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ABSTRACT Elastic optical networks (EONs) virtualization can allow the virtual optical networks (VONs)
to utilize all the physical resources of EONs, and can attain a high performance of the networks. However,
the optimal scheme for VONs mapping should be determined. To tackle these challenges, a bi-level mathe-
matical model is established. leader’s and follower’s objectives are to minimize energy consumption and the
maximum index of used frequency slots, respectively. The bi-level mathematical model can determine the
optimal schemes of VONs mapping. To solve the mathematical model effectively, a uniform design method
is applied to generate initial population for the lower level problem. In addition, To solve the whole model
effectively, a tailor-made encoding, population initialization, genetic operators and local search operator are
designed. An efficient genetic algorithm with local search operator is proposed for the bi-level mathematical
model. To evaluate the mathematical model and the designed algorithm, a large number of experiments
are performed on three kinds of the widely used networks, and the experimental results indicate that the
effectiveness of the proposed bi-level mathematical model and designed algorithms.

INDEX TERMS Bi-level optimization, VONs mapping, spectrum assignment, VONs, local search.

I. INTRODUCTION
The booming of internet based activities requires an high
performance internet network [3], [41]. Wavelength divi-
sion multiplexing (WDM) networks cannot provide these
requirements adaptively, they are low efficient [2], [15]. The
recent elastic optical networks (EONs) can provide the these
requirements adaptively to each request and get higher perfor-
mance by using the orthogonal frequency division multiplex-
ing (OFDM) [8], [13]. In addition, network virtualization can
help to increase the flexibility of the network and can acceler-
ate innovation of network architectures. Network virtualiza-
tion technology not only allows the rock-bottom resource to
be abstracted by applications, but also can be applied to the
EONs and enables virtual optical networks (VONs) providers
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to customize their infrastructure to different requirements of
the client service [29], [49].

The virtualization of EONs has many superiorities and
can promote VONs with various topologies. Furthermore,
it can make the VONs to share the resources of the phys-
ical networks among the different users and applications,
reduces physical resource management, offer simple spec-
trum assignment [6], [19], [32]. However, a challenge is how
to map a large number of VONs with different topologies
to the physical network while reaching some purpose, such
as energy consumption, ratio of blocking, performance of
the network [30]. In recent years, there are large number
of researches focusing their research on the VONs mapping
problem and some related problems [23], [42].

VONs mapping problem and spectrum assignment prob-
lem, where virtual connection requests are known in
advance or are referred to as semi-dynamic users services,
is investigated. Similar to other works, there is a assumption
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that the system resource is sufficient. In other words,
the blocking ratio of the virtual connection requests is zero.
However, existed works that did not consider the hierarchi-
cal relation of the network systems and only required one
objective to be optimal. In stead, we consider the hierarchical
relation of the network systems and require two objectives to
be optimal simultaneously, i.e., our two objectives are to min-
imize the energy consumption (EC) and the maximum index
of used frequency slots (MIUFS) at the same time. Since the
two objectives belong to two level decision makers, these
two level decision makers have a hierarchical relationship.
Thus, we can establish a bi-level mathematical model with
minimizing the EC and the MIUFS as the leader’s objective
and follower’s objective, respectively. For the bi-level opti-
mization model, leader’s decision and follower’s decision are
affected each other, and leader makes his/her decision first
by determining the virtual nodes mapping scheme with the
objective to minimize the EC, and then the follower makes
the reaction by determining the virtual links mapping that
implements routing and spectrum assignment scheme with
the objective to minimize the MIUFS.

To solve the bi-level optimization model, we propose a
genetic algorithm that is specifically designed with two popu-
lations is proposed. The major contributions of this study are
summarized as follows:
• Different from the existing works, we require both the
energy consumption (EC) and the maximum index of
used frequency slots (MIUFS) to be minimized when
the VON mapping and spectrum assignment problem
is handled. Thus, the model has two objectives that
includes leader’s and follower’s objectives.

• We consider the hierarchical relationship of the network
systems. Thus, the two objectives have different priori-
ties, andwe establish a bi-levelmathematical model with
minimizing the EC of the EON as the leader’s objective
and minimizing the MIUFS as the follower’s objectives.

• To solve the bi-level mathematical model effectively,
tailor-made encoding, population initialization, genetic
operators and local search operator are designed.
An efficient genetic algorithmwith local search operator
is proposed for the bi-level mathematical model.

The rest of the paper is organized as follows. The related
works are introduced in Section II. Section III describes
the problem and establishes a novel bi-level mathemati-
cal model. To solve the established mathematical model
with high performance, we propose a genetic algorithm
with powerful local search and well-designed genetic oper-
ators in section IV. Section V presents experimental results
and analysis. Conclusions with a summary are drawn in
Section VI.

II. RELATED WORKS
A. VONs MAPPING PROBLEM
In order to address the VON mapping problem, a mixed
integer mathematical model is established [40], and a traffic-
matrix-based scheduling scheme is proposed to get the

optimal schemes. In cloud computing environments, the role
of dynamic VON mapping problem is addressed [33].
An effective VON mapping algorithm is presented to pro-
vide efficient virtual infrastructures services to satisfy various
users’ requirements. To address the VON mapping prob-
lem, an integer linear mathematical model is set up, and
an efficient scheme based on layered-auxiliary-graph (LAG)
is presented in [18]. The cost of EONs and conventional
wavelength division multiplexing networks is compared [39].
In addition, this paper also gives an outlook of the cost
benefits for the operation of future optical transport networks.
In order to minimize network cost in the multi-layer EONs,
Two integer linear mathematical models are formulated, and
a efficient algorithm, which based on greedy heuristic and
tabu-search heuristic approach, is designed [11]. For the
sake of minimizing EC and increasing spectrum usage [5],
EC and spectrum usage aware VONs mapping methods are
presented by using the minimum-sub-matrix scheme. Also,
there are some other similar researches on the VON map-
ping problem [7], [35], [46]. However, almost all existing
works formulated the VONmapping problem as a single level
integer linear mathematical model or a single level mixed
integer mathematical model, and did not consider the hierar-
chical relation of the network system in the model, and thus
these models could not fit the real situation of the networks
very well.

B. BI-LEVEL MATHEMATICAL PROBLEM AND
GENETIC ALGORITHM
To solve the context of unbalanced economic markets prob-
lem, Stackelberg and Peacock [36] introduced the bi-level
mathematical problem (BLPP), which can be viewed as
a static version of the non-cooperative and two-person-
game [1]. Bi-level mathematical is a technique which can
be used to modeling decentralized decision problem. It con-
sists of the leader-level and follower-level objectives [26].
If x and y denote the leader’s decision variables and follower’s
decision variables, generic bi-level mathematical problem
can be written as

min
x
U (x, y)

where y is obtained by solving the follower level optimization
problem

min
y
L(x, y)

In this mathematical model, the evaluation of the leader-
level objective function requires solving the follower-level
problem. That is to say, leader decision maker cannot min-
imize its objective without the reactions of the followers
considered. In general, bi-level optimization model is a
NP-hard problem [16], [51]. In addition, bi-level optimiza-
tion model has a leader objective, a follower objective and
constrained conditions. Thus, bi-level optimization model
is an optimization problem [28], [47]. There are numer-
ous of algorithms focusing on solving bi-level mathemati-
cal problem, like methods based on vertex enumeration and
meta-heuristics [17], [25].
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FIGURE 1. VONs mapping. (a) Physical network and VONs; (b) virtual nodes mapping; (c) virtual links mapping.

Genetic algorithms invented by Holland [20], have been
proven to be an effective technique for many hard prob-
lems such as production-distribution planning problems [21],
transportation and network design [45], Scientific work-
flow scheduling [43], task scheduling in cloud computing
[34], [44], topology or size optimization [24]. However, it is
not suitable to directly apply the aforementioned algorithms
to the problems of VONs mapping in EONs, and it is neces-
sary to make some improvements or revisions on them.

III. PROBLEM DESCRIPTION AND BI-LEVEL
MATHEMATICAL MODEL FORMULATION
A. PHYSICAL ELASTIC OPTICAL NETWORKS
We use an undirected graph G = (V ,E) to denote an EONs.
V = {v1, v2, · · · , vNV } is the set of the optical nodes in the
network, and NV is the number of nodes. vi the i-th optical
node. E = (lij)NV×NV is a matrix of optical links. lij = 1
if and only if there is an optical link between vi and vj.
In general, lij = lji. NE is the number of links in the network.
In our work, we assume that there are c(vi) virtual machines
(VMs) in node vi. F = {f1, f2, · · · , fNF } represents the set of
available frequency slots (FSs) in each optical link, whereNF
denotes the number of available FSs. Like the existing works
[13], [48], each FS has the same bandwidth Cfs. Therefore,
the capacity of each FS isML×Cfs, whereML is the bits per
symbol in a given modulation format.ML can be assigned as
1, 2, 3, 4, 5 and 6 for different modulation format of BPSK,
QPSK, 8QAM, 16QAM, 32QAM and 64QAM.

B. VIRTUAL OPTICAL NETWORKS
VON =

{
VON 1,VON 2, · · · ,VONM

}
denotes a series of

VONs on an EONs, where M is the number of VONs.
Vm
= {vm1 , v

m
2 , · · · , v

m
Nm} denotes the set of virtual nodes

in m-th VON VONm, where Nm is the number of virtual
nodes in VONm. Generally speaking, we have Nm ≤ N .
Let N ′ =

∑M
m=1 Nm denote the number of virtual nodes in

all VONs. Each virtual node vmn (v
m
n ∈ Vm) has a series of

candidate physical nodes �m
n , and the physical nodes in �m

n
are all adjacent. That is to say, vmn can only be mapped to the

nodes in �m
n . If a virtual node is mapped to a physical node

vi(vi ∈ V ), one virtual machine on vi will be occupied. So, the
number of virtual nodes mapped to physical node vi must be
less than c(vi). Let Rm = {rm1 , r

m
2 , · · · , r

m
NRm
} denote a set

of virtual connection requests in VONm, where NRm is the
number of virtual connection requests in VONm. So there are
NR =

∑M
m=1 NRm virtual connection requests. rmk (r

m
k ∈ R

m)
is the k-th virtual connection request in VONm which can be
described as rmk = (smk , d

m
k ,T

m
k ), where s

m
k (s

m
k , d

m
k ∈ V

m) is
virtual source node, dmk (s

m
k , d

m
k ∈ V

m) is virtual destination
node. Tmk is the capacity of rmk required.

C. VIRTUAL OPTICAL NETWORK MAPPING
First, we should determine the virtual nodesmapping scheme,
i.e., virtual source nodes and destination node should be
mapped to two different nodes in EONs. For rmk =

(smk , d
m
k ,T

m
k ), if virtual nodes smk and dmk are mapped to

physical nodes sk ′ and dk ′ (sk ′ , dk ′ ∈ V ), rmk will be trans-
lated to a physical connection request rk ′ = (sk ′ , dk ′ ,Tk ′ ),
where Tk ′ = Tmk . When all virtual nodes are mapped to the
nodes in EONs, all the virtual connection requests can be
translated to connection requests(we use connection requests
to denote physical connection requests through this paper).
R′ = {r1, r2, · · · , rNR′ } and NR′ denote a series of connection
requests and the number of connection requests, respectively.
Since a virtual connection request is corresponding to a con-
nection request, therefore, we have NR′ = NR. As shown
in Fig.1a, there are two VONs on the physical optical net-
work. In virtual optical network VON 1, there are three virtual
nodes. Virtual link (dashed line) exists between each pair of
virtual nodes and denotes a virtual connection request. The
set of candidate physical nodes of all virtual nodes in VON 1

are v1, v2, v3, v4. As shown in Fig.1b, virtual nodes v11, v
1
2

and v13 are mapped to physical nodes v1, v3 and v4, virtual
connection requests r11 = (v11, v

1
2,T

1
1 ), r

1
2 = (v11, v

1
3,T

1
2 )

and r13 = (v12, v
1
3,T

1
3 ) are translated to connection requests

r1 = (v1, v3,T1), r2 = (v1, v4,T2) and r3 = (v3, v4,T3),
respectively, and we have T 1

i = Ti(i = 1, 2, 3).
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To handle connection requests, we should make the routing
(routing is used for connection requests to instead of link
mapping) for the connection requests in the EONs. As shown
in Fig.1c, we choose paths (a), (b) and (c) (solid line in green)
for connection request r1, r2 and r3, respectively. So, virtual
links lv11,v12

, lv11,v13
and lv12,v13

are mapped to physical paths (a),
(b) and (c).

D. SPECTRUM ASSIGNMENTS
Each link has a series of FSs, and a connection request
occupies one or much more FSs. The procedure, which is to
assigning several FSs to a connection request, is called spec-
trum assignment. When we assign spectra for all connection
requests, three constraints should be satisfied: (1) Spectrum
consistency means that the start index of FSs on different
links of a path must be uniform; As shown in Fig.2, there
are eight FSs on each link, and the indexes are from 1 to 8
(Only are the frequency slots on l12 and l26 drawn in Fig. 2).
Assuming that there is a connect request rk ′ , and l12 and l26
are two links in the path of rk ′ occupied. If the frequency
slot 2, 3 and 4 on link l12 are assigned to rk ′ , the frequency
slot 2, 3 and 4 on link l26 must be assigned to rk ′ . (2) Several
consecutive FSs must be assigned to a connection request.
We can assign the frequency slot 2, 3 and 4 on link l12 to rk ′ .
However, we cannot assign the frequency slot 2, 3 and 5 on
link l12 to rk ′ . (3) One FSs on a link only can be assigned to
one connection request. Two connect request rk ′ and rk ′′ are
occupied the same link l12. If we assign the frequency slot 3
on link l12 to rk ′ , we cannot assign the frequency slot 3 on
link l12 to rk ′′ .

FIGURE 2. Spectrum and spectrum assignment.

E. BI-LEVEL MATHEMATICAL MODEL FOR VONs MAPPING
The challenge problem of virtual nodes mapping, routing
and spectrum assignment in EONs can be summarized as:
virtual nodes in all VONs must be mapped to nodes in EONs.
Then, optimal paths should be selected for all the connection
requests in EONs, i.e., virtual link mapping (routing). Finally,
spectrum assignment scheme should be determined for all
the connection requests. In addition, virtual nodes mapping

scheme and routing scheme have an effect on the EC, and
routing scheme and spectrum assignment scheme can affect
the MIUFS. So, virtual nodes mapping scheme and routing
scheme should be determined to minimize EC. To minimize
the maximum index of used frequency slots, optimal routing
scheme and spectrum assignment scheme will be determined
based on the predetermined virtual nodes mapping scheme.
Considering the hierarchical features of the problem, we
establish a bi-level mathematical model with minimizing the
EC of the EONs as the leader’s objective and minimizing
the MIUFS as the follower’s objectives, respectively. To min-
imize EC, leader level decision maker will determine the
virtual nodes mapping scheme and routing scheme for all the
virtual connection requests. Then, to minimize the MIUFS,
follower level decision maker will make the reaction to deter-
mine the optimal routing scheme and spectrum assignment
scheme based on the virtual nodes mapping scheme that
leader level decision maker has determined.

1) LEADER’s OBJECTIVE
In the bi-level mathematical model, the objective of leader
decision maker is to minimize the EC for all the connection
requests by determining virtual nodes mapping scheme and
routing scheme. So, the objective function of the leader can
be given by

minEtotal = min


NR′∑
k ′=1

(
λ
q
k ′g(Q

q
k ′ )
) (1)

where Qqk ′ is q-th path in the set Qk ′ of candidate paths of
connection request rk ′ . g(Q

q
k ′ ) is energy consumption when

connection request rk ′ occupies the path Q
q
k ′ . λ

q
k ′ is a boolean

variable, λqk ′ = 1 when the path Qqk ′ is occupied by rk ′ ,
otherwise, λqk ′ = 0. g(Qqk ′ ) is the EC of rk ′ on path Q

q
k ′ and is

calculated by the method in [37].
The number of required frequency slotsBk ′ andmodulation

format MLk ′ of rk ′ selected on path Qqk ′ should be deter-
mined. Since each FS has the same bandwidthCfs. Therefore,
the capacity of an FS isMLk ′ × Cfs, the number of FSs of rk ′
required Bk ′ is calculated by

Bk ′ =
⌈

Tk ′

MLk ′ × Cfs

⌉
, (2)

and MLk ′ is determined by

MLk ′ = max

ML|L(ML) ≥
∑
lij∈Q

q
k′

d(lij)

 , (3)

where d(lij) is the length of link lij.
The leader’s decision must be made under some constraint

conditions as follows:
Constraint (a): one node in VONs should be mapped to one

its candidate node in EONs.We can express this constraint by∑
vi∈�mn

θmn,i ×

1−
∑

vi∈V\�mn

θmn,i

 = 1, ∀vmn ∈ V (4)
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where θmn,i is a boolean variable. θ
m
n,i = 1 when vmn is mapped

to node vi, otherwise, θmn,i = 0.
Constraint (b): Two different virtual nodes in one VONs

should not be mapped to the identical node in EONs. For vmn
in VONm, we have

Nm∑
n=1

θmn,i ≤ 1, ∀VONm
∈ VON (5)

Constraint (c): The number of nodes mapped to physical
node must be less than the number of virtual machine on the
node in EONs. For node vi(∀vi ∈ V ), this constraint can be
expressed by

M∑
m=1

Nm∑
n=1

θmn,i ≤ c(vi), ∀vi ∈ V (6)

2) FOLLOWER’s OBJECTIVE
The follower’s objective is to minimize the MIUFS by
looking for the optimal schemes of routing and spectrum
assignment for all the connection requests. So, the follower’s
objective function can be written by

minN (F) = min
{
max
lij∈E

{
N (Flij )

}}
(7)

where N (Flij) is the MIUFS on link lij.
Similar to the leader’ decision, follower decision also must

be under some constraints conditions:
Constraint (d): For rk ′ (∀rk ′ ∈ R′), it only can occupy one

path. That is,

NQk′∑
q=1

λ
q
k ′ = 1, ∀rk ′ ∈ R

′ (8)

Constraint (e): For rk ′ (∀rk ′ ∈ R′), the start index of occu-
pied FSs on different links of one path should be identical.
It can be given by

f k
′

lij = f k
′

li′j′
, ∀rk ′ ∈ R

′ (9)

where f k
′

lij and f
k ′
li′j′

are the start index of occupied FSs of rk ′ on
links lij and li′j′ , respectively, and lij and li′j′ are two different
links in rk ′ occupied path.
Constraint (f): Several consecutive FSs must be assigned

to a connection request rk ′ (∀rk ′ ∈ R′). We can express this
constraint by

f k
′

lij
+Bk′+GF−1∑
u=f k

′

lij

φ
q,u
k ′,lij
= Bk ′ + GF, ∀rk ′ ∈ R

′ (10)

where φq,uk ′,lij is a boolean variable. φq,uk ′,lij = 1 when the u-th

FS on link lij of path Q
q
k ′ is occupied by connection request

rk ′ , otherwise, φ
q,u
k ′,lij
= 0. GF is the number of guaranteed

frequency slots.
Constraint (g): For any two different rk ′ and rk ′′ which

has the same link lij in their occupied path, if the start index

frequency slot of rk ′ occupied is smaller than that of rk ′′ , this
case is denoted by rk ′ ≺ rk ′′ . Then rk ′ and rk ′′ should satisfy

f k
′

lij + Bk ′ + GF − 1 ≤ f k
′′

lij , ∀rk ′ ≺ rk ′′ (11)

This in-equation means that the index of the last frequency
slot of connection requests rk ′ occupied should be not greater
than the index of the first frequency slot of connection
requests rk ′′ .
Based on leader’s and follower’s objectives and con-

straints, a bi-level mathematical model is estimated as
follows:

minEtotal = min


NR′∑
k ′=1

(
λ
q
k ′g(Q

q
k ′ )
)

s.t.

(a)
∑
vi∈�mn

θmn,i ×

1−
∑

vi∈V\�mn

θmn,i

 = 1;

(b)
Nm∑
n=1

θmn,i ≤ 1;

(c)
M∑
m=1

Nm∑
n=1

θmn,i ≤ c(vi);

minN (F) = min
{
max
lij∈E

{
N (Flij )

}}
s.t.

(d)

NQk′∑
q=1

λ
q
k ′ = 1;

(e)f k
′

lij = f k
′

li′j′
;

(f )

f k
′

lij
+Bk′+GF−1∑
u=f k

′

lij

φ
q,u
k ′,lij
= Bk ′ + GF;

(g)f k
′

lij + Bk ′ + GF − 1 ≤ f k
′′

lij ;

(12)

To solve this bi-level mathematical model, we pro-
pose an effective genetic algorithm using uniform design
in section IV.

IV. PROPOSED GENETIC ALGORITHM
The proposed model above is a bi-level optimization problem
and is a NP-hard optimization problem. Usual algorithms
cannot solve this problem efficiently [9], [14], [46]. To solve
the proposed bi-levelmathematical model effectively, we pro-
pose an improved genetic algorithm and denote it as GAL.
In the following subsection, wewill give the genetic operators
designed in detail.

A. ENCODING AND DECODING
1) ENCODING
To solve the virtual optical network mapping and spec-
trum assignment problem, four necessary steps are needed:
1) virtual nodes in VONs should be mapped to physical
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nodes in EONs; 2) connection requests are sorted by using
some specific strategy; 3) routing; 4) spectrum assignment.
In this work, the connection requests are sorted randomly
and do not need to encode. In addition, first fit is used to
spectrum assignment [22]. Therefore, it is not need to encode
for sorting and spectrum assignment. Thus, it only has two
populations, i.e., virtual nodes mapping population and rout-
ing population.

In virtual nodes mapping population, each individual
presents a virtual nodes mapping scheme. We assume that
x = (x1, x2, · · · , xn′ , · · · , xN ′ ) is an individual in vir-
tual nodes mapping population. For example, there are six
nodes and eight links in the physical EONs and two VONs
(VON1 and VON2) on the EONs. VON1 has three virtual
nodes (v11, v

1
2 and v13) and three virtual links, and VON2

has four virtual nodes (v21, v
2
2, v

2
3 and v24) and four virtual

links. If v11, v
1
2, v

1
3 are mapped to v1, v3, v4, and v21, v

2
2, v

2
3, v

2
4

are mapped to v2, v4, v5, v6, we can encode this scheme as
(1, 3, 4, 2, 4, 5, 6).

Similar to virtual nodes mapping population, in the routing
population, each routing individual presents a scheme of
routing for all the connection requests. Assuming that y =
(y1, y2, · · · , yk ′ , · · · , yNR′ ) is an routing individual. yk ′ = q
when rk ′ occupies q-th path in candidate paths setQk ′ of con-
nection request rk ′ , i.e., λ

q
k ′ = 1. Assuming that r11 , r

1
2 , r

1
3 , r

1
4

select the 2-th, 1-th, 5-th, 4-th in there candidate paths set, and
r21 , r

2
2 , r

2
3 , r

2
4 select the 1-th, 2-th, 4-th, 3-th in there candidate

path set. According to the encoding scheme, we can encode
this scheme as (2, 1, 5, 4, 1, 2, 4, 3).

2) DECODING
For a given virtual nodes mapping individual x = (x1,
x2, · · · , xn′ , · · · , xN ′ ). If xn′ = i, vmn in VONm is mapped to
vi, where m and n are calculated by

m = min

{{
m|

m∑
m′=1

Nm′ ≥ n
′,m ≤ M

}}
(13)

n = n′ −
m−1∑
m′=1

Nm′ (14)

Similarly, y = (y1, y2, · · · , yk ′ , · · · , yNR′ ) is a routing indi-
vidual. If yk ′ = q, rk ′ occupies the q-th path in its candidate
path set Qk ′ , i.e., Q

q
k ′ .

3) POPULATION INITIALIZATION
In proposed algorithm, two populations, virtual nodes map-
ping and routing populations, are needed. Virtual nodes map-
ping population can be generated by Algorithm 1. In routing
population initiation algorithm, uniform design [27], [38]
is used to generate the routing individuals. The two Algo-
rithms have an advantage that the individuals in initialized
virtual nodes mapping population and routing population are
all the feasible solutions. To understand Algorithm of routing
population initiation clearly, we first introduce the uniform
design method.

Algorithm 1 Virtual Nodes Mapping Population
Initialization
Input: Candidate set �m

n , Population size Popsize
Output:Mapping populationMP

1: for p = 1 to PopSize do
2: flag1_succ = 0;
3: while flag1_succ == 0 do
4: for m = 1 to M do
5: for n = 1 to Nm do

6: t�m
n = �

m
n ; n
′
=

m−1∑
m′=1

Nm′ + n; flag2_succ =

0;
7: while flag2_succ == 0 do
8: if Nt�mn > 0 then
9: % Nt�mn is the number of nodes in t�m

n ;
10: An integer i′ is generated randomly

between 1 and Nt�mn ;
11: num is the number of t�m

n (i
′) appeared in

MP(p, 1 : n′);
12: if num ≤ c(vt�mn (i′)) then
13: flag2_succ = 1;
14: MP(p, n′) = t�m

n (i
′);

15: else
16: flag2_succ = 0;
17: end if
18: else
19: flag2_succ = 0;
20: t�m

n = t�m
n \

{
t�m

n (i
′)
}
;

21: end if
22: end while
23: end for
24: if flag2_succ == 0 then
25: break;
26: end if
27: end for
28: if flag2_succ == 0 then
29: break;
30: else
31: if m == M then
32: flag1_succ = 1;
33: end if
34: end if
35: end while
36: end for

Overview of Uniform Design: To generate points to be
uniformly distributed on the experimental domain, uniform
design method was developed [27], [38]. It generates a small
number of the uniformly distributed representative points in
a domain by using a uniform array U (S,H ) = [Ui,j]H×S ,
where Ui,j denotes the level of the j-th factor in the i-th
combination with the j-th factor representing the j-th variable
and its level being its value [21].
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To construct uniform design array, many methods are
presented [27]. Not only simple but also efficient method
proposed in [27]. Firstly, we construct a hypercube over an
S-dimensional space:

CS
= {(c1, c2, · · · , cS )|ai ≤ ci ≤ bi, i = 1, 2, · · · , S}

where ai and bi are the lower and upper bounds of the i-th fac-
tor (i.e., i-th variable), respectively. Then, a hyper-rectangle
is formed between ai and di as follows:

C(d)={(c1, c2, · · · , cS )|ai≤ci ≤ di, i = 1, 2, · · · , S} ⊂ CS

Finally, H uniformly distributed points are selected ran-
domly from CS . Assuming that H (d) is the number of points
fallen into the hyper-rectangleC(d), and the fraction of points
in C(d) is H (d)/H . As the volume of hypercube CS is∏S

i=1 (bi − ai), so the volume of C(d) is
∏S

i=1 (di − ai). The
H uniform distributed points in CS should minimize

sup
x∈CS


H (d)
H
−

S∏
i=1

(di − ai)

S∏
i=1

(bi − ai)

 (15)

Hence, we can map these H points in CS to the problem
domain with S factors and χ levels uniformly, where H is
an odd and H > S. It has been proved that Ui,j can be
given by [27]:

Ui,j = (iσ j−1 mod χ )+ 1 (16)

where σ is a constant related to the number of factors S
and level χ . The H sample points scattered uniformly in the
hypercube can be selected.

B. CROSSOVER OPERATORS
Since two different populations exist in the proposed model,
different crossover operators are presented. Crossover opera-
tor to generate new virtual nodes mapping individual is pre-
sented in Algorithm 2. To generate new routing individuals,
crossover operator is described in detail as follows: two rout-
ing individuals y1 and y2 are selected randomly as the parents
from the current population. Let Lp = (A1,A2, · · · ,ANR′ ) and
Up = (B1,B2, · · · ,BNR′ ) be defined by:Lp =

[
min(y11, y

2
1),min(y12, y

2
2), · · · ,min(y1NR′ , y

2
NR′

)
]

Up =
[
max(y11, y

2
1),max(y12, y

2
2), · · · ,max(y1NR′ , y

2
NR′

)
]
(17)

where Ai = min(y1i , y
2
i ), Bi = max(y1i , y

2
i )(i =

1, 2, · · · ,NR′ ). So, two routing offspring yc1 = (yc11 , y
c1
2 , · · · ,

yc1NR′ ) and y
c2
= (yc21 , y

c2
2 , · · · , y

c2
NR′

) are generated by

yc1i = min
{
Bi,
⌈
2Ai + Bi

3

⌉}
(18)

yc2i = max
{
Ai,
⌊
Ai + 2Bi

3

⌋}
(19)

Algorithm 2 Crossover Operator for Nodes Mapping
Individual
Input: Mapping individual x, probability of crossover pc,
probability of neighbors selection pn
Output: Offspring xc obtained by crossover opera-

tor
1: if rand() ≤ pn then
2: An individual x1 = (x11 , x

1
2 , · · · , x

1
N ′ ) is selected in the

neighbors neiber(x) of individual x;
3: else
4: An individual x1 = (x11 , x

1
2 , · · · , x

1
N ′ ) is selected in the

population except for the neiber(x);
5: end if
6: xc = x;
7: for n′ = 1 to N ′ do
8: if rand() ≤ pc then
9: num is the number of node x1n′ appeared in x;
10: if num+ 1 > c(vx1

n′
) then

11: m, n are calculated by formula (13) and formula
(14).

12: t�m
n = �

m
n \ {x

1
n′ , xn′};

13: flag = 0;
14: while Nt�mn > 0 & flag == 0 do
15: An integer i′ is generated randomly between

1 and Nt�mn ;
16: num is the number of t�m

n (i
′) appeared in xc;

17: if num+ 1 > c(vt�mn (i′)) then
18: t�m

n = �
m
n \ {t�

m
n (i
′)};

19: flag = 0;
20: else
21: flag = 1;
22: end if
23: end while
24: if flag == 1 then
25: xcn′ = t�m

n (i
′);

26: end if
27: else
28: xcn′ = x1n′ ;
29: end if
30: end if
31: end for

We can see that the offspring of virtual nodesmapping indi-
vidual and routing individual obtained by these two crossover
operators are all the feasible solutions.

C. MUTATION OPERATORS
Similar to crossover operator, there are two different mutation
operators for virtual nodes mapping individual and routing
individual, respectively. The opposite-based search strategy
is used to generate the new individuals of the routing popu-
lation. For the virtual nodes mapping individual, we design
a new mutation operator and present it in Algorithm 3.
In Algorithm 3, step 5 and step 6 are using to generate
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Algorithm 3 Mutation Operator for Nodes Mapping
Individual
Input:Mapping individual xc, probability of mutation pm;
Output: Offspring xm obtained by mutation opera-

tor
1: xm = xc

2: flag = 0, count = 0;
3: while (flag == 0)&(count <= N ′/2) do
4: count = count + 1;
5: Two integers m, n(1 ≤ m ≤ M , 1 ≤ n ≤ Nm) are

generated randomly;

6: n′ =
m∑

m′=1
Nm′ + n;

7: t�m
n = �

m
n \ {xn′};

8: while Nt�mn > 0 do
9: An integer i′ is generated randomly between 1 and

Nt�mn ;
10: num is the number of t�m

n (i
′) appeared in xm;

11: if num+ 1 < c(vt�mn (i′)) then
12: xmn′ = t�m

n (i
′);

13: flag = 1;
14: else
15: t�m

n = t�m
n \ {t�

m
n (i
′)};

16: end if
17: end while
18: end while

a position that the gene on this position will be changed.
To generate a new gene and make the new individual be a
feasible solution, step 8 to step 15 search an proper value in
the candidate physical nodes.

D. LOCAL SEARCH OPERATOR
To accelerate the convergence and enhance the search-
ing ability, a local search operator for follower variable
is designed. Opposite-based search strategy and univariate
search technique are used to search a better individual.
In addition, if the quality of the new individual is not better
than its parent individual, the new individual is accepted
with a certain probability. The pseudo-code of local search
operator is shown in Algorithm 4. Step 3 is exchange the gene
value based opposite search strategy. Step 4 to Step 11 are to
accept the new individual with a certain probability.

V. EXPERIMENTS AND ANALYSIS
To evaluate the effectiveness and efficiency of the proposed
bi-level mathematical model and algorithm, a large nnum-
ber of simulation experiments are conducted on three net-
works topographies. Some parameters used in the simulation
experiments will be given in section V-A. In section V-B,
we present the experimental results. Finally, experimental
results obtained are analyzed in section V-C.

A. PARAMETERS SETTING
Each virtual node in VONs has between 2−4 candidate nodes
in EONs. Required capacity of all virtual connection requests

Algorithm 4 Local Search Operator for Routing Individual
Input: Individual y = (y1, y2, · · · , yNR′ );
Output: New individual y′ = (y′1, y

′

2, · · · , y
′
NR′

);

1: y′ = y;
2: for k ′ = 1 to NR′ do
3: y′k = NQk′ + 1− y′k ;
4: if Fit(y′) < Fit(y) then
5: yk = y′k ;
6: else
7: if rand() < e(Fit(y

′)−Fit(y)) then
8: yk = y′k ;
9: else
10: y′k = yk ;
11: end if
12: end if
13: end for

TABLE 1. Parameter setting.

satisfy uniform distribution in [12.5, 125], and virtual con-
nection request exists between each pair of virtual nodes.
Parameters of Physical Network and Genetic algorithm are
shown in Table 1.

B. EXPERIMENTAL RESULTS
In the established bi-level mathematical model, there are
leader’s objective and follower’s objective. Ratio of FS uti-
lized is also an important metric for routing and spectrum
assignment (RSA) algorithm. So, three metrics are used
to evaluate the effectiveness of the proposed algorithm,
including maximum index of used frequency slots (MIUFS),
energy consumption (EC), ratio of frequency slots utilization
(RFSU) defined by

RFSU =
FStotal

NLused × N (F)
(20)

where FStotal and NLused are the used FSs number and links
number, respectively.

We compare the proposed algorithm GAL with three
best performance algorithms, which solve the VONs map-
ping problem, denoted by CAN-A, LCSD and GRC-SVNE,
respectively. CAN-A, LCSD and GRC-SVNE denote the
algorithms of proposed in literature [4], literature [6] and
literature [50], respectively. CAN-A algorithm lies in con-
structing the candidate substrate node subset and the candi-
date substrate path subset before embedding. This reduces the
mapping execution time substantially without performance
loss. In addition, four types of node and link constraints
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FIGURE 3. MIUFS versus number of VONs in three networks. (a) MIUFS versus number of VONs in NSFNET network; (b) MIUFS versus number
of VONs in CHNNET network; (c) MIUFS versus number of VONs in ARPANET network.

FIGURE 4. EC versus number of VONs in three networks. (a) EC versus number of VONs in NSFNET network; (b) EC versus number of VONs in
CHNNET network; (c) EC versus number of VONs in ARPANET network.

are considered in the CAN-A algorithm, making it more
applicable to realistic networks. To minimize the network
cost for a given set of VONs, LSCD algorithm is map the
largest bandwidth requirement virtual links on the shortest
distance physical links. GRC-SVNE includes two phases:
In node mapping phase, to improve mapping successful ratio,
themapping capacity of all nodes is calculated, and then some
nodes are selected as candidate nodes for virtual network
embedding. In the second phase, link mapping is performed
with Dijkstra algorithm.

In addition, to demonstrate the proposed GAL can solve
the bi-level optimization model effectively, two recent algo-
rithms, which denoted by PSO and DE, are selected to
compared with GAL. Literature [31] proposed a hierarchical
hybrid particle swarm optimization (PSO) and differential
evolution (DE) based algorithm (HHPSODE) to deal with
bi-level programming problem (BLPP). A bi-level branch-
and-bound ((BB) method is proposed in [12]. In bi-level BB,
a spatial BB method is utilized in the higher level to solve the
quadratically constrained quadratic programming (QCQP)
problem, whereas a simple BB method is employed in the
lower level to solve a mixed-integer quadratic programming
(MIQP) problem. In the first experiment instance, we fix
the number of virtual nodes with 5 in each virtual optical
network, and virtual connection requests exist between each
pair of virtual nodes. The number of virtual optical network

are 10, 20, 30, 40, 50. Fig.3 shows the maximum index of
used frequency slots (MIUFS) obtained by the algorithms
varying with number of VONs in NSFNET, CHNNET and
ARPANET networks. Energy consumption (EC) of all the
connection requests obtained by the algorithms varying with
the number of VONs in NSFNET, CHNNET and ARPANET
networks are shown in Fig.4. Fig.5 shows the ratios of fre-
quency slots utilization (RFSU) obtained by the algorithms
varying with number of VONs in NSFNET, CHNNET and
ARPANET networks.

In another experiment, we fix the number of VONs as
M = 30, but the number of virtual nodes varies from 3 to 7 in
each virtual optical network. Fig.6 shows the maximum index
of used frequency slots (MIUFS) obtained by the algorithms
versus the number of virtual nodes in each virtual optical
network on NSFNET, CHNNET and ARPANET networks.
Energy consumption (EC) obtained by the algorithms versus
the number of virtual nodes in each virtual optical network
on NSFNET, CHNNET and ARPANET networks are shown
in Fig.7. Fig.8 shows the ratios of frequency slots utilization
(RFSU) obtained by the algorithms versus the number of
virtual nodes in each virtual optical network on NSFNET,
CHNNET and ARPANET networks.

Table 2 shows the mean and standard deviation results on
the three network topologies with two instances in terms of
the MIUFS. Table 3 shows the mean and standard deviation
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FIGURE 5. RFSU versus number of VONs in three networks. (a) RFSU versus number of VONs in NSFNET network; (b) RFSU versus number of
VONs in CHNNET network; (c) RFSU versus number of VONs in ARPANET network.

FIGURE 6. MIUFS versus the number of virtual nodes in three networks. (a) MIUFS versus the number of virtual nodes in NSFNET network;
(b) MIUFS versus the number of virtual nodes in CHNNET network; (c) MIUFS versus the number of virtual nodes in ARPANET network.

FIGURE 7. EC versus the number of virtual nodes in three networks. (a) EC versus the number of virtual nodes in NSFNET network;
(b) EC versus the number of virtual nodes in CHNNET network; (c) EC versus the number of virtual nodes in ARPANET network.

results on the three network topologies with two instances in
terms of the MIUFS. Table 4 shows the mean and standard
deviation results on the three network topologies with two
instances in terms of the MIUFS. In the three tables, the sig-
nificance of difference between proposed algorithm (GAL)
and the compared algorithms is determined by using the well
known Wilcoxon’s rank sum test [10].

C. EXPERIMENTAL ANALYSIS
In the experiments, maximum index of used frequency slots
(MIUFS) obtained by the six algorithms are shown in Fig.3

and Fig.6 with two different instances. From Fig.3, we can
see that the values of the maximum index of used fre-
quency slots (MIUFS) obtained by proposed algorithm is
smaller than those obtained by the compared algorithms
with the number of VONs varying from 10 to 50. Similarly,
the values of the maximum index of used frequency slots
(MIUFS) obtained by proposed algorithm is smaller than
those obtained by the compared algorithms with the number
nodes in VONs from 3 to 7 as shown in Fig.6. CAN-A algo-
rithm lies in constructing the candidate substrate node subset
and the candidate substrate path subset before embedding.
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FIGURE 8. RFSU versus the number of virtual nodes in three networks. (a) RFSU versus the number of virtual nodes in NSFNET network;
(b) RFSU versus the number of virtual nodes in CHNNET network; (c) RFSU versus the number of virtual nodes in ARPANET network.

TABLE 2. Statistical results (Mean and Standard Deviation) of the MIUFS.

In GRC-SVNE, link mapping is performed with Dijkstra
algorithm. That will make connection requests imbalance on
different links. This algorithm will obtain a lager maximum
index of used frequency slots. LCSD algorithm maps the
virtual nodes of the largest computing resource requirements
to physical nodes of the largest available computing resources
one by one, thus making connection requests imbalance on
different links. However, proposed algorithm can search the
optimal virtual nodes mapping scheme for all the virtual
nodes and optimal routing scheme for all the connection

requests using a genetic algorithm with uniform design
and tailor-made genetic operators. In the first experimental
instance, as shown in Fig.3, the values of the maximum
index of used frequency slots obtained by the proposed algo-
rithm are 3.5%−8.7% less than those obtained by the com-
pared algorithms when the number of virtual optical network
is 10. When the number of virtual optical network is 50,
the values of the maximum index of used frequency slots
obtained by the proposed algorithm are 5.1%−12.4% less
than those obtained by the compared algorithms, respectively.
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TABLE 3. Statistical results (Mean and Standard Deviation) of the EC.

Furthermore, we can see that proposed algorithm can save
more frequency slots with the increase of the number
of VONs. In the second experimental instance, as shown
in Fig.6, the values of the maximum index of used frequency
slots obtained by the proposed algorithm are 3.4%−7.6%
less than those obtained by the compared algorithms when
the number of virtual nodes is 3. When the number of
virtual nodes is 7, the values of the maximum index of
used frequency slots obtained by the proposed algorithm
are 4.8%−9.6% less than those obtained by the compared
algorithms, respectively. Similarly, we can see that pro-
posed algorithm can save more frequency slots with the
increase of the number of virtual nodes in each virtual optical
network.

Energy consumption (EC) of all the connection requests
obtained by the six algorithms is evaluated. From Fig.4 and
Fig.7, we can see that energy consumption obtained by the
proposed algorithm is less than that obtained by the com-
pared algorithms. The proposed algorithm can determine an
optimal virtual node mapping and routing scheme which
minimizes energy consumption. In addition, modulation level
selection can decrease energy consumption to the utmost
extent. So, energy consumption by proposed algorithm is
the smallest among all compared algorithms. As shown
in Fig.4, the energy consumption by the proposed algorithm
is 4.6%−10.1% less than that by the compared algorithms

when the number of virtual optical network is 10. When the
number of virtual optical network is 50, the energy con-
sumption by the proposed algorithm is 7.2%−14.8% less
than that by compared algorithms, respectively. As shown
in Fig.7, the energy consumption by the proposed algorithm
is 5.6%−10.9% less than that by the algorithms CAN-A,
GRC-SVNE and LSCD when the number of nodes in each
virtual optical network is 3. When the number of nodes in
each virtual optical network is 7, the energy consumption
by the proposed algorithm is 7.4%−13.5% less than that by
compared algorithms, respectively.

As shown in Fig.5 and Fig.8, ratios of frequency slots
utilization obtained by the six algorithms are compared in
three networks. The proposed algorithm using evolutionary
policy make the connection requests much more balance to
K candidate paths. Therefore, the proposed algorithm can
obtain a higher ratio of frequency slots utilization than the five
compared algorithms. As shown in Fig.5, ratios of frequency
slots utilization obtained by the proposed algorithm are range
of 35.8% to 48.6%, 35.4% to 48.7% and 36.1% to 49.1%with
the number of VONs varying from 10 to 50 in three networks.
In Fig.8, ratios of frequency slots utilization obtained by the
proposed algorithm are range of 36.2% to 49.3%, 35.9% to
49.1% and 36.0% to 48.8% with the number of nodes in each
virtual optical network varying from 3 to 7 in three networks.
This results indicate that the proposed algorithm can increase
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TABLE 4. Statistical results (Mean and Standard Deviation) of the RFSU.

ratio of frequency slots utilization compared to the compared
algorithms.

Table 2, Table 3 and Table 4 show the statistical results
(mean and standard deviation) on the three network topolo-
gies with two instances. From the results, we can see that
GAL is significant better than the five compared algorithms.
CAN-A, GRC-SVNE and LSCD can not find the global opti-
mal solution for the problem, and GAL can converge to the
global optimal solution, so GAL can obtain the better solution
(statistical results of mean) than that of CAN-A, GRC-SVNE
and LSCD obtained. However, GAL is a randomized algo-
rithm, the statistical results of standard deviation of GAL
obtained are larger than that of CAN-A, GRC-SVNE and
LSCD obtained. Uniform design and local search are used
in GAL, so GAL can obtain the better solution than that of
HHPSODE and bi-level BB obtained. In addition, the sig-
nificance of difference between proposed algorithm (GAL)
and the compared algorithms is determined by using the well
knownWilcoxon’s rank sum test. From the results, we can see
that GAL significantly better than the compared algorithms.

D. ALGORITHM COMPLEXITY
In proposed algorithm, K shortest paths should be calculated
for each connection request in advance, its complexity is
O(KN 2), where N is the number of nodes in a network.
There are NR′ connection requests, so the complexity for

all connection requests for calculating K shortest paths is
O(KN 2NR′ ). The fitness function calculation in the proposed
algorithm remains the most complicated and its complex-
ity is O(2GmaxPopsizeN 2NF ), where Gmax , Popsize, and NF
denote iteration times, population size, and MIUFS. There-
fore, the complexity of proposed algorithm is O(KN 2NR′ +
2GmaxPopsizeN 2NF ).

VI. CONCLUSION
We investigate the VONs mapping problem in EONs.
A bi-level mathematical model, which minimize EC and
MIUFS, is established to solve this challenging problem.
In the bi-level mathematical model, leader’s objective is to
minimize EC, which is used to determine the optimal virtual
nodes mapping scheme for all the virtual nodes and opti-
mal routing scheme for connection requests. To minimize
the MIUFS, follower’s decision maker determine an optimal
scheme of routing and spectrum assignment for all the con-
nection requests. In order to solve the bi-level mathemati-
cal model effectively, we adopt uniform design method and
propose a genetic algorithm with two populations. Finally,
a large number of simulation experiments are conducted, and
three widely used metrics are to evaluate the performance
of the proposed algorithm in three widely used networks.
Experimental results show that the bi-level mathematical
model established is reasonable, and the proposed algorithm
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are more efficient. However, the proposed algorithm has
high complexity, so it is only suitable for static (off-line)
VONs problem. So, some other efficient algorithms should
be designed to solve the dynamic (on-line) VONs mapping
problem.
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