probabilistic approach to predict the missing features
used in the recommendation of electricity retailing plans.
The authors’ approach is based on a matrix factorization
technique to reduce the computational cost of their algorithm.
The authors in [35], propose a recommendation approach
based on a naive Bayesian classifier to predict the probability
with which a user rates an item. However, the authors use a
uniform probability distribution that does not consider a priori
intuitions related to the item’s popularity, the consumption
habits adopted by the majority of users. Authors in [36], [37]
propose recommendation approaches based on Bayesian net-
works. Those methods are both based on the Naive Bayesian
classifier that benefits from the effectiveness of model-
based approaches. In [37], they use Laplace estimator in the

prediction process, while authors in [36] combine content-
based and CF-based approaches to enhance the prediction
accuracy. However, those methods both employ uniform
a priori probabilities that do not hold some real considera-
tions. Indeed, in practice users rate only a small subset of
items. In this way, some items are more popular than others,
and they therefore show a higher a priori probability to be
selected by users compared to other items. It means that a
uniform a priori probability will not consider those aspects.
Furthermore, users who rate most of the items show a higher
a priori probability to select an item. For this purpose, our
proposal lays on non-uniform probability distributions and
hybridization between a user-based approach and an item-
based approach in order to consider all aspects raised by inter-
actions between users and items, and therefore enhance the
prediction accuracy. In addition, the proposed method gains
accuracy by considering non-uniform probabilities that con-
sider the aforementioned aspects of user-item interactions.

Based on the matrix factorization technique, the above-
surveyed researches present the advantage of being high
accurate and efficient for large datasets. However, the matrix
factorization technique is mainly based on the decomposition
into low-dimensional latent factor matrices which is a com-
plex, hard-explainable and hard-masterable process. Mean-
while the above-presented bayesian researches are based on
uniform probability distributions that do not model the a pri-
ori information in a realistic way given the observed data.

C. HYBRID RECOMMENDATION METHODS
Hybrid recommender systems have been developed to
alleviate limitations shown by existing user-based CF,
item-based CF, content-based, and model-based approaches
separately [38]. In hybrid approaches, predictions are per-
formed on each method involved in the hybridization process
separately, and thereafter combined to overcome some com-
mon problems such as cold start problem and data sparse-
ness [39]. In the literature, several approaches [40]–[42] are
developed to benefit from hybrid recommender systems. The
main advantage of those methods is their ability to employ
plural aspects raised by interactions between users and items
to refine as most as possible the recommendation. In [43],
the authors propose a hybrid recommendation approach
that combines several explanations styles (user-based, item-
based, popularity-based) to refine the music recommenda-
tions. Authors in [44] propose a recommendation method
that merges item-based CF, user-based CF, and factor-based
approaches in order to build a hybrid recommender system
for artists. Researchers in [45] exploit user-item interactions
and data from purchased items to propose a hybrid system
for artist recommendation. As the above-presented methods,
existing hybrid recommender systems are based on a com-
bination of recommendation approaches which have shown
some limitations. Their effectiveness, therefore, remains lim-
ited by the drawbacks of methods involved in the hybridiza-
tion process. To remedy this, the hybridization of our proposal
lays on Bayesian user-based and item-based approaches that
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are separately efficient before the effectiveness of the hybrid
method.

In this paper, we embed the hybridization concept to ben-
efit from various aspects raised by user-items interactions.
We perform a hybrid prediction as each user presents an
interest in specific items; and reversely, each item raises an
interest observed from a set of users who have consumed it.
To address the fast items identification problem, we propose
an easy-explainable and high-accurate Bayesian recommen-
dation approach. Driven by Dirichlet distributions, our pro-
posal considers a priori information and users’ intuitions to
accurately model the observed ratings.

The next section presents our BIHRS approach.

III. BIHRS RECOMMENDATION METHOD
The proposed recommendation approach is flexible and con-
figurable since any kind of actions (clicks, likes, purchases,
reviews . . . ) that users perform on items can be transformed
into scores assimilable to ratings. In this way, the degree
of the users’ interest on items is therefore scored like an
explicit rating would do. This configurability of our model
contributes to the robustness of the system to the cold-start
problem that happens when a new item or a new user is added
to the system knowing that there are no explicit ratings on the
new item or from the new user. In the rest of the paper, our
model is fed by ratings assigned by users on items knowing
that any other type of users’ actions on items can be scored
as explicit ratings and involved to feed our prediction model.

Our approach aims to estimate the probability with which
a user u would rate an item i with an unknown rating r̃ui.
Recall that each rating assigned to an item by a user reflects
the level of interest expressed by the user relatively to the
concerned item. In other words, to predict the future interest
of a user u, it is required to infer the probability with which
he would rate an item i. The Bayesian approach used in our
model first identifies the probability distribution that better
fits the observed ratings. Thereafter, the probability model of
the estimation parameters is built in order to generalize the
probability distribution of observations and ratings likely to
be assigned on item in the future by the active user. Following
the Bayesian approach, Fig. 1 describes the workflow of our
BIHRS estimation model as follows:

• The historical users’ experiences regarding items are
expressed via a D tensor of users’ ratings probabilities,
and via a B tensor of probabilities of ratings on items.
The D tensor is fed by the dataset of users’ ratings while
the B tensor is fed by the dataset of observations on
items.

• Subsequently, we estimate the hu(�) prior probability
distribution of the users’ cluster membership and the
overall rating probability of each users’ cluster. Analog-
ically, regarding the item-based approach, we calculate
the hi(3) prior probability distribution of the items’
cluster membership and the overall rating probability by
each items’ cluster.

FIGURE 1. The BIHRS Model.

• We evaluate the gu(D|�) sampling distribution of users’
ratings considering the α users’ cluster membership
parameter and the γ overall rating probability parameter
of each users’ cluster. From the item-based approach,
we compute the gi(B|3) sampling distribution of rat-
ings observed on items considering the θ items’ cluster
membership and the ω overall rating probability of each
items’ cluster.

• Based on the hu(�) prior probability distribution,
we infer the gu(�|D) posterior probability distribution
of users’ ratings consideringD observations. Thereafter,
we infer the gu(d̃ |D) Bayesian predictive distribution of
unknown observable d̃ given the D users’ observations.
Considering the D users’ observations, the gu(d̃ |D) dis-
tribution evaluates the d̃ probability with which a user
u would rate an item i by assigning it an unknown
rating r̃ui. From the item-based approach, based on
the hi(3) prior probability distribution, we estimate
the gi(b̃|B) Bayesian predictive distribution of unknown
observable b̃ considering the B observations on items.
Given the B observations on items, the gi(b̃|B) distribu-
tion prospectively evaluates the b̃ unknown probability
with which an item i is rated by a user u.

• From Bayesian predictive distributions gu(d̃ |D) and
gi(b̃|B), the hybridization is performed to obtain a hybrid
Bayesian predictive distribution p̃ui. Following theMax-
imum a Posteriori (MAP) principle, the unknown rating
r̃ui is deduced by maximizing p̃ui.

To increase the robustness of our model related to data
sparsity, we build clusters using the popular K-means algo-
rithm [46]. To enhance the clustering performance, we elect
centroids of clusters following a specific scheme. At the
initialization of the clustering process, the first centroid is
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the user who has rated the highest number of items to get
more common items between him and other users. The other
centroids are thereafter selected among users in such a way
that maximizes the distance between them and existing cen-
troids. That distance is characterized by a probability defined
as follows [47]:

p =
Dist(u′)2∑

u∈U
Dist(u)2

, (1)

where u′ is a potential centroid. and Dist is computed as
follows:

Dist(u′) =
1

SimPCC + τ
, (2)

where SimPCC is the similarity evaluated between u′ and
existing centroids according to the Pearson Correlation Coef-
ficient (PCC) [8], and τ ≥ 1 is a positive value that avoids
negative distance due to values of PCC that range between
−1 and 1. Through an analogical approach, we initialize
items clustering process by selecting as the first centroid,
the item that has been most often rated. Other centroids are
selected among items the most distant from existing cen-
troids. Once elected centroids, the remaining of the process
consists to populate clusters by adding users and items that
are the most similar to centroids.

Our estimation model is based on the distribution of all
users into users’ clusters. In accordance with the principle
of collaborative filtering, the idea is to use the historical
experiences of certain users of the users’ cluster to infer the
other users’ future experiences. Each users’ cluster aggre-
gates users with similar preferences; to mean users who
have historically assigned similar ratings to the same items.
From a probabilistic approach, considering users’ profiles,
a user belongs to a users’ cluster CLUt with an a priori
probability αt . By similar reasoning, items are also organized
into items’ clusters. An item is assigned to an items’ cluster
according to the proximity of ratings on it. An item belongs
to an items’ cluster CLIl with an a priori probability θl .
Fig. 2 describes the probability distribution of users and items
clusters membership.

The next subsection presents our mathematical model.

A. PROBLEM FORMULATION
We consider the set of M users U = {u1, u2, . . . , uM }, and
the set of N items I = {i1, i2, . . . , iN }. Users are divided into
t clusters, t ∈ T where T = {1, 2, . . . ,C} is the set of the
number of users’ clusters. Items are organized in l clusters,
l ∈ L where L = {1, 2, . . . ,H} is the set of the number of
items’ clusters. Users rate items by assigning them r values;
r ∈ R = {r1, r2, . . . , rS}.
We define α = {α1, α2, . . . , αt , . . . , αC }, the vector of

probabilities of membership to the respective users’ clus-
ters CLU1,CLU2, . . . ,CLUt , . . . ,CLUC . Each user belongs
to a cluster CLUt with a probability αt , where t ∈ T .

FIGURE 2. User and Item Clusters Membership Probabilities.

We consider θ = {θ1, θ2, . . . , θl, . . . , θH }, the vector of
probabilities of membership to the respective items’ clus-
ters CLI1,CLI2, . . . ,CLIl, . . . ,CLIH . Each item belongs to
a cluster CLIl with a probability θl , where l ∈ L.

B. USER-BASED APPROACH
We consider the tensor D ∈ 9M×N×S , where 9 ∈ [0, 1].
The tensor D = [duir ]M×N×S is defined by using the U set of
users, the I set of items, and the R set of ratings. This tensor
hosts the duir probabilities of the rating r assigned by a user
u on an item i. We consider γ = {γ1, γ2, . . . , γt , . . . , γC },
the vector of users’ ratings probabilities belonging to clusters
CLU1,CLU2, . . . ,CLUt , . . . ,CLUC respectively. Accord-
ing to the Bayesian theory [48], we set the estimation param-
eter � = (α, γ ) made from probabilities of users’ cluster
membership and users’ rating probabilities by cluster.

The purpose is to predict the probability with which a user
u rates an item i given the � estimation parameter and the D
set of historical observations known as past observed users’
ratings. Following the Bayesian inference, we estimate the
gu(d̃ |D) predictive distribution of a d̃ unknown observable
given the D set of observed users’ ratings. For this pur-
pose, we implement in Algorithm 1 a progressive reasoning
declined as follows:
• Estimation of the gu(D|�) sampling distribution also
known as the Likelihood distribution according to
Bayesian theory [49]. This distribution is defined as the
probability distribution of all users’ ratings.

• Estimation of the hu(�) prior distribution defined as the
probability distribution of � estimation parameter.

• Estimation of the gu(�|D) posterior distribution known
as the probability distribution of the � parameter based
on observations.

• Estimation of the gu(d̃ |D) Bayesian predictive distri-
bution defined as the probability distribution for an
unknown observable d̃ .
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Considering a user u belonging to the cluster CLUt with
a αt cluster membership probability. His gu(du|�) rating
probability distribution is trivially described as a multinomial
distribution defined as follows:

gu(du|�) = αt
∏
i∈I

∏
r∈R

duir vuir , (3)

where vuir is a random variable set to 1 when user u rates
an item i with rating r , and 0 otherwise; du is the known
observable relative to user u; and duir is the probability with
which the active user u rates an item i.
Given the fact that the user u can belong to any cluster

CLUt , t ∈ T , the gu(du|�) is reexpressed as follows:

gu(du|�) =
C∑
t=1

αt
∏
i∈I

∏
r∈R

duir vuir . (4)

The overall gu(D|�) users’ rating probability distribu-
tion [50] also known as the sampling distribution or Likeli-
hood distribution, is described as follows:

gu(D|�) =
∏
u∈U

C∑
t=1

αt
∏
i∈I

∏
r∈R

duir vuir . (5)

The next step is to estimate the hu(�) prior distribution of
the � estimation parameter. The hu(�) prior probability dis-
tribution aims to model a priori user-related information such
as the most common users’ consumption habits. To estimate
hu(�), it is mathematically convenient to choose a conjugate
distribution to reduce the estimation process complexity [48].
The Dirichlet distribution is the right conjugate prior distri-
bution given our gu(D|�) Likelihood distribution that is a
multinomial probability function [51].

Because α and γ parameters are both independent vec-
tors, the hu(�) prior distribution is deductively computed as
follows:

hu(�) = hu(α).hu(γ ), (6)

where hu(α) and hu(γ ) are partial prior distributions defined
by Dirichlet functions.

The hu(α) distribution is expressed as follows:

hu(α) =
0(λ1 + · · · + λK )
0(λ1)+ · · · + 0(λK )

K∏
j=1

C∏
t=1

αt
λj−1

=

0(
K∑
j=1
λj)

K∏
j=1
0(λj)

K∏
j=1

C∏
t=1

αt
λj−1

=
1

Be(λ)

K∏
j=1

C∏
t=1

αt
λj−1, (7)

where λ1, λ2, . . . , λK are Beta function hyperparameters. For
a non-informative prior [48], we set K = 1 and λ = 1.

The hu(γ ) partial prior distribution is computed as follows:

hu(γ ) =
0(µ1 + · · · + µK )
0(µ1)+ · · · + 0(µK )

K∏
j=1

∏
r∈R

duirµj−1

=

0(
K∑
j=1
µj)

K∏
j=1
0(µj)

k∏
j=1

∏
r∈R

duirµj−1

=
1

Be(µ)

k∏
j=1

∏
r∈R

duirµj−1, (8)

where µ1, µ2, . . . , µK are Beta function hyperparameters.
As for the hu(α) distribution, for a non-informative prior,
we set K = 1 and µ = 1.

After estimating the gu(D|�) Likelihood and the hu(�)
prior distributions, we infer the gu(d̃ |D) Bayesian predictive
distribution for an unknown observable d̃ . For this purpose,
we first estimate the gu(�|D) overall posterior distribution of
� estimation parameter given the D set of observed users’
ratings. Thereafter, from the gu(�|D) posterior distribution,
the gu(d̃ |D) Bayesian predictive distribution is deduced.
According to the Bayesian theory [49], the gu(�|D) posterior
distribution is computed as follows:

gu(�|D)∞ hu(�).gu(D|�)
∞ hu(α).hu(γ ).gu(D|�)

, (9)

where hu(α) and hu(γ ) are prior distributions; and gu(D|�) is
the Likehood distribution computed in Equation (5).
According to [48], the gu(d̃ |D) Bayesian predictive distri-

bution is computed as follows:

gu(d̃ |D) =
∫
�

gu(d̃, �|D)d(�)

=

∫
�

gu(d̃ |�,D)gu(�|D)d(�), (10)

where gu(�|D) is the overall posterior distribution of the
estimation parameter given the observed users’ ratings; and
gu(d̃ |�,D) is the joint sampling distribution for the unknown
observable d̃ given the D set of observations.
The integral in the gu(d̃ |D) expression is complex to com-

pute. To reduce the computational complexity, we use a
numerical integration for a straight computation [49]. The
gu(d̃ |D) distribution is reexpressed as follows:

gu(d̃ |D) =
C∑
t=1

gu(d̃ |αt ,D).gu(αt |D). (11)

The gu(d̃ |αt ,D) distribution component of Equation (11)
is estimated as follows [48]:

gu(d̃ |αt ,D) ∞
∫
γ

gu(d̃ |αt , γ )gu(D|αt , γ )hu(γ )dγ

∞

∫
γ

αt

Be(µ)

∏
r∈R

d
vui+µ−1+

∑
j∈CLUt

vjir

ui dγ . (12)
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The integral in Equation (12) can be approximated by a
Beta function as follows:

gu(d̃ |αt ,D)

∞
αt

Be(µ)

∗Be (vui + µ+
∑

j∈CLUt

vjir , · · · , vui + µ+
∑

j∈CLUt

vjir )︸ ︷︷ ︸
R−dim ension vector

.

(13)

From the original definition of the Beta function through
the Gamma function, Equation (13) can be rewritten as
follows:

gu(d̃ |αt ,D)∞
αt

Be(µ)

∏
r∈R

0(µ+
∑

j∈CLUt
vjir )

0(
∑
r∈R

(µ+
∑

j∈CLUt
vjir ))

. (14)

By averaging Equation (14), the gu(d̃ |αt ,D) distribution is
approximated as follows:

gu(d̃ |αt ,D)∞
αt

Be(µ)

µ+
∑

j∈CLUt
vjir

Rµ+
∑
r∈R

∑
j∈CLUt

vjir
. (15)

According to the Bayesian theory, the gu(αt |D) distribution
component of Equation (11) is estimated as follows:

gu(αt |D) ∞
∫
�

gu(D|αt , γ )hu(α)hu(γ )d�

∞

∫
�

(∏
i∈I

∏
r∈R

αtd

∑
j∈CLUt

vjir

uir

)

∗

(
1

Be(λ)

C∏
t=1

αt
λ−1

)(
1

Be(µ)

∏
r∈R

duirµ−1
)
d�

∞
1

Be(λ)Be(µ)

∫
�

(
C∏
t=1

αt
λ

)

∗

(∏
i∈I

∏
r∈R

d
µ−1+

∑
j∈CLUt

vjir

uir

)
d�, (16)

The integral in Equation (16) can be approximated by a
Beta function as follows:

gu(αt |D)

∞
1

Be(λ)Be(µ)
Be (λ+ 1, · · · , λ+ 1)︸ ︷︷ ︸

C−dim ension vector

∗

∏
i∈I

Be (µ+
∑

j∈CLUt

vjir , · · · , µ+
∑

j∈CLUt

vjir )︸ ︷︷ ︸
R−dim ension vector

Algorithm 1 User-Based BIHRS Algorithm
Data:
• D : Tensor of users’ ratings probabilities
• α : Vector of probabilities of users’ cluster
membership

• γ : Vector of ratings probabilities by users’ cluster
• µ, λ : Beta function hyperparameters
• I : Set of items
• U : Set of users
• C : Number of users’ clusters

Result: gu(d̃ |D) the Bayesian predictive distribution for
an unknown observable d̃

1 Begin
2 Compute the sampling distribution

gu(D|�) =
∏
u∈U

C∑
t=1

αt
∏
i∈I

∏
r∈R

duivuir ;

3 Compute the partial prior distribution hu(α) using (7);
4 Compute the partial prior distribution hu(γ ) using (8);
5 Compute the joint prior distribution
hu(�) = hu(α).hu(γ );

6 Compute the posterior distribution
gu(�|D) = hu(�).gu(D|�);

7 for t from 1 to C do

8 gu(d̃ |αt ,D) =
αt

Be(µ)

µ+
∑

j∈CLUt
vjir

Rµ+
∑
r∈R

∑
j∈CLUt

vjir
;

9 gu(αt |D) = 1
Be(λ)Be(µ)

(
λ+1
Cλ+C

)∏
i∈I

µ+
∑

j∈CLUt
vjir

Rµ+
∑
r∈R

∑
j∈CLUt

vjir
;

10 Compute the Bayesian predictive distribution for an
unknown observable d̃
gu(d̃ |D)+ = gu(d̃ |αt ,D).gu(αt |D);

11 end
12 Return gu(d̃ |D);

∞
1

Be(λ)Be(µ)

C∏
t=1

0(λ+ 1)

0(
C∑
t=1

(λ+ 1))

∏
i∈I

∏
r∈R

0(µ+
∑

j∈CLUt
vjir )

0(
∑
r∈R

(µ+
∑

j∈CLUt
vjir ))

∞
1

Be(λ)Be(µ)

C∏
t=1

0(λ+ 1)

0(Cλ+ C)

∏
i∈I

∏
r∈R

0(µ+
∑

j∈CLUt
vjir )

0(Rµ+
∑
r∈R

∑
j∈CLUt

vjir )
,

(17)

By averaging Equation (17), the gu(αt |D) distribution is
estimated as follows:

gu(αt |D)∞
1

Be(λ)Be(µ)

(
λ+1
Cλ+C

)∏
i∈I

µ+
∑

j∈CLUt
vjir

Rµ+
∑
r∈R

∑
j∈CLUt

vjir
,

(18)

Algorithm 1 summarizes the Bayesian inference process
following the user-based approach.
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The next subsection details the Bayesian inference process
regarding the item-based approach.

C. ITEM-BASED APPROACH
We consider the tensor B ∈ 8N×M×S , where8 ∈ [0, 1]. The
tensorB = [biur ]N×M×S is defined by using the I set of items,
the U set of users, and the R set of ratings. This tensor hosts
the buir probabilities of a rating r on an item i and assigned
by a user u. We consider ω = {ω1, ω2, . . . , ωl, . . . , ωH },
the vector of ratings probabilities on items belonging to clus-
ters CLI1,CLI2, . . . ,CLIl, . . . ,CLIH respectively. We con-
sider θ = {θ1, θ2, . . . , θl, . . . , θH }, the vector of membership
probabilities respectively related to the items’ clusters
CLI1,CLI2, . . . ,CLIl, . . . ,CLIH . Following the Bayesian
theory, we set the estimation parameter 3 = (θ, ω) from
probabilities of items’ cluster membership and rating prob-
abilities on items by cluster.

As for the user-based approach, in the item-based
approach, we adopt in Algorithm 2 a progressive reasoning
declined as follows:
• Estimation of the gi(B|3) sampling distribution of all
ratings on items given the 3 parameter.

• Estimation of the hi(3) prior distribution of 3 estima-
tion parameter.

• Estimation of the gi(3|B) posterior distribution that
refers to the probability distribution of the 3 parameter
based on observations.

• Estimation of the gi(b̃|B) Bayesian predictive distribu-
tion for an unknown observable b̃.

Let an item i belonging to the cluster CLIl with a θl
cluster membership probability. Its gi(bi|3) rating probability
distribution is trivially described as amultinomial distribution
defined as follows:

gi(bi|3) = θl
∏
u∈U

∏
r∈R

biurwiur , (19)

where wiur represents a random variable set to 1 when item i
receives a rating r assigned by user u, and 0 otherwise; bi is
the known observable relative to item i.
Knowing that item i can belong to any cluster CLIl , l ∈ L,

the gi(bi|3) is reexpressed as follows:

gi(bi|3) =
H∑
l=1

θl
∏
u∈U

∏
r∈R

biurwiur . (20)

The overall gi(B|3) rating probability distribution on
item i, also known as the Likelihood or sampling distribution,
is described as follows:

gi(B|3) =
∏
i∈I

H∑
l=1

θl
∏
u∈U

∏
r∈R

biurwiur . (21)

Now, we estimate the hi(3) prior distribution of the 3
estimation parameter. The hi(3) prior probability distribution
aims to model realistic considerations such as items’ popular-
ity information. To estimate hi(3), we employ the Dirichlet
distribution as the conjugate prior for the gi(B|3) multinomial

Likelihood function. Because of the independency of parame-
ters vectors θ andω, the hi(3) prior distribution is deductively
estimated as follows:

hi(3) = hi(θ ).hi(ω), (22)

where hi(θ ) and hi(ω) are partial prior distributions defined
by Dirichlet functions.

The hi(θ ) distribution is computed as follows:

hi(θ ) =
1

Be(ϕ)

K∏
j=1

H∏
l=1

θl
ϕj−1, (23)

where ϕ = (ϕ1, ϕ2, . . . , ϕK ) are Beta function hyperparame-
ters. For a non-informative prior, K and ϕ are set to 1.

The hi(ω) distribution is obtained as follows:

hi(ω) =
1

Be(ε)

K∏
j=1

∏
r∈R

biur εj−1, (24)

where ε = (ε1, ε2, . . . , εK ) are Beta function hyperparame-
ters. For a non-informative prior, K and ε are set to 1.

After having computed the gi(B|3) Likelihood and the
hi(3) prior distributions, we estimate the gi(b̃|B) Bayesian
predictive distribution associated to an unknown observ-
able b̃. For this purpose, we first infer the gi(3|B) pos-
terior distribution of 3 estimation parameter given the B
set of observations. Afterwards, from the gi(3|B) posterior
distribution, the gi(b̃|B) Bayesian predictive distribution is
inferred. Following the Bayes rule [49], the gi(3|B) posterior
distribution is obtained as follows:

gi(3|B)∞ hi(θ ).hi(ω).gi(B|3) , (25)

where hi(θ ) and hi(ω) are prior distributions; and gi(B|3) is
the Likehood distribution.

The gi(b̃|B) Bayesian predictive distribution is computed
as follows:

gi(b̃|B) =
∫
3

gi(b̃|3,B)gi(3|B)d(3), (26)

where gi(3|B) is the posterior distribution of the3 estimation
parameter given observations; and gi(b̃|3,B) is the joint
sampling distribution for the b̃ unknown observable given the
B set of observations.

For a straight computation, the gi(b̃|B) distribution is
approximated as follows:

gi(b̃|B) =
H∑
l=1

gi(b̃|θl,B).gi(θl |B). (27)

The gi(b̃|θl,B) distribution component of Equation (27) is
approximated as follows:

gi(b̃|θl,B)∞
θl

Be(ε)

ε +
∑

j∈CLIl
wjur

Rε +
∑
r∈R

∑
j∈CLIl

wjur
. (28)
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The gi(θl |B) distribution component of Equation (27) is
computed as follows:

gi(θl |B)∞
1

Be(ϕ)Be(ε)

(
ϕ+1
Hϕ+H

)∏
u∈U

ε+
∑

j∈CLIl
wjur

Rε+
∑
r∈R

∑
j∈CLIl

wjur
.

(29)

Algorithm 2 details the Bayesian inference process
regarding the item-based approach.

Algorithm 2 Item-Based BIHRS Algorithm
Data:
• B : Tensor of probabilities of ratings on items
• θ : Vector of probabilities of items’ cluster
membership

• ω : Vector of ratings probabilities by items’ cluster
• ε, ϕ : Beta function hyperparameters
• I : Set of items
• U : Set of users
• H : Number of items’ clusters

Result: gi(b̃|B) : The Bayesian predictive distribution for
an unknown observable b̃

1 Begin
2 Compute the sampling distribution

gi(B|3) =
∏
i∈I

H∑
l=1
θl
∏
u∈U

∏
r∈R

biurwiur ;

3 Compute the partial prior distribution hi(θ ) using (23);
4 Compute the partial prior distribution hi(ω) using (24);
5 Compute the joint prior distribution hi(3) = hi(θ ).hi(ω);
6 Compute the posterior distribution
gi(3|B) = hi(3).gi(B|3);

7 for l from 1 to H do

8 gi(b̃|θl,B) =
θl

Be(ε)

ε+
∑

j∈CLIl

wjur

Rε+
∑
r∈R

∑
j∈CLIl

wjur
;

9 gi(θl |B) = 1
Be(ϕ)Be(ε)

(
ϕ+1
Hϕ+H

) ∏
u∈U

ε+
∑

j∈CLIl

wjur

Rε+
∑
r∈R

∑
j∈CLIl

wjur
;

10 Compute the Bayesian predictive distribution for an
unknown observable b̃
gi(b̃|B)+ = gi(b̃|θl,B).gi(θl |B);

11 end
12 Return gi(b̃|B);

The next subsection describes the approximation of our
BIHRS model which is a combination of the user-based
approach and the item-based approach.

D. MARKOV CHAIN MONTE-CARLO SAMPLING
The above-computed Bayesian predictive distributions host
a significant number of computationally greedy sums in
high dimensions. In order to avoid computational overflows,
we perform aMarkov ChainMonte Carlo (MCMC) sampling
of our model. MCMC sampling is a numerical integration

method that allows the approximation of an integral over
continuous function by computing the function over a finite
number of values [52]. TheMetropolis algorithm is one of the
most widely adopted MCMC sampling methods [48]. Like
an adaptation of the RandomWalker [53], it is based on con-
ditioned moves towards the target approximate distribution.
Iterations are performed in order to converge towards the tar-
get distribution. At each iteration, the move is validated by a x
acceptance rate. For this purpose, from gu(d̃ |αt ,D), we draw
a sample α1, α2, . . . , αQ; and from gi(b̃|θl,B), we draw a
sample θ1, θ2, . . . , θP.

From the user-based approach, a move αt → αt
∗ is

validated with a probability equal to min(xu, 1), with the
acceptance rate

xu =
gu(α∗t |D)

gu(αt |D)

=

∏
i∈I

α∗t (µ+
∑

j∈CLUt
v∗jir )

αt (µ+
∑

j∈CLUt
vjir )

Rµ+
∑
r∈R

∑
j∈CLUt

vjir

Rµ+
∑
r∈R

∑
j∈CLUt

v∗jir
.

Recall that the variables vjir and v∗jir are respectively induced
by αt and αt∗. The sample is used to approximate the gu(d̃ |D)
Bayesian predictive distribution as follows:

gu(d̃ |D) =
1
Q

Q∑
q=1

gu(d̃ |αq,D). (30)

Following the item-based approach, a move θl → θl
∗

is granted with a probability equal to min(xi, 1), with the
acceptance rate

xi =
gi(θ∗l |B)

gi(θl |B)

=

∏
u∈U

θ∗l (ε +
∑

j∈CLIl
w∗jur )

θl(ε +
∑

j∈CLIl
wjur )

Rε +
∑
r∈R

∑
j∈CLIl

wjur

Rε +
∑
r∈R

∑
j∈CLIl

w∗jur
.

The random variables wjur and w∗jur are respectively induced
by θt and θ t∗. The sample is used to approximate the gi(b̃|B)
Bayesian predictive distribution as follows:

gi(b̃|B) =
1
P

P∑
p=1

gi(b̃|θp,B). (31)

The next subsection describes the rating prediction.

E. HYBRID RATING PREDICTION
The hybridization in our method consists of the merging of
user-based and item-based approaches. The main advantage
of using hybridization of those approaches is the reduction
of the system sensitivity to the number of items that have
been rated, and the number of users who have rated an
item. This reduction of the system sensitivity contributes to
the resilience of the system regarding the data sparseness
problem.
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The rating prediction process is based on both user and
item-based approaches. The p̃ui hybrid probability is calcu-
lated as follows:

p̃ui =
(
gi(b̃|B)

) 1
|U |
.
(
gu(d̃ |D)

) 1
|I |
, (32)

where gu(d̃ |D) and gi(b̃|B) are the Bayesian predictive dis-
tributions respectively from the user-based approach and the
item-based approach.

According to the MAP principle [35], the r̃ui predicted rat-
ing is the rating that maximizes the p̃ui predictive probability.
It is obtained as follows:

r̃ui = argmax
r∈R

p̃ui. (33)

Algorithm 3 summarizes the hybrid Bayesian inference
process.

Algorithm 3 BIHRS Algorithm
Data:
• D : Tensor of users’ ratings probabilities
• B : Tensor of probabilities of ratings on items
• α : Vector of probabilities of users’ cluster
membership

• θ : Vector of probabilities of items’ cluster
membership

• γ : Vector of ratings probabilities by users’ cluster
• ω: Vector of ratings probabilities by items’ cluster
• µ, ε, ϕ, λ: Beta function hyperparameters
• I : Set of items
• U : Set of users
• C : Number of users’ clusters
• H : Number of items’ clusters

Result: r̃ui the predicted rating
1 Begin
2 Compute the gu(d̃ |D) Bayesian predictive distribution
for an unknown observable d̃ using Algorithm 1;

3 Compute the gi(b̃|B) Bayesian predictive distribution for
an unknown observable b̃ using Algorithm 2;

4 MCMC model approximation;
5 # Hybrid rating prediction
6 Compute the predicted rating

r̃ui = argmax
r∈R

[(
gi(b̃|B)

) 1
|U |
.
(
gu(d̃ |D)

) 1
|I |
]
;

7 Return r̃ui;

Items are ordered from the most liked by the target user
u to the least liked. The Top-N set of items with the highest
ratings is the list of items that will be recommended to the
target user.

F. DRIVING EXAMPLE
In this section, we run an example to show how our proposal
works. Tab. 1 on which we apply our method, presents the

TABLE 1. Data Matrix.

data matrix that hosts ratings assigned by six users on ten
items.

We run our method under the following settings:
• The number of users’ cluster is fixed to one (t = 1).
This means that there is only one users’ cluster. The
cluster membership probability is the same for all users
of the cluster and the cluster membership probability is
evaluated as α = αt = 1.

• The number of items’ cluster is set to one (l = 1).
It means that there is only one items’ cluster. The cluster
membership probability is the same for all items belong-
ing to the cluster and is estimated as θ = θl = 1.

• From the user-based approach, the hyperparameter λ in
Equation (7) is set to 1 for a non-informative prior prob-
ability distribution. Deductively, we compute the users’
preference probalibity in Equation (7) as hu(α) = 1.

• From the item-based approach, the hyperparameter ϕ
of the hi(θ ) preference probabilities on items in Equa-
tion (23) is set to 1 for a non-informative prior probabil-
ity distribution. Deductively, we find hi(θ ) = 1.

• We consider the set of possible values of ratings
R = {1; 2; 3; 4; 5}.

TABLE 2. Likelihood probability according to the user-based approach.

TABLE 3. Likelihood probability according to the item-based approach.

We aim to predict u5’s interest concerning item i3. Know-
ing the observed rating assigned by user u5 on i3, the purpose
is to estimate using our method the u5’s preference degree
on item i3. Tab. 2 and Tab. 3 show Likelihood probabilities
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according to user-based and item-based approaches respec-
tively. In Tab. 2, using Equation (5), the Likelihood probabil-
ity on i3 is computed as follows:

5∏
r=1

Number of users having
assigned r on item i3

Number of users having
rated item i3

=
1
5
∗
1
5
∗
1
5
∗
1
5
∗
1
5
= 3.2e− 4 (34)

Following the item-based approach in Tab. 3, using Equa-
tion (21), the Likelihood probability of the u5’s interest is
computed as follows:

5∏
r=1

Number of items
rated r by user u5
Number of items
rated by u5

=
2
10
∗

3
10
∗

2
10
∗

2
10
∗

1
10
= 2.4e− 4 (35)

Tab. 4 shows the Bayesian predictive probability with
which user u5 rates item i3 following the user-based,
item-based and the hybrid approaches. For instance, using
Equation (18), the Bayesian predictive probability with
which user u5 rates item i3 with the rating r = 1 following
the user-based approach is estimated as follows:

i10∏
i=i1(i6=i3)

Number of users having
assigned r = 1 on item i

Number of users having
rated item i

=
1
6
∗
1
5
∗
1
5
∗
1
5
∗
1
5
∗
1
6
∗
1
5
∗
1
6
∗
1
5
=2.963e− 7 (36)

Using Equation (29), the Bayesian predictive probability
with which user u5 rates item i3 with the rating r = 1
following the item-based approach is estimated as follows:

u6∏
u=u1(u6=u5)

Number of items
rated r = 1 by user u

Number of items
rated by user u

=
3
9
∗
1
8
∗
2
8
∗
1
9
∗
1
9
= 1.286e− 4 (37)

Using Equation (32), the Bayesian predictive probability
with which user u5 rates item i3 with the rating r = 1
following the hybrid approach is estimated as follows:

(2.963e− 7)
1
10 (1.286e− 4)

1
5 = 0.03706 (38)

Regarding Tab. 4, it can be observed that the rating value
r = 2 by user u5 on item i3 shows the highest probability.
In other words, the rating value r = 2 is the predicted rating
following ourmethod. This estimation perfectlymatches with
the observation in Tab. 1 concerning u5’s interest about i3 as
he really assigned rating r = 2 to item i3 in Tab. 1.

TABLE 4. Prediction of user u5 on item i3.

G. BIHRS RECOMMENDATION UNDERSTANDING
Our BIHRS model is a hybridization that combines the user-
based approach hereafter called User-based BIHRS and the
item-based approach hereafter called Item-based BIHRS.

Unlike baseline model-based CFs, our approach is realistic
and easier to understand thanks to the prior splitting into
clusters of users and items. Indeed, following a K-Nearest
Neighbors (KNN) reasoning [7], users as much as items
necessarily belong to a cluster. In addition, our model inte-
grates a priori information such as the items’ popularity and
the most frequent users’ needs. Indeed, the prior probabil-
ity distributions hu(�) and hi(3) model a priori intuitions
that can improve the quality of the estimate. Faced with a
multitude of items, users only rate a small number of them.
The prediction is therefore performed to estimate the missing
features.

Following the User-based BIHRS approach, the recom-
mendation is understandable as being based on the proba-
bility with which a user u would rate an item i given the D
set of observations. In other words, a user u is most likely
to like items that have a positive and high popularity with
other users of the same clusters as u. If in addition to the
D set of observations, a priori information referring to the
item reputation are known, then our model integrates these
information in order to refine the estimate.

Regarding the Item-based BIHRS approach, the recom-
mendation is explainable as being based on the probability for
an item i to be liked by a user u given theB set of observations.
In other words, the item i is most likely to be liked by users
who previously liked similar items belonging to the same
cluster. If in addition to the B set of observations, a priori
information related to the reputation of the most recurrent
users’ needs are known, then, our model includes these data
in order to improve the prediction quality.

The hybrid BIHRS approach is therefore explainable as
being based on the probability with which a user uwould like
an item i given the evidence relative to users belonging to the
same cluster and having previously liked the item i, and liked
items similar belonging to the same cluster as i.

The next section presents the experimentations and
results.

IV. EXPERIMENTATIONS AND RESULTS DISCUSSION
In this section, we assess our method performances compar-
atively to other recommendation methods. Experiments are
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TABLE 5. Datasets Specifications.

conducted on open real-world datasets from MovieLens,1

Ciao2, Epinions2 and Flixster.2 The features of those datasets
are specified in Tab. 5.

The next subsection details the experiment process.

A. EXPERIMENTS SETUP
Experiments are conducted on a computer hosting a processor
of type Intel Core i7 (2.4 GHz) with 16 GB RAM, run-
ningWindows 10 Operating System. The free-available CF4J
framework [54] has been used to implement our algorithm.
We have used Netbeans version 8.2 as Java development
environment.

The used datasets host invocations of 3.900 movies
by 6.040 users generating 1.000.209 ratings regarding the
MovieLens1M dataset and 58.000 movies invocated by
280.000 users generating 27.000.000 ratings following the
MovieLens10M dataset. In Flixster dataset, 147.612 users
rate 48.794 items and generate 8.196.077 ratings; while
40.163 users interact on 139.738 items via 664.824 ratings in
Epinions dataset. Ciao dataset hosts 7.375 users which rate
99.746 items and generate 278.483 ratings. Each rating is a
value ranging from 1 (referring to a poor user satisfaction) to
5 (meaning a high satisfying user experience).

For each dataset, a rating matrix is built. The rating matrix
is split into test data and training data. We define the data
sparsity as the density of the data matrix. It describes the
proportion of data used for the recommendation process.
The matrix is progressively dug to sketch the data spar-
sity. For this purpose, the matrix sparsity also known as the
matrix porosity intensity ranges from 20% to 80% in steps
of 20%. For instance, a matrix sparsity set to 20% means that
datasets are divided into 20% of test data and 80% of training
data.

The next subsection shows the evaluation metrics used to
assess our method performances.

B. EVALUATION METRICS
The BIHRS’s prediction accuracy is assessed using key indi-
cators namely the Mean Absolute Error (MAE) and the Root
Square Mean Error (RSME). The Normalized Discounted
Cumulative Gain (NDCG) is additionally used to assess the
ranking accuracy. Low values of MAE and RSME express
a high prediction accuracy. MAE and RSME values are

1https://grouplens.org/datasets/movielens/
2https://www.librec.net/datasets.html

computed as follows:

MAE =

∑
s∈Srec
|rui − r̃ui|

N
, (39)

RSME =

√√√√ ∑
s∈Srec

(rui − r̃ui)2

N
, (40)

where rui is the original rating and r̃ui the approximated value;
N is the number of recommendations and Srec is the set of
recommendations.

NDCG is widely used to assess the ranking accuracy and
is computed as follows:

NDCGN =
DCGN
IDCGN

, (41)

where IDCGN and DCGN respectively refer to the Ideal
Discounted Cumulative Gain and the Discounted Cumulative
Gain of Top-N recommended items. DCGN is computed as
follows:

DCGN =
N∑
j=1

2relj − 1
log2(j+ 1)

, (42)

where relj is the rating associated to the item ranked at
position j. A high NDCGN means a high-accurate ranking.

The recommendation quality is assessed using the preci-
sion and the recall indicators. The high precision and recall
values express a high recommendation quality. The recall
indicator measures the proportion of items correctly recom-
mended comparatively to the number of items expected to be
recommended. Meanwhile, the precision indicator measures
the proportion of items correctly recommended compara-
tively to the number of items recommended. The precision
and recall measures are computed as follows:

Precision =
|S ∩ E|
S

, (43)

Recall =
|S ∩ E|
E

, (44)

where S is the set of recommended items and E the set of
items expected to be recommended.

C. RESULTS AND ANALYSIS
The datasets that we use do not provide a priori information
such as the movies’ popularity or the consumption habits of
a users’ majority. For this reason, for non-informative prior
probability distributions, their hyperparameters have been
set to 1.

In the following points, BIHRS’s performances are evalu-
ated comparatively to other recommendation methods.

1) PERFORMANCES ANALYSIS
Referring to the distribution of users and items in clusters,
our model is based on a reasoning inspired by the KNN algo-
rithm. Furthermore, our method is a precise model-based CF
performing an understandable prediction. For this reason, its
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TABLE 6. Data Sparsity Impact on BIHRS Prediction Accuracy.

performances are evaluated comparatively to neighborhood-
based methods also known as memory-based approaches,
and to model-based methods. Those methods are hereafter
presented:
• IPCC is a memory-based method that lays on the
inter-item similarities computation [12] using Pearson
Correlation Coefficient (PCC). In this method, a neigh-
borhood defined as a collection of items having been
rated by the same users is built. Thereafter, the predicted
rating is computed as a weighted mean of ratings over
items belonging to the neighborhood.

• UPCC is a memory-based method that lays on the inter-
user similarities computation [8] using PCC. In this
approach, a neighborhood defined as a set of users hav-
ing rated the same items is built. Thereafter, the pre-
dicted rating is computed as a weighted mean of ratings
assigned by users belonging to the neighborhood.

• Spearman-based CF is a memory-based method that
performs inter-user and inter-item similarities computa-
tions [15] using Spearman Rank Correlation Coefficient
(SRCC). Afterwards, the prediction is made based on
user and item approaches.

• Bayesian Non-Negative Matrix Factorization (BNMF)
based method is a model-based method. It is a prob-
abilistic recommendation approach based on a non-
negative variant of matrix factorization [20]. This
approach decomposes the rating matrix into non-
negative latent features matrices. Users and items are
divided into groups in order to increase the efficiency

of the matrix factorization. The BNMF method is
parametrized as follows:
– The degree of evidence needed to the users’ ratings

inference is set to 4.
– The number of iterations to the algorithm conver-

gence is set to 150.
– The number of latent factors is set to 12.

• Probabilistic Matrix Factorization (PMF) based method
is a model-based recommendation method built on the
baseline matrix factorization following a probabilis-
tic approach [29]. This method decomposes the high-
dimensional rating matrix into low-dimensional latent
features matrices. Thereafter, the Gradient optimization
method is performed to determine the optimal low-
dimension matrices. The PMF method is parametrized
as follows:
– The number of iterations for the convergence of the

algorithm is set to 150.
– The step size of an iteration is set to 0.05.
– The number of latent features is set to 10.

• Naive Bayesian Collaborative Filtering (NBCF) method
is a recommendation approach based on the Naive Bayes
classifier in which uniform probability distributions are
used and therefore simplify the modeling of interactions
between users and items [35].

2) ASSESSMENT OF THE PREDICTION ACCURACY
Following Tab. 6, the prediction quality of our method is
compared to that of the existing model and memory-based
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FIGURE 3. BIHRS Performances on MovieLens1M Dataset.

recommendation methods. It can be observed that the predic-
tion accuracy of our method outperforms that of competing
model and memory-based approaches. Indeed, MAE and
RSME performances of our BIHRS model are lower than
those of IPCC, UPCC, Spearman-based CF, NBCF, PMF and
BNMF. This effectiveness of our method is due to the fact that
our approach is built on a model that learns from users’ and
items’ observations to thereafter infer users’ behaviors based
on realistic considerations such as users’ intuitions and items’
features. Furthermore, our approach shows a higher NDCG
trend compared to that of other recommendation methods.
It means that regarding the ranking accuracy, our proposal is
better than other methods. In addition, it can be observed that
the matrix sparsity affects globally the performances of each
method indicated in Tab. 6 due to the fact that the increase of
matrix sparsity rate induces a decrease in training data that
feed each recommendation approach. However, despite that
negative impact, our approach outperforms other methods
and thus highlights its data sparsity resiliency capacity.

Compared to model-based recommendation methods,
Fig. 3a depicts the MAE performance of our proposal from
the usage of the MovieLens1M dataset. It can be observed
that MAE trends of our method and its two variants namely
User-based BIHRS and Item-based BIHRS are the lowest,
meaning a high prediction accuracy compared to that of other
model-based methods. This prediction accuracy improve-
ment is explained by the fact that by modeling plausible
intuitions or a priori information, our method includes more
realistic aspects in the prediction model than other model-
based methods.

Fig. 4a depicts the MAE performance evaluation from
the usage of the MovieLens10M dataset. It can be observed
that the MAE trend of our method is globally improved
from 0.7 to 0.692 on average. This is due to the fact
that the MovieLens10M dataset hosts more ratings than the
MovieLens1M dataset. Hence, by using the MovieLens10M
dataset, manymore observations are involved in the inference
process to refine the prediction. Once more, our method
shows a MAE performance better than that of other model-
based approaches. In Fig. 5a, 6a and 7a, our method per-
formances are shown using Flixster, Ciao, and Epinions
datasets. It can be observed that MAE performances of our
method are lower and therefore better than those of other
methods.

From the usage of the MovieLens1M dataset, Fig. 3b
depicts the RSME performance of our approach compared to
model-based recommendation methods. It can be observed
that our method and its two variants show a lower RSME
trend meaning that our approach prediction accuracy is better
than that of other model-based methods.

Fig. 4b shows the RSME performance from the usage
of the MovieLens10M dataset. It can be noted that thanks
to more data in the dataset, the RSME performance of our
method is roughly improved from 0.857 to 0.845 on average.
Hence, by its RSME trend, our method outperforms other
model-based approaches. In Fig. 5b, 6b and 7b, our method
performances are observed using Flixster, Ciao, and Epinions
datasets. It can be observed that RSME performances of our
proposal are lower and therefore better than those of other
methods.
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FIGURE 4. BIHRS Performances on MovieLens10M Dataset.

FIGURE 5. BIHRS Performances on Flixster Dataset.

From the usage of theMovieLens1Mdataset, Fig. 3c shows
the NDCG performance of our proposal compared to model-
based recommendation methods. It can be observed that our
method shows a higher NDCG trend meaning a ranking
accuracy higher than that of other methods.

Exploiting the MovieLens10M dataset, Fig. 4c shows
the NDCG improvement of our proposal and its variants

compared to other methods. Indeed, it can be highlighted
a NDCG increase of 2.5% on average compared to other
model-based methods. In Fig. 5c, 6c and 7c, our method
performances are shown using Flixster, Ciao, and Epinions
datasets. It can be observed that NDCG performances of our
approach are higher and therefore better than those of other
methods.
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FIGURE 6. BIHRS Performances on Ciao Dataset.

FIGURE 7. BIHRS Performances on Epinions Dataset.

3) EVALUATION OF THE RECOMMENDATION QUALITY
According to Tab. 7, the recommendation quality of our
method is evaluated comparatively to that of the competing
memory-based recommendation methods. It can be observed
that, for each method mentioned in Tab. 7, the precision is
globally affected by the increase in the number of recom-
mendations. It is explained by the fact that the increasing

number of recommendations induces the addition of low pre-
diction accuracy items in the recommendations list and con-
sequently affects the recommendation precision. The recall
trend of all methods increases with the number of recom-
mendations because a significant recommendation number
increases the possibility of recommending expected items.
Despite this fact, the recommendation quality of our method
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TABLE 7. BIHRS Recommendation Quality Compared to Baseline Memory-based CFs.

FIGURE 8. Execution time, CPU and Memory use.

remains better than that of memory-based approaches (IPCC,
UPCC, and Spearman-based CF) since the precision of our
BIHRS method is the highest. Indeed, referring to Tab. 7,
the recommendation quality of our method is better than that
of memory-based approaches since the precision and recall
trends of our BIHRS method are higher than those of IPCC,
UPCC and Spearman-based CF.

Now, we compare our method to other model-based
methods. Fig. 3e, 5e, 6e and 7e depict the recommendation
precision of our proposal using MovieLens1M, Flixster, Ciao
and Epinions datasets. The precision trend is affected by
the increase in the number of recommendations due to low-
accurately predicted items added to the set of recommenda-
tions. However, it can be observed that the precision shown by
our method is better than that of other model-based methods.
This precision improvement is justified by the fact that our
model integrates more features in the prediction process than
other methods.

From the usage of the MovieLens10M dataset, Fig. 4e
highlights the recommendation precision of our proposal.
It can be observed that our method is scalable because the
BIHRS’s precision is higher than that of other model-based
methods, even in the case of large datasets.

Fig. 3d, 5d, 6d and 7d highlight the recall trends of our
proposal compared to other model-based recommendation

methods using MovieLens1M, Flixster, Ciao and Epinions
datasets. It can be observed that our recall performance
method is improved compared to other methods.

Exploiting the MovieLens10M dataset, Fig. 4d shows the
recall performance of our proposal which is slightly enhanced
compared to other model-based recommendation methods.
In addition, compared to BIHRS’s recall trend obtained by
using the MovieLens1M dataset, it can be observed that the
scalability of our method is highlighted because the BIHRS’s
recall trend obtained by using the MovieLens10M dataset is
increased of 3% on average.

4) COMPUTATIONAL RESOURCES CONSUMPTION
Fig. 8 shows the computational resources consumption of
each model-based methods. In Fig. 8a, it can be observed
that our method shows a competitive execution time slightly
higher than that of NBCF and BNMF methods but lower
than that of PMF for the large MovieLens10M dataset. The
relatively low execution time of the BIHRS method high-
lights the scalability of our proposal for large datasets. For
Ciao and Epinions datasets, our method’s time execution is
slightly higher but it is offset by significative recommenda-
tion performances of BIHRS compared to other model-based
methods. Fig. 8b and Fig. 8c show that our proposal consumes
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more Central Processing Unit (CPU) and memory resources
than other methods. It is due to the complexity of computed
non-uniform probability distributions. However, it has been
proved that our method shows an increased prediction accu-
racy (see Fig. 3, 4, 6, 7, 5) and an enhanced recommendation
quality (see Tab. 3 and Tab. 4) compared to other methods.
For this reason, our method appears as a valuable trade-off
between a high-accurate recommendation and an affordable
computational cost.

5) THREATS TO VALIDITY
In our proposal, the recommendation is performed on datasets
used to model users’ tastes in the training phase. Experiments
have been conducted on datasets with significant matrix den-
sity and in which the number of items jointly rated by users
is significant. Consequently, the evaluation of users’ tastes
similarity is accurate since users express their interest in the
same items. In the case of datasets in which users do not
jointly rate items, the assessment of users’ preferences prox-
imity could be corrupted and therefore affect the prediction
accuracy due to clusters hosting dissimilar users. In other
words, the recommendation precision could be threatened in
the case of datasets in which users do not jointly rate a signi-
ficative number of items. In addition, users’ and items’ cluster
sizes have to be carefully chosen since small cluster sizes
could affect the recommendation accuracy as probability dis-
tributions are computed on clusters, while big cluster sizes
could noise the prediction process with additional irrelevant
information. Knowing that the number of clusters is set at the
initialization of the clustering process, it should be chosen
with caution since a small number of clusters could induce big
cluster sizes in which there will be noisy data; while a high
number of clusters could induce small cluster sizes in which
data will be sparse. However, our proposal remains general
since experimentations have been conducted on popular and
widely adopted datasets in the recommendation field.

V. CONCLUSION AND PERSPECTIVES
In this paper, we have addressed the item targeting prob-
lem by proposing a hybrid model-based recommendation
approach that is built on the Bayesian inference in order to
predict users’ interests. The proposed method excels through
its easy-explainability like that of memory-based CFs, and its
high-precision like model-based CFs. The Bayesian predic-
tion model developed in our proposal employs non-uniform
probability distributions to model intuitions, and a priori
information related to items’ features and users’ behav-
iors. The proposed method merges a user-based approach
and an item-based approach to alleviate the data sparsity,
and therefore enhance the prediction accuracy by exploiting
all various aspects raised by user-item interactions. After-
wards, the MAP principle helps to predict user’s interest in
a given item by computing the rating that maximizes the
Bayesian predictive distribution on the unknown observable.
Experiments have been conducted on free-available datasets
and show that the proposed method outperforms others

(UPCC, IPCC, Spearman-based CF) regarding the MAE
and the RSME performances. Besides, the results obtained
highlight the improved prediction accuracy of our proposal,
the ranking accuracy of the proposedmethod through its valu-
able NDCG performances. Moreover, the effectiveness of our
approach expressed by its increased prediction accuracy and
its improved recommendation quality has been shown com-
paratively to other model-based recommendation methods
(PMF, NBCF, BNMF).

Given the rapid growth of Big Data, an extension of our
approach could be developed by the integration of other
sources of information. Indeed, the high intensity of users’
activity on social networks offers increased possibilities and
rich sources of information to embed in the recommenda-
tion process. For this purpose, to enhance the prediction in
the future, we plan to mine users’ opinions, and contents
consumed by users on social networks to implicitly extract
their feedbacks and tastes. In addition, the recommendation
quality could be improved by using some methods such as
listwise, pairwise and pointwise ranking techniques to learn
to accurately rank items recommended to users; and therefore
refine the recommendation precision since users will receive
a list of relevant and ranked items at the end of the process.
We also plan to develop an improved data sampling strategy
that selects only the most informative training instances to
involve in the prediction process. Consequently, that sam-
pling strategywill contribute to reduce the computational cost
and speed up the recommendation process.

REFERENCES
[1] H. Yan and Y. Tang, ‘‘Collaborative filtering based on Gaussian mix-

ture model and improved Jaccard similarity,’’ IEEE Access, vol. 7,
pp. 118690–118701, 2019.

[2] R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, and X. Li, ‘‘Efficient
user profiling based intelligent travel recommender system for individual
and group of users,’’ Mobile Netw. Appl., vol. 24, no. 3, pp. 1018–1033,
Jun. 2019.

[3] R. Chen, Q. Hua, Y.-S. Chang, B.Wang, L. Zhang, and X. Kong, ‘‘A survey
of collaborative filtering-based recommender systems: From traditional
methods to hybridmethods based on social networks,’’ IEEEAccess, vol. 6,
pp. 64301–64320, 2018.

[4] H. Parvin, P. Moradi, and S. Esmaeili, ‘‘TCFACO: Trust-aware collabora-
tive filtering method based on ant colony optimization,’’ Expert Syst. Appl.,
vol. 118, pp. 152–168, Mar. 2019.

[5] F. Zhao, Y. Shen, X. Gui, and H. Jin, ‘‘SDBPR: Social distance-aware
Bayesian personalized ranking for recommendation,’’ Future Gener. Com-
put. Syst., vol. 95, pp. 372–381, Jun. 2019.

[6] X. Chen, Y. Guo, Y. Yang, and Z. Mi, ‘‘Trust-based collaborative filtering
algorithm in social network,’’ inProc. Int. Conf. Comput., Inf. Telecommun.
Syst. (CITS), Jul. 2016, pp. 1–5.

[7] D. Kluver, M. D. Ekstrand, and J. A. Konstan, ‘‘Rating-based collaborative
filtering: Algorithms and evaluation,’’ in Social Information Access: Sys-
tems and Technologies, P. Brusilovsky and D. He, Eds. Cham, Switzerland:
Springer, 2018, pp. 344–390.

[8] Z. Yang, B.Wu, K. Zheng, X.Wang, and L. Lei, ‘‘A survey of collaborative
filtering-based recommender systems for mobile Internet applications,’’
IEEE Access, vol. 4, pp. 3273–3287, 2016.

[9] X. Luo, Y. Xia, and Q. Zhu, ‘‘Applying the learning rate adaptation to
the matrix factorization based collaborative filtering,’’ Knowl.-Based Syst.,
vol. 37, pp. 154–164, Jan. 2013.

[10] S. Natarajan, S. Vairavasundaram, S. Natarajan, and A. H. Gandomi,
‘‘Resolving data sparsity and cold start problem in collaborative filtering
recommender system using linked open data,’’ Expert Syst. Appl., vol. 149,
Jul. 2020, Art. no. 113248.

VOLUME 8, 2020 101699



A. N. Ngaffo et al.: Bayesian Inference Based Hybrid Recommender System

[11] D. Lian, X. Xie, and E. Chen, ‘‘Discrete matrix factorization and extension
for fast item recommendation,’’ IEEE Trans. Knowl. Data Eng., early
access, Nov. 4, 2019, doi: 10.1109/TKDE.2019.2951386.

[12] D. Li, C. Chen, Q. Lv, L. Shang, Y. Zhao, T. Lu, and N. Gu, ‘‘An algorithm
for efficient privacy-preserving item-based collaborative filtering,’’ Future
Gener. Comput. Syst., vol. 55, pp. 311–320, Feb. 2016.

[13] H. Tian and P. Liang, ‘‘Personalized service recommendation based on trust
relationship,’’ Sci. Program., vol. 2017, Mar. 2017, Art. no. 4106134.

[14] Z. Tan and L. He, ‘‘An efficient similarity measure for user-based collab-
orative filtering recommender systems inspired by the physical resonance
principle,’’ IEEE Access, vol. 5, pp. 27211–27228, 2017.

[15] X. Zheng, L. D. Xu, and S. Chai, ‘‘QoS recommendation in cloud ser-
vices,’’ IEEE Access, vol. 5, pp. 5171–5177, 2017.

[16] K. Jayapriya, N. A. B. Mary, and R. S. Rajesh, ‘‘Cloud service recom-
mendation based on a correlated QoS ranking prediction,’’ J. Netw. Syst.
Manage., vol. 24, no. 4, pp. 916–943, Oct. 2016.

[17] Z. Cui, X. Xu, F. Xue, X. Cai, Y. Cao, W. Zhang, and J. Chen, ‘‘Per-
sonalized recommendation system based on collaborative filtering for IoT
scenarios,’’ IEEE Trans. Services Comput., early access, Jan. 7, 2020, doi:
10.1109/TSC.2020.2964552.

[18] Y. Du, N. Sutton-Charani, S. Ranwez, and V. Ranwez, ‘‘EBCR: Empirical
Bayes concordance rate to weight similarity measurement within col-
laborative filtering recommendations,’’ Ph.D. dissertation, Adv. Cognit.
Autom., LGI2P/Ecole Mines d’Alès Alès, France, 2019, p. 12.

[19] L. Ren and W. Wang, ‘‘An SVM-based collaborative filtering approach
for top-N Web services recommendation,’’ Future Gener. Comput. Syst.,
vol. 78, pp. 531–543, Jan. 2018.

[20] A. Hernando, J. Bobadilla, and F. Ortega, ‘‘A non negative matrix fac-
torization for collaborative filtering recommender systems based on a
Bayesian probabilistic model,’’ Knowl.-Based Syst., vol. 97, pp. 188–202,
Apr. 2016.

[21] X. Ma, D. Guo, L. Cui, X. Li, X. Jiang, and X. Chen, ‘‘SOM clustering
collaborative filtering algorithm based on singular value decomposition,’’
in Proc. 4th Int. Conf. Math. Artif. Intell. (ICMAI), 2019, pp. 61–65.

[22] F. Ortega, A. Hernando, J. Bobadilla, and J. H. Kang, ‘‘Recommending
items to group of users using matrix factorization based collaborative
filtering,’’ Inf. Sci., vol. 345, pp. 313–324, Jun. 2016.

[23] R. Lara-Cabrera, Á. González-Prieto, F. Ortega, and J. Bobadilla, ‘‘Evolv-
ing matrix-factorization-based collaborative filtering using genetic pro-
gramming,’’ Appl. Sci., vol. 10, no. 2, p. 675, Jan. 2020.

[24] K. Li, X. Zhou, F. Lin, W. Zeng, and G. Alterovitz, ‘‘Deep probabilistic
matrix factorization framework for online collaborative filtering,’’ IEEE
Access, vol. 7, pp. 56117–56128, 2019.

[25] H. Parvin, P. Moradi, S. Esmaeili, and N. N. Qader, ‘‘A scalable and
robust trust-based nonnegativematrix factorization recommender using the
alternating direction method,’’ Knowl.-Based Syst., vol. 166, pp. 92–107,
Feb. 2019.

[26] R. Du, J. Lu, and H. Cai, ‘‘Double regularization matrix factorization
recommendation algorithm,’’ IEEE Access, vol. 7, pp. 139668–139677,
2019.

[27] W. Zhou, J. Li, Y. Zhou, and M. H. Memon, ‘‘Bayesian pairwise learning
to rank via one-class collaborative filtering,’’ Neurocomputing, vol. 367,
pp. 176–187, Nov. 2019.

[28] X. Wu, Y. Fan, J. Zhang, H. Lin, and J. Zhang, ‘‘QF-RNN: QI-matrix
factorization based RNN for time-aware service recommendation,’’ in
Proc. IEEE Int. Conf. Services Comput. (SCC), Jul. 2019, pp. 202–209.

[29] R. R. Salakhutdinov and A. Mnih, ‘‘Probabilistic matrix factorization,’’ in
Proc. 20th Int. Conf. Neural Inf. Process. Syst. (NIPS). Red Hook, NY,
USA: Curran Associates, 2007, pp. 1257–1264.

[30] R. Salakhutdinov and A. Mnih, ‘‘Bayesian probabilistic matrix factoriza-
tion using Markov chain Monte Carlo,’’ in Proc. 25th Int. Conf. Mach.
Learn. (ICML), 2008, pp. 880–887.

[31] G. Li, T. Zhu, J. Hua, T. Yuan, Z. Niu, T. Li, and H. Zhang, ‘‘Asking
images: Hybrid recommendation system for tourist spots by hierarchical
sampling statistics and multimodal visual Bayesian personalized ranking,’’
IEEE Access, vol. 7, pp. 126539–126560, 2019.

[32] S. Wen, C. Wang, H. Li, and G. Zheng, ‘‘Parallel naïve Bayes regres-
sion model-based collaborative filtering recommendation algorithm and its
realisation on Hadoop for big data,’’ Int. J. Inf. Technol. Manage., vol. 18,
nos. 2–3, pp. 129–142, 2019.

[33] J. Yu, Z. Xuan, X. Feng, Q. Zou, and L. Wang, ‘‘A novel collabo-
rative filtering model for LncRNA-disease association prediction based
on the Naïve Bayesian classifier,’’ BMC Bioinf., vol. 20, no. 1, p. 396,
Dec. 2019.

[34] Y. Zhang, K. Meng, W. Kong, Z. Y. Dong, and F. Qian, ‘‘Bayesian
hybrid collaborative filtering-based residential electricity plan recom-
mender system,’’ IEEETrans. Ind. Informat., vol. 15, no. 8, pp. 4731–4741,
Aug. 2019.

[35] P. Valdiviezo-Diaz, F. Ortega, E. Cobos, and R. Lara-Cabrera, ‘‘A collab-
orative filtering approach based on Naïve Bayes classifier,’’ IEEE Access,
vol. 7, pp. 108581–108592, 2019.

[36] L. M. de Campos, J. M. Fernández-Luna, J. F. Huete, and
M. A. Rueda-Morales, ‘‘Combining content-based and collaborative
recommendations: A hybrid approach based on Bayesian networks,’’ Int.
J. Approx. Reasoning, vol. 51, no. 7, pp. 785–799, Sep. 2010.

[37] X. Su and T. M. Khoshgoftaar, ‘‘Collaborative filtering for multi-class
data using Bayesian networks,’’ Int. J. Artif. Intell. Tools, vol. 17, no. 1,
pp. 71–85, Feb. 2008.

[38] J. Pérez-Marcos, L.Martín-Gómez, D.M. Jiménez-Bravo, V. F. López, and
M. N. Moreno-García, ‘‘Hybrid system for video game recommendation
based on implicit ratings and social networks,’’ J. Ambient Intell. Hum.
Comput., pp. 1–11, Jan. 2020.

[39] Y. Tian, B. Zheng, Y. Wang, Y. Zhang, and Q. Wu, ‘‘College library
personalized recommendation system based on hybrid recommendation
algorithm,’’ in Proc. 11th CIRP Conf. Ind. Product-Service Syst., vol. 83,
2019, pp. 490–494.

[40] R. Logesh and V. Subramaniyaswamy, ‘‘Exploring hybrid recommender
systems for personalized travel applications,’’ inCognitive Informatics and
Soft Computing, P. K. Mallick, V. E. Balas, A. K. Bhoi, and A. F. Zobaa,
Eds. Singapore: Springer, 2019, pp. 535–544.

[41] H. Kung-Hsiang, F. Yi-Fu, L. Yi-Ting, L. Tzong-Hann, C. Yao-Chun,
L. Yi-Hui, and L. Shou-De, ‘‘A-HA: A hybrid approach for hotel
recommendation,’’ in Proc. Workshop ACM Rec. Syst. Challenge.
New York, NY, USA: Association for Computing Machinery, 2019,
pp. 1–5.

[42] A. Gatzioura, J. Vinagre, A. M. Jorge, and M. Sànchez-Marrè, ‘‘A hybrid
recommender system for improving automatic playlist continuation,’’
IEEE Trans. Knowl. Data Eng., early access, Nov. 8, 2019, doi:
10.1109/TKDE.2019.2952099.

[43] P. Kouki, J. Schaffer, J. Pujara, J. O’Donovan, and L. Getoor, ‘‘Person-
alized explanations for hybrid recommender systems,’’ in Proc. 24th Int.
Conf. Intell. User Interfaces (IUI). New York, NY, USA: Association for
Computing Machinery, 2019, pp. 379–390.

[44] S. Paul and D. Das, ‘‘User-item-based hybrid recommendation system by
employingmahout framework,’’ in Emerging Technology inModelling and
Graphics, J. K. Mandal and D. Bhattacharya, Eds. Singapore: Springer,
2020, pp. 341–357.

[45] A. Dhruv, A. Kamath, A. Powar, and K. Gaikwad, ‘‘Artist recommendation
system using hybrid method: A novel approach,’’ in Emerging Research in
Computing, Information, Communication and Applications, N. R. Shetty,
L. M. Patnaik, H. C. Nagaraj, P. N. Hamsavath, and N. Nalini, Eds.
Singapore: Springer, 2019, pp. 527–542.

[46] S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward, ‘‘Better guar-
antees for k-means and euclidean k-median by primal-dual algorithms,’’
SIAM J. Comput., p. FOCS17–97, 2019.

[47] S. Zahra, M. A. Ghazanfar, A. Khalid, M. A. Azam, U. Naeem, and
A. Prugel-Bennett, ‘‘Novel centroid selection approaches for KMeans-
clustering based recommender systems,’’ Inf. Sci., vol. 320, pp. 156–189,
Nov. 2015.

[48] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin,
Bayesian Data Analysis (Chapman & Hall/CRC Texts in Statistical Sci-
ence), 3rd ed. New York, NY, USA: Taylor & Francis, 2013.

[49] L. D. Broemeling, Bayesian Analysis of Time Series. Boca Raton, FL,
USA: CRC Press, 2019.

[50] Y.-H. Chien and E. I. George, ‘‘A Bayesian model for collaborative filter-
ing,’’ in Proc. AISTATS, 2002, pp. 1–6.

[51] D. Fink, A Compendium of Conjugate Priors, vol. 46. Citeseer,
1997. [Online]. Available: http://www.people.cornell.edu/pages/df36/
CONJINTRnew%20TEX.pdf

[52] D. van Ravenzwaaij, P. Cassey, and S. D. Brown, ‘‘A simple introduction to
Markov Chain Monte–Carlo sampling,’’ Psychonomic Bull. Rev., vol. 25,
pp. 143–154, Feb. 2018.

[53] S. Herholz, Y. Zhao, O. Elek, D. Nowrouzezahrai, H. P. A. Lensch, and
J. Křivánek, ‘‘Volume path guiding based on zero-variance random walk
theory,’’ ACM Trans. Graph., vol. 38, no. 3, pp. 1–19, Jun. 2019.

[54] F. Ortega, B. Zhu, J. Bobadilla, and A. Hernando, ‘‘CF4J: Collab-
orative filtering for java,’’ Knowl.-Based Syst., vol. 152, pp. 94–99,
Jul. 2018.

101700 VOLUME 8, 2020

http://dx.doi.org/10.1109/TKDE.2019.2951386
http://dx.doi.org/10.1109/TSC.2020.2964552
http://dx.doi.org/10.1109/TKDE.2019.2952099


A. N. Ngaffo et al.: Bayesian Inference Based Hybrid Recommender System

ARMIELLE NOULAPEU NGAFFO (Graduate
Student Member, IEEE) received the master’s
degree in telecommunication services engineer-
ing from the National Advanced School of
Posts, Telecommunications and ICT (SUP’PTIC),
Yaoundé, Cameroon, in 2016. She is currently
pursuing the Ph.D. degree with the Higher School
of Communications of Tunis (SUP’COM). She
is also a member of the Mediatron Laboratory.
Her research interests are recommender systems,

sentiment analysis, artificial intelligence, services discovery/exposure, big
data analysis, cloud computing, virtualization, service-oriented architecture,
and services engineering.

WALID EL AYEB received the degree in software
engineering from the National Institute of Applied
Sciences and Technology (INSAT), in 2011, and
the Ph.D. degree from the Higher School of Com-
munications of Tunis (SUP’COM), University of
Carthage, in 2017. He is currently a Teacher and
a Researcher with the Mediatron Laboratory. His
research interests include services engineering,
distributed systems, quality of service, network
security, service-oriented architecture, big data,

cloud computing, fuzzy systems, optimization techniques, service discov-
ery/exposure, the Internet of Things, 4G mobile communication, graph
theory, 5G mobile communication, and IP multimedia subsystems.

ZIÈD CHOUKAIR received the Ph.D. degree
from the University of Paris-Sud XI. He was an
Associate Professor of computer science with the
National School of Telecommunications of Brit-
tany (ENST), in 2003. Hewas anAssociate Profes-
sor of computer science and a Researcher with the
IT Research Institute of Toulouse, in 2005. He is
currently a Full Professor with the Higher School
of Communications of Tunis (SUP’COM), Uni-
versity of Carthage. He is also with the Mediatron

Laboratory. His research interests include services engineering, service-
oriented architectures, telecommunication service platforms, service dis-
covery/exposure, machine-to-machine communication, distributed systems,
big data, cloud computing, graph theory, artificial intelligence, multi-access
system, 3G mobile communication, IT service management, virtualization,
migration to the cloud, the Internet of Things, mobile communication sys-
tems, IP networks, fuzzy set theory, 4G mobile communication, 5G mobile
communication, and IP multimedia subsystems.

VOLUME 8, 2020 101701


