
Received May 8, 2020, accepted May 26, 2020, date of publication June 1, 2020, date of current version June 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2998725

C2CFTP: Direct and Indirect File Transfer
Protocols Between Clients in
Client-Server Architecture
MINGYU LIM
Department of Smart ICT Convergence, Konkuk University, Seoul 05029, South Korea

e-mail: mlim@konkuk.ac.kr

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education under Grant NRF- 2018R1D1A1A09082580.

ABSTRACT In this paper, we propose an efficient direct and indirect file transfer protocol (C2CFTP) that
transfers files between clients in a client-server system. Existing file transfer methods use an indirect transfer
method through a server to transfer files between sending and receiving clients or a direct transfer method that
connects a direct data channel between clients. However, in the case of indirect transmission, unnecessary file
input/output (I/O) is required by the server, and in the case of direct transmission, a problem arises in that the
file transmission delay time is increased due to channel management cost. The proposed C2CFTP can omit
unnecessary file I/O overhead by relaying the file to the receiving client instead of storing the file at the server
for indirect transmission. For direct transmission, instead of connecting a data channel every time a file is
transmitted, the channel connection overhead is reduced while minimizing the waste of the number of direct
channels between clients by maintaining the first connected channel while the file transfer is required within
a predetermined time. File transfer experiments show that the proposed file transfer protocol has a reduced
file transfer delay time than the existingmethods. In addition, it was confirmed that the direct transfer method
is suitable for transferring large files, and the indirect transfer method is suitable for transferring multiple
small-sized files in a bundle.

INDEX TERMS File transfer protocol, client-server model, communication framework, indirect file transfer,
channel management.

I. INTRODUCTION
The file transfer function is an important service commonly
used in various contemporary distributed applications such
as online games, online social networks, chat applications,
cloud storage services, and Internet of Things(IoTs). The File
Transfer Protocol (FTP) [1], [2] currently used as a standard
and later improved file transfer protocols or systems [3]–[11]
have been studied mainly focusing on methods for efficiently
transferring large files between a client and a server. In addi-
tion, applications that share content between users, such as
online social network systems, require a file transfer function,
and communication frameworks or middlewares [12]–[18]
that provide various communication functions including the
file transfer as a service have also been studied. As described
above, the existing file transfer function deals with a file

The associate editor coordinating the review of this manuscript and

approving it for publication was Macarena Espinilla .

transfer environment between directly connected clients and
servers in a client-server structure or between directly con-
nected peers in a peer-to-peer(P2P) structure.

However, in a distributed application of a client-server
structure, it is also necessary and important to explicitly and
implicitly transfer files between clients to share and update
digital content in social and business life. For example, in a
chat application, a user can send a photo file to a friend to
share his/her experience, or a cloud storage service user can
share his/her work file with a coworker to collaborate with
each other. When it is necessary to transfer files between
clients in this way, the existing methods do not suggest a
separate file transfer method. That is, existing file transfer
methods may use a two-stage transfer in which the transmit-
ting client first transmits the file to the server and the server
transmits it to the receiving client. However, this method has
a problem in that file transfer performance is deteriorated
by redundantly performing file I/O operations during the file

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 102833

https://orcid.org/0000-0002-3749-1902
https://orcid.org/0000-0003-1118-7782


M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

transfer process. That is, the server opens a new file to receive
the file from the sending client, writes the received blocks to
the file, and finally closes the file. The server opens the file
again to send this file to the receiving client, reads the file
blocks, sends it, and finally closes the file. As such, if the
server repeatedly and unnecessarily opens / closes files and
inputs / outputs files, the delay in transferring files between
clients increases.

Many file transfer methods, including FTP [1], [2], connect
a dedicated communication channel for file transfer between
transmitting and receiving nodes. However, it does not set
a dedicated channel directly between clients. Rather, FTP
allows two FTP servers to transfer files directly over a chan-
nel connection at the client’s request. In the peer-to-peer
architecture like BitTorrent [5], the receiving node makes a
direct connection with several sending nodes, but in this case,
it is not a client-server structure. In addition, these dedicated
channels are connected every time a file is transferred and
then disconnected after completion. As suggested in our pre-
vious study [13], if the file transfer is repeated frequently,
the delay time due to the repetition of the channel connection
also increases, so a separate channel management method
is needed. In the study of [13], a dedicated channel was
connected between the client and the server in advance to
solve the channel connection delay problem. However, this
method is not suitable for file transfer between clients. This
is because as the number of clients increases, the number
of dedicated channels to be connected between all pairs of
clients increases exponentially.

In this paper, we propose a protocol (C2CFTP) that can
efficiently transfer files between clients in a client-server
architecture by removing the unnecessary file I/O at the server
and reducing the overhead of dedicated channel manage-
ment so that we can reduce the file transfer delay according
to different file-transfer requirements of applications. The
proposed C2CFTP is an improvement and extension of the
previous file transfer method of the communication frame-
work (CM) [13] that supported only file transfer between
the client and the server. C2CFTP is composed of two types:
direct transfer protocol (direct C2CFTP) and indirect transfer
protocol (indirect C2CFTP). The two file transfer services
can be used selectively depending on the needs of the appli-
cation. The direct C2CFTP directly transfers files using a
separate data channel and a dedicated thread between the
transmitting and receiving clients. The dedicated channel is
not released immediately after the file transfer is completed,
but is maintained for a keep-alive time. Therefore, if two
clients frequently send files, there is no need to reset the
channel every time. If there is no file transfer task for a spec-
ified threshold period, the channel is considered unnecessary
and then it is deleted. The indirect C2CFTP does not use a
separate dedicated channel and thread, but transmits the file
indirectly through the relay of the server using the default
channel connected to the server. Since this default channel
is used only for CM event transmission, we add a file block
to the CMfile event to transmit the file block. The server only

serves to deliver file events to the receiving client, and does
not perform unnecessary file I/O operations.

As a result of performance analysis through experiments,
we found that the proposed C2CFTP reduced the average
file transfer delay time compared to the existing file transfer
methods. In the experiment transferring one file, the direct
C2CFTP showed less latency than the indirect C2CFTP.
Instead, in the case of sending a bundle of files, the direct
C2CFTP increased overhead because of the delay of manag-
ing threads for files. Thus, the indirect C2CFTP showed rel-
atively better performance. In the experiments of transferring
a bundle of files, the indirect C2CFTP exhibits a low trans-
mission delay when the file is a small size of less than 1 MB.
However, as the file size increases, the direct C2CFTP shows
better performance because the effect of thread manage-
ment overhead of a file bundle becomes smaller. Therefore,
an advantage of C2CFTP is that an application can select one
of the direct and the indirect C2CFTP methods according to
its file transfer requirement.

II. COMMUNICATION FRAMEWORK (CM)
CM [12], [13] is a communication framework for develop-
ing distributed applications. By using the CM Application
Programming Interfaces (APIs), application developers can
easily implement various communication functions that allow
applications to interact with other CM nodes (applications
using CM’s communication service). CM nodes can divide
roles into a client and a server. The CM client node can
simply use basic communication functions such as registra-
tion, connection, login, CM event creation and transmission
to the server. The client can also receive and handle CM
events from the CM server node. In addition to the basic
communication functions, CM nodes can use other services
such as file transfer, content management of social network-
ing service (SNS), network status check, and communication
channel management.

CM nodes communicate internally in an event-based asyn-
chronous manner. To support the asynchronous communi-
cation method, CM runs in multiple threads (main thread,
processing thread, sending thread, and receiving thread) as
shown in Figure 1. When the main thread of the application
runs the CM, the CM starts the processing thread, the sending
thread, and the receiving thread. The main thread is respon-
sible for handling local events from application users. The
processing thread is responsible for receiving and processing
CM events received from the receiving thread. The sending
thread is responsible for converting CM events created by the
main thread or processing thread into low-level bytemessages
and sending them to the remote target node. When the main
thread or the processing thread needs to send a message to
a remote node, it creates the necessary CM event, puts it
in the sending queue, and delivers it to the sending thread.
The receiving thread is responsible for receiving the byte
message from the network, converting it into a CM event,
and passing it to the processing thread. The receiving thread

102834 VOLUME 8, 2020



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

FIGURE 1. CM multi-thread structure.

puts the received CM event into the receiving queue, and the
processing thread receives and processes it.

A. CM CHANNEL MANAGEMENT
CM is basically designed to send and receive CM events
asynchronously by registering a non-blocking channel in a
selector object. The receiving thread of the CM monitors the
selector and detects new connection requests coming into
the server socket channel or CM events coming into other
channels. There are various communication channels that CM
handles, such as general socket channels, datagram chan-
nels, and multicast channels, but in this paper, we only deal
with socket channels necessary for file transfer. CM contains
information of other communicating CM nodes (clients or
servers). The client CM has the information of the connected
server, and the server CM has the logged-in client infor-
mation. Since one CM node can connect multiple channels
with other CM nodes, the channels are managed in the hash
table for each connected target node. The ID of the target
node becomes the channel name, and the key of the hash
table becomes the channel number. The channel number is an
integer greater than or equal to 0. The client CM maintains a
hash table that stores non-blocking channels connected to the
server. At this time, the name of the basic channel connected
to the server is the server ID, and the channel number is 0.
If the client wants to create another non-blocking channel
with the server, a channel number different from the existing
number must be assigned and the channel is stored in the hash
table using this number as a key. The server CM has a hash
table that stores non-blocking channels for a client connected
to it. When the server CM searches for a basic non-blocking
channel connected to a client, the channel name is the client
ID and the channel number is 0. Figure 2 shows the chan-
nel structure of client and server in CM. In the figure, the
server has the information of two logged in clients (client1,
client2) and is connected to them by a non-blocking channel.
Client1 is connected to two channels (channel number 0, 1),
and client2 is connected to one channel (channel number 0).

FIGURE 2. CM channel structure in a client and a server.

In addition, the server also has a server socket channel to han-
dle the client’s connection request to the selector. Client1 has
server information and a channel hash table in it. Client2 is
connected to the server by one basic non-blocking channel,
and the channel structure diagram of Client2 is omitted in
the figure. As such, CM separately manages the channel
information of the connected target node with the pair of a
channel name and a channel number, and when the CM’s
upper manager module needs to refer to the channel, it can
search for the channel with the pair of information.

B. CM FILE TRANSFER METHOD
The previous file transfer service of CM [13] has two meth-
ods: using the default non-blocking communication channel,
and applying a separate dedicated blocking communica-
tion channel and a thread. The application can select and
use the appropriate method from the two methods depend-
ing on its requirements. In the file transmission method
based on the non-blocking channel (hereinafter referred to
as non-blocking file transfer), a file block is transmitted
using the default non-blocking channel used by CM for event
transmission. Because thismethod does not require additional
channels and threads for file transfer, there is no additional
channel management cost. However, there is a burden of
converting all transmitted file blocks into CM file events.
In the file transfer method based on the blocking channel
(hereinafter referred to as blocking file transfer), a dedicated
channel and thread for file transfer are used. In this case,
CM uses the non-blocking channel only for the file trans-
fer preparation process between the transmitting node and
the receiving node, and transmits file blocks using a dedi-
cated blocking channel and a thread separately. To this end,
CMmanages hash tables for blocking channels separate from
the hash tables for non-blocking channels. This method does
not affect the default non-blocking channel of CM, but has
the disadvantage of adding overhead for managing additional
channels and threads.

The limitation of the previous CM is that both file transfer
methods only support file transfer between the client and

VOLUME 8, 2020 102835



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

the server. In order for a client to send a file to another client,
a two-stage file transfer is necessary in which the sending
client first sends the file to the server, and then the server
sends it back to the receiving client. This method has a prob-
lem in that the server executes unnecessary file I/O, which
increase the transmission delay time. To solve the problem,
the proposed method for transferring files between clients is
described in detail in the next section.

III. CLIENT-TO-CLIENT FILE TRANSFER
PROTOCOL (C2CFTP)
When a file transfer is required in the client-server structure,
it can be divided into two types: client-server transfer and
client-client transfer. In fact, using the client-server file trans-
fer function, the client-client file transfer can be implemented
in two simple steps. First, the sending client sends the file to
the server. After the transfer is completed, the server sends
this file back to the receiving client. However, repeating the
same transmission process twice causes unnecessary redun-
dancy in the detailed steps of the protocol. For example, in the
process of transmitting a file from the sending client to the
server, the server opens a new file, writes the received file
blocks to this file, andwhen the reception is completed, closes
the file to finish the transmission process. The server then
opens the file again to send this file directly to the receiving
client, and this time it needs to read the file blocks. In this
way, the server unnecessarily repeats the opening/closing of
the same file and reading/writing the same file blocks. It is
well known that file I/O repetition is one of the main factors
affecting system performance. As another example, even if
a separate data channel is used for file transfer, dedicated
data channels must be created between the sending/receiving
clients and the server every time the file is transferred. This
is an additional cost to increase file transfer time. Since this
cost is added for each file transfer session, the problem is
exacerbated because the file transfer delay time is contin-
uously cumulated, especially in environments where clients
frequently send and receive small sized files repeatedly.

The existing CMfile transfer service has the same problem
as the existing file transfer method, because it only sup-
ported file transfer between the client and the server. The
client-client file transfer method proposed in this paper is
a protocol that eliminates unnecessary extra work due to
the previously mentioned two-step file transfer. In the pro-
posed method, the server is only responsible for relaying
the file block transfer between two clients, instead of tem-
porarily storing the file in the middle. Since the existing
CM file transfer service provides two transmission methods:
the blocking and the non-blocking file transfer, this paper
extends each method to improve the protocol (which is called
C2CFTP) applicable to the client-client file transmission. The
improvement of the existing blocking file transfer method is
called direct C2CFTP, and the improvement of the existing
non-blocking file transfer method is called indirect C2CFTP.

As shown in Figure 3, in the direct C2CFTP, a dedicated
blocking channel is created between a sending and a receiving

FIGURE 3. Direct C2CFTP concept.

FIGURE 4. Indirect C2CFTP concept.

client to transmit file blocks through this channel. As shown
in Figure 4, in the indirect C2CFTP, the client sends and
receives file blocks using the default non-blocking channel
connected to the server instead of a dedicated channel. That is,
the sending client transmits each file block to the server, and
the server delivers the block back to the receiving client. This
method is similar to the previous two-step file transfer, which
was raised as a problem, but the server does not perform
file I/O because the file blocks received by the server is
transmitted directly to the receiving client rather than stored
as a separate file. Both the direct and indirect C2CFTPs send
and receive control CM events for synchronization of the
sending and receiving clients before and after the file transfer
task. Since the clients are not directly connected to each other
through a non-blocking channel for CM event transmission,
all of these CM file events are transmitted indirectly through
the relay of the server [19]. The client uses one of the direct or
indirect C2CFTP, which is decided by the server. The server
can decide policies of various CM communication services
with a CM configuration file that is provided together with
the CM library. The file transfer policy can be set in the
FILE_TRANSFER_SCHEMEfield. That is, if the field value
is 1, the direct C2CFTP is used, and if 0, the indirect C2CFTP
is used. The server decision of the file transfer method is
just a matter of policy for keeping a consistent method in an
application. Thus, if needed, the client also can easily call the
different method instead of following the server decision.

In addition, C2CFTP added a file transfer permission pro-
cess that was not provided by CM’s existing file transfer

102836 VOLUME 8, 2020



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

method. In the existing CM file transfer, if the application
calls the CM’s file transfer service method, the file transfer
proceeds unconditionally regardless of the consent of the
other application. C2CFTP added the automatic file transfer
permission option to the CM configuration file, so that when
an application uses CM, it can decide whether to automati-
cally allow a file transfer request from another application.
If the value of the PERMIT_FILE_TRANSFER field of the
CM configuration file is set to 1, the request for the file
transfer of the other party is allowed unconditionally. On the
other hand, if the field value is set to 0, the application
must decide whether to allow the file transfer request. The
application can inform the CM whether or not to accept the
request by calling the replyEvent() method added to the stub
module.

A. DIRECT C2CFTP
The direct C2CFTP is used to transfer file blocks by con-
necting a dedicated blocking channel between the file trans-
mitting node and the receiving node, similar to the existing
blocking file transfer method of CM. To this end, the server
CM sets the FILE_TRANSFER_SCHEME field value of the
configuration file to 1. In the existing file transfer between
the client and the server, the client always requested to create
a blocking channel to the server because the server already
has a server socket channel. However, in direct file transfer
between clients, as the file sender and receiver are both
clients, we must decide which client first creates the server
socket channel. This decision does not significantly affect
the direct file transfer protocol. In the proposed protocol,
the receiving client creates a server socket channel, and the
sending client connects a blocking channel to it. The server
plays a role of relaying control CM events necessary for
file transfer between the sending and the receiving clients.
Figure 5 shows the internal structure of CM when using the
direct C2CFTP. The detailed process of the direct C2CFTP is
described in detail in the next section.

FIGURE 5. Direct C2CFTP structure.

1) FILE PUSH
Table 1 summarizes the CM control events exchanged
between the sending and receiving clients at each stage of the

TABLE 1. CM events for file-push service in direct C2CFTP.

file transmission service using the direct C2CFTP and their
respective roles. The detailed format of each control event is
described in Appendix A. In the table, ‘‘sender’’ is the send-
ing client and ‘‘receiver’’ is the receiving client. Although the
server is not shown in the table, all CM events are delivered
to the target client via the server. The detailed procedure for
the sending client to send the file to the receiving client in the
direct C2CFTP is as follows.

(1) The sending client calls the pushFile() method
of the CM stub module. The CM main thread
sends a file transmission permission request event
(REQUEST_PERMIT_PUSH_FILE) to the receiving
client through the sending thread. In the receiving
client, the receiving thread dispatches the request event
to the processing thread, and the processing thread
processes the request. If the request from the sending
client is allowed, the return code of the response event
(REPLY_PERMIT_PUSH_FILE) is set to 1, and if the
request is rejected, the return code is set to 0. If both the
sender and the receiver are clients, the receiving client
creates a server socket channel to wait for the creation
of a dedicated channel for data transmission with the
sending client. The port number of this server socket
channel is randomly assigned so as not to conflict with
other port numbers, and this port number is set as the
value of the port number field of the response event.

(2) The receiving client sends the response event
(REPLY_PERMIT_PUSH_FILE) set in (1) to the
sending client. When the sending client refers to the
return code of the response event and the value is 0,
the receiving client has rejected the request, and the
file transmission process ends here. If the return code
is 1, the sending client adds new file information to the
outgoing file list and continues the file transmission
procedure. If both the sender and the receiver are
clients, the sending client stores the port number of the
server socket in the receiver information. Since the CM
client maintains information of other clients belonging
to the same group, the sending client has the receiving
client information. When a blocking channel con-
nected to the receiving client exists, the transmitting
client sets the channel information in the transmission
file information and proceeds to the next step (3).
If there is no blocking channel, the sending client

VOLUME 8, 2020 102837



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

first connects the blocking channel with the receiving
client address and port number, sets this channel in the
transmission file information, and then proceeds to the
next step.

(3) The sending client sends a transfer start event
(START_FILE_TRANSFER_CHAN) to the receiving
client. The receiving client sets a directory to store the
received file and searches for a blocking channel to the
sending client. The receiving client adds the blocking
channel and file information to the incoming file list.
When the CM receiving thread starts the file receiving
thread, the file receiving threadwaits to read file blocks
being sent to the blocking channel.

(4) After starting the file receiving thread, the receiv-
ing client sends a response event (START_FILE_
TRANSFER_CHAN_ACK) to the sending client. The
sending client also starts a file sending thread, which
starts sending file blocks over the blocking channel.

(5) The file sending thread transmits the file blocks to
the end through the blocking channel, and the file
receiving thread reads the file blocks from the blocking
channel and writes them to the received file.

(6) When the file sending thread transmits all file
blocks, it sends a completion event (END_FILE_
TRANSFER_CHAN) to the receiving client and ends.
The file sending thread directly transmitted the file
block to the blocking channel, but since the transmis-
sion completion event is a CM control event, it is trans-
mitted to the receiving client through the server with
the non-blocking channel. When the receiving client
receives the transmission completion event, it waits
until its file receiving thread receives all file blocks and
terminates.

(7) When the file receiving thread completes the task,
the receiving client sends a response event (END_
FILE_TRANSFER_CHAN_ACK) to the sending
client, and deletes the file information. When the
sending client also receives the response event, the cor-
responding file information is deleted. At this point,
the receiving client searches for another incoming file
information that the sending client has not yet started
transmitting. When such file information is retrieved,
it means that there are more files to be sent by the
sending client, and the receiving client returns to step
(4) to continue the next file receiving operation. When
there is no more file information to be received from
the sending client, the file push service ends.

2) BLOCKING CHANNEL MANAGEMENT
In the direct C2CFTP, the sending client and the receiving
client use a blocking channel only for file block transfer.
In the existing CM, the blocking file transfer method used
a blocking channel between the client and the server, but did
not use any direct connection between the clients. In the direct
C2CFTP, in order to create a blocking channel between trans-
mitting and receiving clients, the file receiving client first

creates a server socket channel. This server socket channel
is a non-blocking channel that is registered with the selector
and waits for connection requests from other sending clients.
When the sending client establishes a connection with the
receiving client, the newly created channel in the receiv-
ing client is registered with the selector as a non-blocking
channel. When the sending client sends a channel add
event (ADD_BLOCK_SOCKET_CHANNEL) through the
new channel, the receiving client’s processing thread receives
and processes this request event. That is, after unregistering
the new non-blocking channel from the selector and changing
to the blocking mode, it is added to the blocking channel
hash table of the sending client. At this time, the channel
name is the sending client ID and the channel number is 0.
The receiving client sends the channel registration result as
a response event to the sending client. The response event
(ADD_BLOCK_SOCKET_CHANNEL_ACK) is delivered
to the sending client through the server with the default
non-blocking channel. When the sending client confirms that
the receiving client has successfully added the blocking chan-
nel, it continues the file sending procedure. Figure 6 shows
an example of the channel structure of the client and server in
the direct C2CFTP. Client1 is a sending client and Client2 is
a receiving client.

FIGURE 6. Channel structure of direct C2CFTP.

One of the considerations in the direct C2CFTP is to
decide when to create and delete blocking channels between
clients. If a channel is created whenever a file transfer is
necessary, the creation time of each channel affects the file
transfer delay time. The channel creation time varies greatly
depending on the situation of the network and host at that
time. Figure 7 shows the change in the total file transfer time
when a blocking channel is created for each file transfer and a
small file transfer of 1 KB in size is repeated. Therefore, if the
application uses the file transfer function quite frequently,
creating and deleting channels whenever necessary can be a
significant performance burden. On the other hand, creating a
blocking channel among all clients in advance causes a waste
of unnecessary channel resources. Figure 8 compares the
number of blocking channels between a server and a client

102838 VOLUME 8, 2020



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

FIGURE 7. Change of file transfer delay including channel creation time.

FIGURE 8. Number of blocking channels between all pairs of a server and
clients vs. number of blocking channels between all pairs of clients.

and the number of blocking channels between two clients as
the number of clients increases. In the former case, a client
has only one blocking channel with the server regardless of
the number of clients. In the latter case, however, a client
should have blocking channels with all the other clients.
Therefore, as the number of clients increases, so does the
number of blocking channels. In this paper, the above two
extreme methods are mixed to manage the blocking channel
between clients. First, a blocking channel is created when the
first file transfer is needed between two clients. This channel
remains for a while even after the file transfer is complete.
If this channel is no longer used for file transfer during the
threshold time that can be set in the CM configuration file,
CM deletes this channel.

The procedure for deleting blocking channel information
between clients is as follows. When the receiving client
confirms that its blocking channel has not been used for
more than the threshold period, it sends a channel-deletion
request event (REMOVE_BLOCK_SOCKET_CHANNEL)
to the sending client. When the sending client receives
this delete request event, it closes the blocking channel
in the receiving client information and deletes it from
the hash table. The sending client sends a response event
(REMOVE_BLOCK_SOCKET_CHANNEL_ACK) includ-
ing the deletion result to the receiving client. The receiving

client also deletes the blocking channel information, and
finally the server socket channel is also closed and deleted
at the selector. CM event formats related to blocking channel
addition and deletion are described in detail in Appendix B.

3) FILE PULL
While the file push is a service in which a file sending
node requests file transfer, the file pull is a service in which
a file receiving node requests file transfer. Table 2 shows
CM control events exchanged between a receiving and a
sending client when using a file receiving service with the
direct C2CFTP. The detailed format of each control event is
described in Appendix A. As shown in the table, the remain-
ing steps (3) to (7) except the first two steps are the same as
for the file push service. The detailed procedure of the first
two steps is as follows.

TABLE 2. CM events for file-pull service in direct C2CFTP.

(1) The receiving client calls the requestFile() method
of the CM stub module. If both the sender and
receiver are clients, the CM main thread of the receiv-
ing client first creates a server socket channel to
receive file blocks. The port number of the server
socket channel is set as a field in the request event
(REQUEST_PERMIT_PULL_FILE) and transmitted
to the sending client.

(2) Upon receiving the request event, the sending
client checks whether the requested file exists and
whether the request is permitted. The sending client
sets the return code field of the response event
(REPLY_PERMIT_PULL_FILE) according to the
permission of the request and transmits it to the receiv-
ing client. The return code is set to 1 for accepting
the request, 0 for rejecting, or −1 if no such requested
file exists. If the request is granted, the sending client
adds the port number to the receiving client informa-
tion. If there is no blocking channel to the receiving
client, the sending client first completes the blocking
channel connection and then performs the next step.
If the receiving client receives the response event
(REPLY_PERMIT_PULL_FILE) and the return code
is 0 or −1 (i.e., the request is not allowed), the server
socket channel is closed and deleted, and the file pull
service is aborted.

The steps (3) to (7) are the same as for the file push service.

B. INDIRECT C2CFTP
To use the indirect C2CFTP, the server CM sets the
FILE_TRANSFER_SCHEME field value of the configu-
ration file to 0. The indirect C2CFTP uses the default

VOLUME 8, 2020 102839



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

non-blocking channel connected to the server for file block
transfer, similar to CM’s previous non-blocking file transfer
method. Since all non-blocking channels managed by CM are
used for CM event transmission, a CM event including file
blocks are required. Among the file events in Appendix A,
the CONTINUE_FILE_TRANSFER event is used for this
purpose. In addition, the server has been improved so that it
can only play the role of relaying file events in client-client
file transfer. To this end, the file sender and file receiver fields
are included in all file events, and when the file event is
received, the server first checks whether it is a file sender or a
receiver. If the server itself is not both the sender and receiver,
the server determines that this event is for client-client file
transfer and the server CM delivers it to the file sender
or receiver client using the CM’s internal forwarding tech-
nology [19]. Figure 9 shows the internal structure of CM
when using the indirect C2CFTP. The detailed process of the
indirect C2CFTP is described in the next section.

FIGURE 9. Indirect C2CFTP structure.

TABLE 3. CM Events for file-push service in indirect C2CFTP.

1) FILE PUSH
Table 3 summarizes CM control events used in the indirect
C2CFTP and their respective roles. The detailed format of
each control event is described in Appenddix A. The main
difference from the direct C2CFTP is that when transferring a
file block in step (5), it uses the default non-blocking channel
with the server, not a dedicated blocking channel. That is,
both control CM events and file blocks are sent between
the two clients via the server. The detailed procedure is as
follows.

(1) The sending client calls the pushFile() method of
the CM stub module. The CM main thread sends a

transfer-permission request event (REQUEST_PER-
MIT_PUSH_FILE) to the receiving client through the
sending thread. The receiving client puts the return
code value to a response event (REPLY_PERMIT_
PUSH_FILE) depending on whether the request is
allowed or not, and sends it to the sending client.

(2) The sending client receives the response event from
the receiving client, and if the return code of the event
is 0 (rejected), the file transfer process is aborted. If the
return code is 1 (permit), the sending client adds new
file information to the outgoing file list and continues
to the next step.

(3) The sending client sends a start event (START_FILE_
TRANSFER) to the receiving client. The receiving
client sets a directory to store the received file, opens
a new file to receive, and adds newly opened file
information to the incoming file list.

(4) The receiving client sends a response event (START_
FILE_TRANSFER_ACK) to the file-sending client
after the file reception preparation is completed.

(5) When the sending client receives the response event
(START_FILE_TRANSFER_ACK), the file to be
transmitted is opened and each file block is included
in the block event (CONTINUE_FILE_TRANSFER)
and transmitted to the receiving client. Whenever the
receiving client receives a file block event (CON-
TINUE_FILE_TRANSFER), it writes the file block to
the received file.

(6) The sending client closes the file after sending the
last file block event and sends the transfer-completion
event (END_FILE_TRANSFER). When the receiving
client receives this event, it closes the received file and
deletes the file information from the incoming file list.

(7) After the file receiving operation is completed,
the receiving client sends a response event (END_
FILE_TRANSFER_ACK) to the sending client. When
the sending client receives this event, it deletes the file
information from the outgoing file list and completes
the file push task.

TABLE 4. CM events for file-pull service in indirect C2CFTP.

2) FILE PULL
Table 4 shows CM control events exchanged between the
receiving and sending clients when using the file receiving
service with the indirect C2CFTP. The first two events are the
same as those of the file-pull service of the direct C2CFTP.
The processing part of these two events is the same as the
processing in the direct C2CFTP, except that there is no
blocking channel setup process between the sending and

102840 VOLUME 8, 2020



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

receiving clients. The rest of the steps (3) to (7) are the same
as those in the file-push service of the indirect C2CFTP.

IV. PERFORMANCE EVALUATIONS
In order to compare and analyze the performance of the
direct and indirect C2CFTPs proposed in this paper, we mea-
sured the average file transfer time for the proposed and
existing methods. The existing method is the two-step file
transfer between clients through the server. In the experi-
ment, the server machine (Windows 10, Intel Core i3 3.5GHz
CPU, 8GB RAM) connected to a 1Gbps WAN, and two
clients (MacOS Catalina, Intel Core i5 3.8GHz CPU, 16GB
RAM) connected to the server via Wi-Fi (2.4GHz band) of a
wired/wireless router. The clients are in charge of sending and
receiving files, respectively, and the sending client measured
elapsed time until the file transfer is completed by calling
the CM’s file-push service. In addition, in the experiment,
we also compared the change of the transmission time accord-
ing to the different file size and the number of files. All
measured file transfer times are obtained by transferring the
files 100 times to obtain the average value.

FIGURE 10. Transfer delay according to file size (1KB ∼ 1MB).

FIGURE 11. Transfer delay according to file size (10MB ∼ 100MB).

Figures 10 and 11 show the results of measuring the
file transfer time for each method according to the file
size. In the conventional method (csc_block, csc_nonblock),
the sending client first performs file transfer to the server,
and the server transmits the received file back to the receiv-
ing client. The existing method is further divided into the

blocking transfer (csc_block) and the non-blocking trans-
fer (csc_nonblock). As a result of the experiment, the pro-
posed method (c2c_direct, c2c_indirect) has shorter file
transfer time than the existing method regardless of the file
size. Specifically, the direct C2CFTP (c2c_direct) reduced
the transmission time by an average of 54.7% compared
to the existing blocking transfer method (csc_block), and
the indirect C2CFTP (c2c_indirect) decreased by an aver-
age of 41.4% compared to the existing non-blocking trans-
fer method (csc_nonblock). This is because the proposed
method omits redundant and unnecessary file I/O of the
server. Among the proposed file transfermethods, the average
transfer time of the direct C2CFTP is reduced by 22.4%
compared to the indirect C2CFTP. In the case of transferring
one file, the direct C2CFTP that uses the dedicated channel
and thread is better than the indirect C2CFTP that uses the
relay of the server.

FIGURE 12. Transfer time according to the number of files per transfer
session (1KB).

FIGURE 13. Transfer time according to the number of files per transfer
session (10KB).

Figures 12 to 15 show the results of measuring the trans-
mission time according to the number of files transmitted
at one time. For this experiment, we prepared a group of
files with the specific size by copying the original file.
In one transfer session of a file group, we transferred the
group of files continuously from the first to the last file
with no transfer interval. Interestingly, the transmission time

VOLUME 8, 2020 102841



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

FIGURE 14. Transfer time according to the number of files per transfer
session (100KB).

FIGURE 15. Transfer time according to the number of files per transfer
session (1MB).

is largely divided into two categories. As the number of
files transmitted at one time increases, the group using only
the default non-blocking channel and thread (csc_nonblock,
c2c_indirect) shows lower transmission time than the group
using the dedicated blocking channel and thread (csc_block,
c2c_direct). For example, in the case of transferring 50 files
of 1KB (Figure 12), the indirect C2CFTP (c2c_indirect)
compared to the direct C2CFTP (c2c_direct) reduced the
file transfer time by 88.6%. Although the blocking methods
(csc_block, c2c_direct) reduce the overhead of creating and
destroying a separate thread as they get and release an avail-
able thread from a thread pool, they still need the process
of starting the separate thread dedicated to file transfer on a
dedicated channel for each file and terminating the dedicated
thread when file transfer is completed. If the number of files
being transmitted at one time is large, the number of thread
start and stop also increases, and accordingly, the thread
management overhead increases. As a result, we analyzed
that this thread management overhead has an effect on the
file transfer delay. When we measured the transfer time even
more until the number of files was 100, the tendency of
the delay difference among methods kept same as shown
in Figure 13 and 14.

In another aspect, as the file size increased, the difference
in the transmission time reduction rate between these two

groups became smaller. For example, if 50 files of 1MB are
transferred (Figure 15), the indirect C2CFTP (c2c_indrect)
still has a shorter file transfer time than the direct C2CFTP
(c2c_direct), but the difference is 8.6% decrease compared
to the 50 files of 1KB case. This is because the effect of
the total transmission delay due to the thread management
overhead is relatively small as the transmission time of the
file itself increases as the file size increases. The direct
C2CFTP (c2c_direct) showed better performance until the
number of transferred files was 30. We estimated that this is
also because the accumulated thread management overhead
has less effect on the whole transfer delay until the number
of files became 30. When comparing the existing method
(csc_nonblock) with the proposed method (c2c_indirect),
the proposed method showed a shorter transmission time
when transferring files smaller than 1MB.When transferring
a 1MB file, the performance of either side was not signifi-
cantly superior.

Through the results of the experiment, we confirmed that
the file transfer performance can be improved by selecting
and using one of the proposed direct and indirect C2CFTPs
depending on the situation when transferring a bundle of files.
The indirect C2CFTP is suitable when a client sends files
smaller than 1 MB in size. The direct C2CFTP is suitable for
up to 30 files when each file size is over 1MB, and the indirect
C2CFTP shows better performance when transferring a larger
number. There is another case where the indirect C2CFTP is
suitable. If the receiving client is located in a virtual private
network different from the sending client, and the sending
client cannot directly access the receiving client, we can use
the indirect C2CFTP using relay of the server, although the
direct C2CFTP is not available.

V. RELATED WORK
File transfer protocol (FTP) [1], [2] is a representative stan-
dard protocol related to file transfer. Most commercial file
transfer clients and servers are implemented according to
this standard specification for compatibility. Looking at the
file transfer procedure, it is similar to the CM blocking
file transfer method in that it separately manages channels
for the control message transfer and the file data transfer.
GridFTP [3], [4], which is an extension of the existing
FTP, was developed to adjust the TCP buffer size and use
multiple channels for secure, reliable, and high-performance
data transmission. In other words, it is designed as a useful
protocol when transferring large files or small files in bulk.
In order to efficiently transfer large-scale files, the BitTorrent
protocol [5] is a file transfer method that dramatically reduces
transmission time by receiving file blocks from multiple
source nodes in the peer-to-peer architecture. It is mainly used
for transferring large files such as video files. Dual-Direction
FTP (DDFTP) [6] technology was proposed as a method to
quickly transfer large files by utilizing multiple replicated
FTP servers. In order to transfer file blocks from multiple
replicated FTP servers in parallel, DDFTP assigns file blocks
to different servers.

102842 VOLUME 8, 2020



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

A recent study [7] proposed a file transfer method that can
perform synchronization of multiple files between various
heterogeneous devices such as N-screens in a short time.
In traditional FTP, the data channel had to be connected
repeatedly every time the file was transferred. To solve this
problem, the method of maintaining the data channel is used.
Fan’s research [8] proposed FTP-NDN technology, which
is a file transfer method based on peer-to-peer encryption
in a Named Data Network (NDN) environment. The main
purpose of this technique is not to receive a file only from
a fixed source node, but to find a node with the same file
close to the receiver node’s surroundings and receive the file
in encrypted form. Bormann and Shelby [9] devised a block-
wise transfer of files in CoAP (Constrained Application
Protocol) [20]. While the other existing methods above use
TCP as the transport layer protocol, but CoAP uses UDP for
simplicity. However, the transmitting node has to wait for an
acknowledgment (ack) message from the receiving node for
each block transmitted and retransmits if the previous block
transmission fails. There were also other recent researches
on file transfer for cloud computing environment [10] and
IoTs [11]. Lin’s research [10] proposed algorithms to solve a
single-file transfer scheduling (SFTS) and a multi-file trans-
fer scheduling (MFTS) problems when one or more big files
are transferred over multiple paths. Liu’s research [11] pro-
posed a camera file transfer system, but it mainly focuses
on security vulnerabilities of photo file transfer in device-
to-device networks.

Communication frameworks or middlewares for online
social networks [14]–[18] provide various communication
services to applications, among which image file transfer is
required as a basic function. However, since these studies
focus on efficient interaction services between users, they
do not specifically mention how they developed file transfer
services.

In summary, existing methods related to file transfer proto-
cols mainly focus on methods for quickly transferring a large
number of large files. In addition, the existing file transfer
methods deal only with the case where the client and the
server directly connected in the client-server structure, but the
file transfer between the clients is not considered separately.
In other words, in order to transfer files between clients in the
conventional method, the two-step transmission (transmis-
sion from the sending client to the server, and transmission
from the server to the receiving client) is required.

VI. CONCLUSION
In this paper, we proposed a file-transfer protocol (C2CFTP)
that efficiently performs file transfer between clients in a
client-server architecture. The proposed C2CFTP is included
as a file transfer service of CM, a communication framework,
and provides two methods: the direct transmission (direct
C2CFTP) and the indirect transmission (indirect C2CFTP).
As a result of the experiment, C2CFTP was able to reduce the
file transfer delay time between clients by omitting unneces-
sary intermediate file I/O from existing file transfer methods

TABLE 5. CM event header.

TABLE 6. REQUEST_PERMIT_PULL_FILE.

TABLE 7. REPLY_PERMIT_PULL_FILE.

and improving dedicated channel management. The direct
C2CFTP is suitable for the transmission of large files, and
the indirect C2CFTP is effective when sending several small
files in a bundle or when direct connection between clients is
not possible.

When CM transfers a bunch of files, the direct C2CFTP
showed a worse performance comparing to the indirect
C2CFTP due to the repetition of thread start and stop per
file. For our future work, we plan to improve the performance

VOLUME 8, 2020 102843



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

TABLE 8. REQUEST_PERMIT_PUSH_FILE.

TABLE 9. REPLY_PERMIT_PUSH_FILE.

TABLE 10. START_FILE_TRANSFER, START_FILE_TRANSFER_CHAN.

of the direct C2CFTP by reducing the thread management
overhead.

We also plan to devise a method for CM to dynamically
determine the appropriate file transfer method according to
the current situation of the application. The current CM
allows a server application to select a file transfer method
between the direct and indirect C2CFTP in the CM config-
uration file and client applications follow the server decision
to keep a consistent file transfer policy. By adding an option

TABLE 11. START_FILE_TRANSFER_ACK, START_FILE_TRANSFER CHAN
ACK.

TABLE 12. CONTINUE_FILE_TRANSFER.

TABLE 13. END_FILE_TRANSFER, END_FILE_TRANSFER_CHAN.

that the file transfer service actively adapts according to the
application situation, CM will be able to provide a desired
service while minimizing the manual configuration of the
application.

Our last future research plan is to analyze the performance
of the proposed file transfer protocol in an extended envi-
ronment. For example, we plan to increase the number of
clients and perform performance comparison of file transfer
protocols through experiments in different situations, such as
one-to-many file transfer rather than one-to-one transfer.

102844 VOLUME 8, 2020



M. Lim: C2CFTP: Direct and Indirect FTPs Between Clients in Client-Server Architecture

TABLE 14. END_FILE_TRANSFER_ACK, END_FILE_TRANSFER_CHAN_ACK.

TABLE 15. ADD_BLOCK_SOCKET_CHANNEL,
REMOVE_BLOCK_SOCKET_CHANNEL.

TABLE 16. ADD_BLOCK_SOCKET_CHANNEL_ACK,
REMOVE_BLOCK_SOCKET_CHANNEL_ACK.

APPENDIX A
CM FILE EVENT FORMAT
See Tables 5–14.

APPENDIX B
CM SESSION EVENT FORMAT
See Tables 15 and 16.

REFERENCES
[1] J. Postel and J. K. Reynolds, File Transfer Protocol, document RFC 765,

1980. [Online]. Available: https://tools.ietf.org/html/rfc765
[2] P. Hethmon, Extensions to FTP, document RFC 3659, 2007. [Online].

Available: https://tools.ietf.org/html/rfc3659
[3] W.Allcock, J. Bresnahan, R. Kettimuthu, andM. Link, ‘‘The globus striped

GridFTP framework and server,’’ in Proc. ACM/IEEE SC Conf. (SC),
Seattle, WA, USA, 2005, p. 54, doi: 10.1109/sc.2005.72.

[4] W. Allcock. (2003). GridFTP: Protocol extensions to FTP for the
Grid. Global Grid Forum Draft. [Online]. Available: https://www.ogf.
org/documents/GFD.20.pdf

[5] D. Qiu and R. Srikant, ‘‘Modeling and performance analysis of bittorrent-
like peer-to-peer networks,’’ in Proc. Conf. Appl., Technol., Archit., Proto-
cols Comput. Commun. (SIGCOMM), vol. 34, Portland, OR, USA, 2004,
pp. 367–378, doi: 10.1145/1015467.1015508.

[6] J. Al-Jaroodi and N. Mohamed, ‘‘DDFTP: Dual-direction FTP,’’ in Proc.
11th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., vol. 1,
Newport Beach, CA, USA, May 2011, pp. 504–513, doi:
10.1109/ccgrid.2011.32.

[7] D. Kim, J. Baek, P. S. Fisher, and S. Kim, ‘‘FFTP: A fast file transfer
protocol for home N-screen platform,’’ Pers. Ubiquitous Comput., vol. 22,
no. 1, pp. 143–152, Feb. 2018, doi: 10.1007/s00779-017-1082-5.

[8] C.-I. Fan, I.-T. Chen, C.-K. Cheng, J.-J. Huang, and W.-T. Chen, ‘‘FTP-
NDN: File transfer protocol based on re-encryption for named data net-
work supporting nondesignated receivers,’’ IEEE Syst. J., vol. 12, no. 1,
pp. 473–484, Mar. 2018.

[9] C. Bormann and Z. Shelby, Block-Wise Transfers in the Constrained Appli-
cation Protocol (CoAP), document RFC 7959, 2016. [Online]. Available:
https://tools.ietf.org/html/rfc7959

[10] C. Lin, Y. Bi, G. Han, J. Yang, H. Zhao, and Z. Liu, ‘‘Scheduling for
time-constrained big-file transfer over multiple paths in cloud computing,’’
IEEE Trans. Emerg. Topics Comput. Intell., vol. 2, no. 1, pp. 25–40,
Feb. 2018, doi: 10.1109/tetci.2017.2755692.

[11] T. Liu, K. Liu, Y. Cheng, and L. X. Cai, ‘‘Security analysis of camera file
transfer over Wi-Fi,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai,
China, May 2019, pp. 1–6, doi: 10.1109/icc.2019.8761891.

[12] M. Lim, ‘‘CMSNS: A communication middleware for social networking
and networked multimedia systems,’’ Multimedia Tools Appl., vol. 76,
no. 17, pp. 18119–18135, Sep. 2017, doi: 10.1007/s11042-016-3839-7.

[13] Y.Moon andM. Lim, ‘‘An enhanced file transfer mechanism using an addi-
tional blocking communication channel and thread for IoT environments,’’
Sensors, vol. 19, no. 6, p. 1271, Mar. 2019, doi: 10.3390/s19061271.

[14] D. Brooker, T. Carey, and I. Warren, ‘‘Middleware for social networking
on mobile devices,’’ in Proc. 21st Austral. Softw. Eng. Conf., Auckland,
New Zealand, 2010, pp. 202–211.

[15] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot,
‘‘MobiClique: Middleware for mobile social networking,’’ in Proc. 2nd
ACM Workshop Online Social Netw. (WOSN), Barcelona, Spain, 2009,
pp. 49–54.

[16] S. B. Mokhtar, L. McNamara, and L. Capra, ‘‘A middleware service for
pervasive social networking,’’ in Proc. Int. Workshop Middleware Pervas.
Mobile Embedded Comput. (M-PAC), Urbana Champaign, IL, USA, 2009,
Art. no. 2.

[17] A. Gupta, A. Kalra, D. Boston, and C. Borcea, ‘‘MobiSoC: A middleware
for mobile social computing applications,’’ Mobile Netw. Appl., vol. 14,
no. 1, pp. 35–52, Feb. 2009, doi: 10.1007/s11036-008-0114-9.

[18] C. Borcea, A. Gupta, A. Kalra, Q. Jones, and L. Iftode, ‘‘The MobiSoC
middleware for mobile social computing: Challenges, design, and early
experiences,’’ in Proc. 1st Int. ICST Conf. Mobile Wireless Middleware,
Operating Syst. Appl., Innsbruck, Austria, 2008, Art. no. 27.

[19] M. Lim, ‘‘Internal forwarding scheme for consistent event transmission in
distributed multi-user systems,’’ in Proc. NCM, Seoul, South Korea, 2010,
pp. 563–568.

[20] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Applica-
tion Protocol (CoAP), document RFC 7252, 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7252

MINGYU LIM received the B.S. degree in com-
puter science from the Korea Advanced Institute of
Science and Technology (KAIST), Daejeon, South
Korea, in 1998, and the M.S. and Ph.D. degrees in
computer science from Information and Commu-
nications University (ICU), Daejeon, in 2000 and
2006, respectively. He was a Senior Researcher
with theMIRALab, University of Geneva, Geneva,
Switzerland, from 2006 to 2008. He was an Assis-
tant and an Associate Professor with the Depart-

ment of Internet and Multimedia Engineering, Konkuk University, Seoul,
South Korea, from 2009 to 2016, where he is currently a Professor with
the Department of Smart ICT Convergence. His current research interests
include communicationmiddleware and framework, efficient event transmis-
sions, and content distribution in distributed systems.

VOLUME 8, 2020 102845

http://dx.doi.org/10.1109/sc.2005.72
http://dx.doi.org/10.1145/1015467.1015508
http://dx.doi.org/10.1109/ccgrid.2011.32
http://dx.doi.org/10.1007/s00779-017-1082-5
http://dx.doi.org/10.1109/tetci.2017.2755692
http://dx.doi.org/10.1109/icc.2019.8761891
http://dx.doi.org/10.1007/s11042-016-3839-7
http://dx.doi.org/10.3390/s19061271
http://dx.doi.org/10.1007/s11036-008-0114-9

	INTRODUCTION
	COMMUNICATION FRAMEWORK (CM)
	CM CHANNEL MANAGEMENT
	CM FILE TRANSFER METHOD

	CLIENT-TO-CLIENT FILE TRANSFER PROTOCOL (C2CFTP)
	DIRECT C2CFTP
	FILE PUSH
	BLOCKING CHANNEL MANAGEMENT
	FILE PULL

	INDIRECT C2CFTP
	FILE PUSH
	FILE PULL


	PERFORMANCE EVALUATIONS
	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	MINGYU LIM


