
Received May 17, 2020, accepted May 25, 2020, date of publication June 1, 2020, date of current version June 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2998776

Audio-Processing-Based Human Detection at
Disaster Sites With Unmanned Aerial Vehicle
YUKI YAMAZAKI1, CHINTHAKA PREMACHANDRA 1, (Member, IEEE),
AND CHAMIKA JANITH PEREA2, (Member, IEEE)
1Department of Electronic Engineering, Shibaura Institute of Technology, Tokyo, Japan
2Center for Advance Robotics, University of Moratuwa, Moratuwa, Sri Lanka

Corresponding author: Chinthaka Premachandra (chintaka@sic.shibaura-it.ac.jp)

This work was supported in part by the Branding Research Fund of Shibaura Institute of Technology.

ABSTRACT This paper describes a human search system that uses an unmanned aerial vehicle (UAV). The
use of robots to search for people is expected to become an auxiliary tool for saving lives during a disaster.
In particular, because UAVs can collect information from the air, there has been much research into human
search using UAVs equipped with cameras. However, the disadvantage of cameras is that they struggle to
detect people who are hidden in shadows. To solve this problem, we mounted an array microphone on a UAV
and to detect the human voice as a means of finding people that cameras cannot. Also a search method is
proposed that combines voice and camera human detection to compensate for their respective shortcomings.
The rate and accuracy of human detection by the proposed method are assessed experimentally.

INDEX TERMS Victim detection, rescue support, UAV application, sound source separation, voice
recognition.

I. INTRODUCTION
In the event of a large-scale disaster such as an earthquake,
it is expected that many people will go missing. In such
situations, the survival rate is related directly to how long
it takes to rescue the victims. However, because the number
of people who can engage in rescue operations is limited,
it is important to have an efficient means of obtaining infor-
mation about victims. Against this background, in recent
years, human search systems using robots have been actively
investigated in order to improve the efficiency of rescue activ-
ities [1]–[3]. In particular, unmanned aerial vehicle (UAVs)
that can search for people aerially have been developed for
situations in which rescuers cannot access damaged locations
directly [4]–[10]. Such detection helps rescuers to understand
the situation at the disaster site, thereby facilitating rescue
operations. Although such robots now make it possible to
detect people visually, a drawback of this search method is
that it remains difficult to detect people who are either in
camera blind spots or hidden in shadows.

Therefore, to detect people more reliably, we have
addressed these problems by using a UAV equipped with not
only a camera for visual information but also a microphone
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FIGURE 1. System overview.

for audio information. Fig. 1 shows the system schematically.
A UAV equipped with a loudspeaker and a microphone hov-
ers over the disaster site and broadcasts an audio request for
a response from anyone below. The microphone detects the
voice of anyone who responds, thereby determining whether
there is anyone there who requires rescuing.

However, a hovering UAV and a microphone are highly
incompatible. First, the microphone picks up the sound of the
proximate UAV propellers, thereby obscuring the person’s
voice. Second, the farther away the person, the fainter their
voice. In this paper, to solve these two problems, we detect
only the human voice by applying sound-source separation
processing to the mixed sound of the recorded propellers and
human voices.
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FIGURE 2. Relationship between array microphone and camera.

In sound-source separation by an arraymicrophone, sound-
source localization for estimating the direction of a human
voice is performed. We use this localization result to point
the UAV-mounted camera toward the sound source to photo-
graph the person whose voice was detected. Fig. 2 shows the
relationship between the camera and the microphone. This
is an operational image of a PlayStation Eye, in which the
array microphone and camera used in this study are inte-
grated. By simultaneously performing human detection using
a microphone and a camera on a single UAV, we constructed
a system with high detection accuracy that takes advantage of
voice recognition and image processing, as shown in Fig. 3.
Here, in the proposed system, when the human voice is
only acquired, the system detects availability of a human.
On the other hand, the on-board camera can also be used to
detect humans same as UAV-mounted camera based human
detection systems in the literature.

FIGURE 3. Relationship between previous human detection methods and
the proposed method.

II. RELATED WORK
In this section, we describe previous research into the two
main human search technologies used in the present research,
namely, voice processing and image processing.

For human search by voice processing, we previously
studied sound recording using a unidirectional microphone

mounted on a UAV and detecting people from voice infor-
mation [11]. We tried using digital-filter voice processing
to remove only noise from the mixed sound of voices and
propellers, but it was difficult to remove only the propeller
sound without losing the voice sound. Another disadvantage
was that the detection accuracy dropped sharply with distance
from the microphone.

In recent years, products such as smart speakers, cars,
and robots that all use voice recognition technology have
been developed as systems for detecting human voices
using microphones. These products also have the problem
of ambient sound being picked up by the microphone and
interfering with speech recognition. Therefore, such prod-
ucts use sound-source separation technology in the form
of an array microphone equipped with multiple micro-
phones. Sound-source separation technology estimates the
direction of the sound source based on the sound pres-
sure and time difference of the sound picked up by each
microphone, and the mixed sound containing the surround-
ing noise pick up by the array microphones is separated.
Nakadai et al. [12] researched and developed the HARK sys-
tem that realizes sound-source localization and separation
and voice recognition [13].

Techniques for using image processing to search for
people or objects in captured images have been actively
studied. In particular, object detection methods based on
deep-learning networks such as Faster R-CNN [14] and
SSD [15] have been rapidly developed in recent years. One
such object detection method is the algorithm YOLO v3
developed by Redmon and Farhadi, [16], [17]. A problem
with object detection based on a deep-learning network has
been that the recognition accuracy for small objects in an
image is poor. YOLO v3 uses a concept similar to pyramid
network features [18] to extract features from three different
scales and predict objects, thereby improving the recognition
accuracy of small objects. This feature of YOLO v3 works
very well with UAVs, thereby increasing the target distance,
and is used in research to detect objects from UAV-mounted
cameras [19].

Based on these previous studies, we have built a UAV
equipped with an array microphone and a human detec-
tion system based on sound-source separation, and we have
integrated camera-based human detection as a search aid to
build a system with a high detection rate. However, in this
application, the distance from the UAV to the search target
must be considered. The shorter the distance, the easier it is to
pick up sound but the narrower the range that the camera can
capture. Therefore, we use the direction information obtained
at the time of sound-source localization so that when a person
is detected by their voice, we can aim the camera toward them
to achieve compatibility between the two systems.

As a summary, that human search can be done with
UAV-mounted image and voice processing individual sys-
tems. Both approaches are weak in searching humans when
UAV flies at higher altitudes. The target humans appear
in images from UAV-mounted camera becoming smaller at
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higher altitudes while the voice of the target human cannot be
captured by UAV-mounted microphones at higher altitudes.
These reasons sharply drop the detection accuracy of both
approaches. However, the both approaches show compara-
tively better detection rate at the lower UAV altitudes like
3m. However, the image processing based systems can only
search humans when target humans appear in UAV-mounted
camera images. As a solution for this issue, we propose an
UAV-mounted voice processing based human search systems.
Finally, by combining the two type of human search systems,
we expect to improve the human detection performance.

FIGURE 4. Overall view of produced unmanned aerial vehicle (UAV).

III. SYSTEM OVERWIEW
We have been developing different type of UAV systems for
making applications in indoormapping [20], and autonomous
flight [21]–[28]. Fig. 4 shows the UAV produced in this study.
It is equipped with a loudspeaker to request responses from
people, an array microphone to acquire sound, a servomotor
to move the camera, and a small lightweight computer to
control the aforementioned items. The UAV is also equipped
with a Raspberry Pi single-board computer, but the voice and
image processing, which is the core of this research, was
performed on a separate host computer because the Raspberry
Pi had insufficient processing capability. The PlayStation Eye
shown in Fig. 5 served as both the array microphone and
camera mounted on the UAV. A PlayStation Eye is an inte-
grated camera and array microphone, the latter having four
microphones arranged horizontally to collect sound in four
channels. Meanwhile, the camera has a maximum resolution
of 640 × 480 pixels and an angle of view of 56◦. Because
the camera must point toward the sound source, the former is
attached to a servomotor as shown in Fig. 5.

Fig. 6 shows an overview of the constructed human detec-
tion system. First, sound data recorded by the array micro-
phone are sent to the host computer, and sound-source
separation processing is performed through sound-source
localization. Next, voice recognition is applied to the sep-
arated human-voice data. In this way, any words spoken
by a person are detected, thereby detecting the presence or
absence of a person. The results of the aforementioned sound-
source localization, voice recognition, and presence–absence

FIGURE 5. PlayStation Eye and servomotor.

FIGURE 6. Overview of the human detection system.

detection are saved, and the sound-source direction informa-
tion obtained by the sound-source localization is sent to the
Raspberry Pi on the UAV. Using the sound-source direction
information, the Raspberry Pi rotates the camera via the ser-
vomotor to point in the sound-source direction. The resulting
photographic data are also sent to the host computer, which
looks for a person in the image. The above sequence is the
process of human detection. As for the system execution time,
the host computer receives an audio file recorded for 10 s
and takes 20 s to process it; as such, the detection system
completes one cycle every 30 s.

IV. AUDIO PROCESSING BASED HUMAN DETECTION
A. SOUND-SOURCE SEPERATION AND
LOCALIZATION BY HARK
Fig. 7 shows a network diagram of the audio processing flow
in this experiment. Sound-source separation is a technique
for performing separation based on the input direction of
a target sound source. Therefore, it is necessary to localize
the direction of the target sound source as preprocessing.
In Fig. 7, the sound-source localization node is entitled Local-
izeMUSIC and uses what is known as the MUSIC method,
in which a transfer function from a sound source to each
microphone is measured in advance and is used as prior infor-
mation. If hM(θ, ω) is the transfer function in the frequency
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FIGURE 7. Network diagram of audio processing (top: entire system;
center: sound-source localization node; bottom: sound-source separation
node).

domain from the array microphone to microphone M in the
θ direction, then the transfer function vector H(θ, ω) can be
expressed as

H (θ, ω) = [h1 (θ, ω) , · · · , hM (θ, ω)] . (1)

Because this transfer function changes greatly depending
on the environment, it is necessary to measure it for each
experimental environment. In this study, we experimentally
determined the transfer function. The transfer function for
sound source separation method introduced by HARK [12]
is applied. Here, HARK separates inputted sound mixtures
into a set of separated sounds and this process needs a set
of transfer functions to estimate a separation matrix. These
transfer functions are determined by real worldmeasurements
between a microphone array and sound sources. Generally,
time stretched pulse (TSP) responses or impulse responses
recording, according to sound sources are used to determine
the transfer functions when the real measurements are used.
In this work, we use TSP responses. They can be received
in two different categories, as synchronized recording and
unsynchronized recording. The unsynchronized recording
can be conducted with most microphone array devices.
Therefore, in this study unsynchronized recording is con-
ducted. TSP responses are recorded by moving a sound
source in a circle at the 5◦ intervals while keeping the sound
source in a fix point. The radius of the circle is set as 3m.

After collecting the TSP responses, the transfer functions are
determined from the TSP response wav files with HARK-
TOOL5 [12].

Next, an inter-channel correlationmatrix of the input signal
is calculated. First, anM-channel input signal is subjected to a
fast Fourier transform (FFT) at theMultiFFT node in Fig. 7 to
obtain a frequency-domain signal vector X(ω, f ) as

X (ω, f ) = [X1 (ω, f ) ,X2 (ω, f ) , · · · ,XM (ω, f )]T , (2)

where ω is a frequency and f is a frame. The inter-channel
correlation matrix R of the input signal X is

R = XX∗, (3)

where X∗ is the complex-conjugate transpose of X. How-
ever, in this system, to obtain a stable correlation matrix,
an average of the correlation matrix in the time direction is
used. Next, by performing eigenvalue decomposition on R,
the M-dimensional space is decomposed into a signal sub-
space and other subspaces. In this paper, SEVD (Standard
EigenValue Decomposition) is specified as the algorithm of
MUSIC, so eigenvalue expansion is performed as

R = E3E−1. (4)

Here, the matrix E = [e1, e2, · · · , eM] consists of mutu-
ally orthogonal eigenvectors, and 3(ω) is a diagonal matrix
whose eigenvalues correspond to each eigenvector as diago-
nal components. The eigenvalues corresponding to the eigen-
vector space E obtained by the eigenvalue decomposition
are correlated with the power of the sound source. There-
fore, by taking the eigenvector corresponding to the largest
eigenvalue, only the subspace of the target sound with high
power is selected. That is, if the number of sound sources
to be considered is N, then [e1, · · · , eN] is an eigenvector
corresponding to the sound source and [eN+1, · · · , eM] is an
eigenvector corresponding to noise.

Based on the above, theMUSIC spectrum for sound-source
localization is calculated as

P (θ, ω, f ) =

∣∣H∗ (θ, ω)H (θ, ω)
∣∣

M∑
i=N+1

|H∗ (θ, ω) ei (θ, ω) |
, (5)

where the denominator on the right-hand side is the inner
product of the transfer function and the eigenvector of the
noise component in the input signal. If the transfer function
is a vector corresponding to the direction of the target sound
source, then the denominator is zero because it is orthogonal
to all the eigenvectors corresponding to noise in the input sig-
nal. Therefore, in theory, P (θ, ω, f ) becomes infinite in the
direction of the sound source. In practice, however, it remains
finite because of the influence of noise and the like, but the
sound-source direction can be obtained nevertheless because
a peak is observed.

The sound-source separation process can be formulated as
follows. If the transfer vector between the sound source and
the microphone is H(ω) and the spectrum vector for multiple
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sound sources is s(ω), then the microphone input x(ω) is
represented as

x (ω) = H (ω) s (ω) . (6)

Using the separation matrix W(ω), the sound-source separa-
tion result y(ω) is expressed as

y (ω) =W (ω) x (ω) . (7)

Here, W(ω) where y(ω) = s(ω) is an ideal separation
matrix. Because the environment in this study is assumed
to include noise with high directivity, such as the UAV pro-
peller sound, we used the GHDSS (Geometric High-order
Dicorrelation-based Source Separation) algorithm to obtain
W(ω) [31]. This algorithm performs decorrelation among
sound-source signals, forms directivity in the direction of the
sound source, and is effective at suppressing a noise source
that has high directivity. The GHDSS algorithm receives the
multi-channel complex spectrum output from the MultiFFT
node and the sound-source direction output from the Local-
izeMUSIC node and then separates themixed sounds for each
input direction to the microphone.

B. HUMAN VOICE RECOGNITION
Next, the speech obtained after sound-source separation is
sent to the speech-recognition node. In this research, we con-
structed a system that uses speech-recognition technology to
distinguish between the human voice and other sounds such
as noise [29]. Specifically, speech recognition is performed
on the separated speech, and the result is output. In addition,
a system is provided inwhich aword list is created in advance,
and a match is made with a speech-recognition result to
determine that there is a person when a match is found. This
is because the propeller sound is input even when a person
is not responding, so that the propeller sound is processed
as a human voice and an incorrect speech recognition result
is output. Because the erroneous recognition result has a
grammatical error, this method can exclude this type of erro-
neous recognition from the recognition result. In addition,
speech recognition generally has the problem that the first
part of an utterance section cannot be detected well, and thus
a recognition trigger called a magic word is required.

However, the purpose of this research is to search for
people, and it is not possible to have the search target issue a
magic word. Therefore, we set up a system that can recognize
speech without a magic word by notifying the search target
that the utterance section has started. Specifically, the loud-
speaker mounted on the UAV informs the person below that
the recording interval has started. After that, recording is per-
formed, and voice recognition is performed on the recorded
voice data. Although this is a simple method, it reduces the
rate of false recognition without impairing the usability of the
dialogue between the person and the UAV.

C. MERGING WITH CAMERA BASED HUMAN DETECTION
This paper aims at detecting a person on the ground from a
UAV in flight, and it is assumed that the UAV hovers at an

altitude of least 3 m above the ground. Because the scale of
the detected target person in the captured image decreases
with distance, it is necessary to consider the detection of a
small object. Therefore, we attempted object detection using
YOLO v3 as a method of human detection. As described
above, YOLO v3 is an object detection method that can
handle the recognition of objects of different scales, which
is difficult in object-recognition processing.

YOLO v3 involves object detection based on a deep-
learning network, and its detection accuracy depends on the
quality of the input image and the training dataset. Therefore,
we chose to use the COCO dataset [30], which is a large-scale
object detection, segmentation, and captioned dataset that
features rich annotations. As described above, in this studywe
detected a small photographed person by performing object
detection using YOLO v3 trained using the COCO dataset.

V. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL ENVIRONMENT
We performed three experiments on the proposed system
and evaluated its performance. In the first experiment,
we mounted it on a UAV and measured the rate of human
detection when talking to the array microphone. The mea-
surement was performedwith andwithout theUAVpropellers
turning, and the detection rates of each case were compared.
In addition, the same experiment was performed in an envi-
ronment in which a single microphone was mounted as the
voice input device [11], and the results when voice recogni-
tion was performed without performing sound-source sepa-
ration processing were also measured. For the measurement,
we attempted speech recognition 20 times at each distance
and checked whether it was possible to detect people. Note
that the sound pressure of the voice is not always constant
and changes because of sound diffusion and reverberation.
Therefore, when the distance is large, the sound pressure
input to the array microphone becomes small, and localiza-
tion may not be performed.When this phenomenon occurred,
we responded by lowering the threshold of sound pressure
necessary for localization. In the second experiment, we used
the sound-source localization results to calculate the accuracy
of the sound-source direction. Finally, in the third experiment,
we analyze the performance of human detection combining
the proposed voice based human detection method with a
human detection method by UAV mounted camera.

B. HUMAN DETECTION EVALUATIN
Fig. 8 shows the measured data for the rate of human detec-
tion. For data comparison with a conventional method [11],
we also measured the results of human search using sound
data recorded with a one-channel microphone with neither
sound-source localization nor sound-source separation.

In the Fig. 8, the orange line and blue line indicate the
human detection performance of proposed method and con-
ventional method respectively, when propeller sound does
not exist in the environment. On the other hand, the yellow
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FIGURE 8. Human detection comparison.

line and grey line indicate the human detection results of
the proposed method and conventional method respectively,
when both human sound and propeller sound exist in the
environment. The latter experiments with availability of UAV
sound, were conducted with the real UAV at both indoor
and outdoor environments. For these experiments, we used
our developed UAV shown in Fig. 4. Here, 20 experiments
were conducted in each indoor and outdoor environments by
changing the distance between microphone and sound source
(human voice) approximately between 1m to 5m as shown
Fig. 8. During the outdoor experiments, the outdoor environ-
ment was noisy for a certain level with natural sounds such
as wind. On the other hand, during the indoor experiments,
the environment did not include such natural sounds, only
included UAV sound and human voice.

We did further analysis to confirm the effectiveness of the
sound source separation part and voice recognition part in
our proposal. For this analysis, we used experimental data
acquired from both indoor and outdoor. According to analy-
sis, the sound source separation performance varies sharply
according to the distance between microphone and human
sound, as shown in Fig. 9. On the other hand, the average
voice recognition rate after the sound source separation was
92.8% and this value was almost constant and did not vary
much according to the distance changes between microphone
and human sound.

The results of conventional method shows that when the
sound is collected using only one channel, the distance of
around 3 m is the limit of speech recognition even without
propeller sound. This is because the sound diffuses with dis-
tance and becomes difficult to acquire. By contrast, although
the accuracy decreased with distance when the array micro-
phone was used, human detection was confirmed possible
even in a noisy environment.

C. SOUND-SOURCE LOCALIZATION EVALUATION
Fig. 10 shows an image taken after rotating the camera
based on the direction information obtained by sound-source
localization. When source localization was performed for a

FIGURE 9. Sound source separation results of the proposal.

FIGURE 10. Object recognition performed on an image.

voice uttered by a person 5 m away from the UAV’s position,
the direction of the input sound source was determined to be
20.023989◦ with respect to the array microphone. However,
when the camera was moved to that angle, the person was
not in the center of the image, as shown in Fig. 9. There
was a deviation of 1.5 m from the center of the image,
corresponding to an angular deviation of approximately 17◦.
This was attributed to the resolution of the array microphone.
In this study, we used an array microphone comprising four
microphones arranged horizontally. Because the accuracy
of sound-source localization is correlated with the number
of microphones mounted, we expect improved accuracy by
mounting more microphones. However, because the purpose
of this study was to show the person in the image, suffi-
cient localization accuracy was confirmed. In addition, on a
host computer with a Core i5-7500 processor and 8 GB of
memory, the average detection time for one image file using
YOLO v3 was around 6.

D. EVALUATION OF COMBINED VOICE BASED AND
IMAGE BASED HUMAN DETECTION
In the previous section, we discussed the sound source local-
ization by using the human detection with an UAV-mounted
camera. In this section we discuss human detection combin-
ing both voice basedmethod (proposedmethod) and an image
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based method with UAV-mounted camera. In these experi-
ments, UAV altitudes were approximately 2m-5m. We used
YOLO v3 to detect humans from the UAV-mounted cam-
era [17]. According to the results, the YOLO v3 itself human
detection rate by using UAV-mounted camera images was
84.5%. The reason for most missed-detections was that the
humans did not appear in camera images even though humans
are in the environment. However, the human detection rate by
combining these two systems was 93.3%. Thus, according to
this combination, we could confirm a clear human detection
improvement. Furthermore, human detection using images
from UAV-mounted camera is difficult at higher altitudes.
However, this problem would be solved for a certain level by
using a wide-angle high resolution camera.

VI. CONCLUSION
In this paper, we proposed a human search system using a
UAV with an array microphone. Specifically, we have con-
structed a system that detects the human voice by apply-
ing sound-source separation processing to the mixed sound
of voice and propellers collected by the array microphone
on the UAV. In addition to voice-based human detection,
we used YOLO v3—a deep-learning-based object detection
method—for human detection from images. In doing so,
we obtained more information by integrating the two detec-
tion methods, thereby realizing a possible human detection
system.

In experiments to assess the performance of the proposed
system, we focused on the accuracy of human detection
and sound-source localization and the processing speed.
Wemeasured the accuracy of human detection with and with-
out sound-source separation processing and obtained higher
accuracy with separation. The localized position of the sound
source deviated from the actual position in some cases, but
the accuracy required for human detection using images was
maintained.
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