
Received May 7, 2020, accepted May 20, 2020, date of publication May 29, 2020, date of current version June 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2998545

Test Case Prioritization for Service-Oriented
Workflow Applications: A Perspective of
Modification Impact Analysis
HONGDA WANG 1, MAN YANG1, LIHUA JIANG 1, JIANCHUN XING2, (Member, IEEE),
QILIANG YANG2, (Member, IEEE), AND FUYONG YAN3
1Naval Logistics Academy, Tianjin 300450, China
2Army Engineering University of PLA, Nanjing 210007, China
3PLA 32752 Troops, Dalian 116017, China

Corresponding author: Man Yang (18795851002@163.com)

This work was supported by the Natural Science Foundation of Jiangsu Province under Grant BK20151451.

ABSTRACT Test case prioritization is a method to prioritize test cases to improve the testing efficiency
of service-oriented workflow applications. Existing prioritization methods prioritize test cases in different
application environments according to different metrics (for example, statement coverage, and path cover-
age). Web services are orchestrated by service-oriented workflow applications to provide different functions,
especially in cloud-based mobile systems. As a result, those applications need more precise scheduling to
run test cases that can detect faults earlier. Unfortunately, most regression test case prioritization studies in
service-oriented workflow applications neglect the use of activity dependency, which is an important factor
that affects test case prioritization. By analyzing the dependences between activities, the modification effects
of activities on the modified version of service-oriented workflow applications are calculated. On this basis,
this paper proposes a new prioritization method for regression test cases. Experimental results show that our
method is more effective than the traditional coverage-based technique in testing case priority.

INDEX TERMS Cloud-based mobile systems, test case prioritization, activity dependency, modification
impact.

I. INTRODUCTION
With the advent of service computing and cloud comput-
ing, large-scale programming has become the mainstream
technology of real-time application development in mobile
systems based on cloud computing [1], [2]. Web services
are orchestrated by service-oriented workflow applications
to provide different functions. Web Service Business Pro-
cess Execution Language (WS-BPEL or BPEL for short) has
become the standard orchestration language. However, those
applications often suffer from failures or defects, especially
during the evolution of service composition. In addition,
the maintenance of these applications is worried. On average,
these activities account for 2/3 of the total cost of the software
life cycle [3]. However, if old test cases and results can be
reused, maintenance costs can be reduced to ensure that pre-
vious functionality fails due to modifications [4]. Therefore,

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

regression testing, as one of the most important means to
provide trust in software development process, has attracted
more and more attention in recent years [5].

Many studies have shown that frequent regression test-
ing is essential for successful application development [6].
However, for service-oriented workflow applications, rerun-
ning regression test cases can be a time-consuming (day or
even week) process, especially in cloud-based mobile sys-
tems. In addition, revocation of the cost of using the service
(for services with access quotas or on a usage basis) or the
usage of the service (for example, the stock exchange system)
requires that failure can be detected as soon as the regression
test cases are executed [7]. For this reason, we must resort
to test case prioritization techniques to improve the testing
efficiency [8]. Test case prioritization is a way of scheduling
test cases to meet specific goals. The primary goal of test case
prioritization is to detect faults early so that we can reduce
the time and cost of maintaining service-oriented workflow
applications. However, obtaining fault detection information

101260 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7870-883X
https://orcid.org/0000-0002-7290-5023
https://orcid.org/0000-0001-9987-5584


H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

is difficult before the test is completed. Therefore, most test
case prioritization approaches rely on surrogates to schedule
test cases, and expect that meeting these surrogates early can
lead to increased fault detection capabilities [9]. A common
surrogate for test case priority is certain program entities
(statements or branches) [10], [11], which is insufficient to
guarantee high fault detection in some cases [12]. Therefore,
we have to find a more accurate way to prioritize test cases to
test service-oriented workflow applications.

References [13] and [14] have pointed out that defects in
the internal structure of the software can cause software fail-
ures. Thus, the internal structure of software affects the qual-
ity of software. In addition, the study of test case priorities for
service-oriented workflow applications should consider bug
propagation and coverage information. Unfortunately, as far
as we know, fault propagation in service-oriented workflow
applications has not been fully considered in existing regres-
sion test case prioritization studies. Focusing on the modi-
fied fault propagation behavior in service-oriented workflow
applications, this paper proposes a new method to schedule
test cases for regression testing.

The internal structure of service-oriented workflow appli-
cations can be regarded as an activity interaction to achieve
the desired goals. For example, the interaction of activities
includes executing process logic, exchanging messages and
calling external web services. These interactions can be
analyzed by analyzing dependences between activities in a
service-oriented workflow application. Changes or errors in
activities will spread to other activities which are directly
or indirectly dependent. In this paper, testing importance of
activity is measured by modification impact of activity in a
service-oriented workflow application. In addition, we can
get the test importance of test case through its coverage
information (combined with modification information). The
modification information can be calculated by comparing
the differences between the original version and its variants.
Then, according to the importance of test cases, test cases
are sorted to test service-oriented workflow applications.
Before that, we need to first analyze the BPEL dependency
between various activities. Apart from control dependence,
data dependence, and asyn-invocation dependence, two other
program dependences: correlation dependence and synchro-
nization dependence are identified in this paper. Consider-
ing these dependences, we construct a graph called BPEL
activity dependence graph to quantitatively calculate the
modification impact of each activity. We experimented with
our approach and 8 traditional service-oriented workflow
applications based on coverage technology. The experimental
results show that the test cases sorted by our method can
achieve higher fault detection rate.

The preliminary version [15] of this paper has outlined
the basic perspective and conducted some basic experiments
to evaluate our approach. In this present paper, we system-
atically detail the approach based on modification impact
analysis. In addition, we conducted extensive experiments as
well as more data analysis to validate the observations.

This paper together with its preliminary version [15]
mainly makes the following three contributions:

• Two novel WS-BPEL activity dependences, which
are, correlation dependence and synchronization depen-
dence are proposed.

• We propose the first work to quantitative measure
the modification impact with activity dependences of
service-oriented workflow applications.

• We propose the first work from the perspective of mod-
ification impact analysis for test case prioritization of
service-oriented workflow applications.

The rest of this article is organized as follows. The
II section introduces some preliminary situations. The III
section shows an example to motivate our method. The IV
section introduces our methods. The V section uses our
approach to report the experiment. The VI section discusses
our method. The VII section reviews the relevant research
results. The VIII section concludes our work.

II. PRELIMINARIES
This paper discusses the test case prioritization of
regression testing. Here we take BPEL workflow application
as an example to illustrate our approach. BPEL workflow
application is one of the most popular service oriented work-
flow applications [16]. To make our approach easier for read-
ers to understand, this section introduces the prioritization of
test cases and the foundation of the WS-BPEL language.

A. TEST CASE PRIORITIZATION
Test case prioritization can improve the test efficiency in
regression testing [12], [17], which through designing the
order of test cases to run. Combined with the definition of
reference [12], we give the following definitions:
Definition 1 (Regression Test Case Prioritization Prob-

lem): Given a test suite T, a set O containing all permutations
of T, and a function f from O to the real numbers, find an
o ∈ O such that (∀o′ ∈ O)[f (o) ≥ f(o’)].
The purpose of this paper is to find the order o to improve

the fault detection rate. In order to quantify the fault detection
rate for a given test set, f is always the metric of weighted
Average Percentage of Faults Detected (APFD), average
Relative Position (RP), and Harmonic Mean of rate of Fault
Deception (HMFD) [18]. All of these measures range from
0 to 1, and a higher APFD value indicates a higher failure
detection rate.

In this paper, the function f maps every permutation O to
the APFD, RP, or HMFD value of o. Let T be a test suite
containing n test cases, F be a set of m faults revealed by T ,
and TFi be the first test case index in ordering o of T that
reveals fault i. The following equation gives the APFD value
for ordering o.

APFD = 1−
TF1 + TF2 + · · · + TFm

nm
+

1
2n

(1)

VOLUME 8, 2020 101261



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

FIGURE 1. A running example: the travel agency application.

The HMFD value of o is computed as follows:

HMFD =
m

1
TF1
+

1
TF2
+ · · · +

1
TFm

(2)

Let P(TFi, i) be the probability that the first fault test case
caused by the fault i is in the position TFi. The RP value of
fault i is computed as follows:

RP(i) =

∑n
TFi=1 TFi ∗ P(TFi, i)

n
(3)

The fault detection rate of regression test case prioritization
can also be measured by other metrics [12]. Due to space
constraints, we will report such results in future work.

B. BASICS OF WS-BPEL LANGUAGE
WS-BPEL combines Web services into BPEL workflow
applications, which is a new service [16]. It is a lan-
guage and the latest standard is version 2.0. WS-BPEL
defines process logic by dividing it into basic and struc-
tured activities. Basic activities describe the basic steps of
the process behavior, which include <assign>, <reply>,
<receive>, and<invoke>. Structured activities represent the
logic of an application, which include <while>, <flow>,
<pick>, <sequence>, <if>, and <switch>. Two commu-
nication mechanisms are provided by WS-BPEL language:
synchronous (request-response <invocation>) and asyn-
chronous (one-way<invocation>). Concurrency mechanism

is described by activity < flow >. Activities (basic activity)
contained in the <flow> activity can be executed in any
order. Furthermore, activity <link> represents the synchro-
nization dependency between two activities in WS-BPEL
language.

III. RUNNING EXAMPLE
In this section, a well-known and well-designed application,
travel agency application, adapted from Travel [15], [19],
is used as a motivating example to inspire our approach. First
of all, we briefly outline this application.
For visual expression, the UML activity graph is used to

establish BPEL codes to describe the application. The travel
agency application is depicted in Figure 1. In this activity
graph, the edge shows transformation between the two activ-
ities, while the node shows BPEL activity.

The information extraction of BPEL application (XPath
Query, input or output parameters) is also used to anno-
tate nodes [11], [20] in this paper. To ease of expression,
the nodes in this application is named as A1, A2, . . ., A10.
A detailed description of the travel agency application is
as follows. Upon receiving the customer’s order information
(activities A1 and A2), the travel agent application calls both
the AirlinePriceService (activity A4) and HotelPriceService
(activity A5) to query the airline’s and hotel’s price. If the
hotel’s and airline’s prices are less than or equal to the input
price, this BPEL workflow application will book a hotel and

101262 VOLUME 8, 2020



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

an airline ticket (activities A7 and A8). Otherwise, the client
service failure reservation information is recorded by
RecordService.

As we mentioned earlier, this version is modified from its
initial version. Suppose that activities A7 and A9 have been
revised, which are compared with its last version. We will
let common methods (based on statement coverage or based
on branch coverage) applied to the scene. Due to the cov-
erage information of the test cases corresponding activities
A7 and A9 is same, two test cases are randomly arranged.
According to our observation, the implementation of A10 is

affected by the activity of A9, and the implementation of A8 is
not affected by the activity of A7. Therefore, the capacity of
bug propagation of A7 is weaker than that of A9. Thus, the test
cases corresponding to activity A9 should be rerun in advance
than test cases corresponding to activity A7. In our method,
we also found that the modification impacts of activities A9
and A7 are different, and activity A7 is smaller. In this article,
we propose such an approach to sort test cases precisely for
BPEL workflow applications.

IV. OUR TEST CASE PRIORITIZATION APPROACH
In this section, an accurate test case prioritization method
for BPEL workflow applications is presented. This method
is based on the analysis of dependences between activities.
Given a workflow application and its test suite T , our goal
is to prioritize the test cases of T to find bugs as early as
possible. In our approach, we sort test cases according to the
testing importance of each test case. Before describing our
approach, we first give a definition of the importance of test
cases and activities.

A. TESTING IMPORTANCE OF ACTIVITY
In order to meet the growing needs of users, it is unavoidable
that service-oriented workflow applications must be con-
stantly developed and some modifications must be made.
Therefore, software maintenance is crucial throughout the
software lifecycle to reduce the potential for new bugs. Most
existing approaches for solving test case priority problems
are based on coverage information [11], [20]. However,
as pointed out in [21], as the complexity of software systems
increases, activity dependence of software is becoming more
and more important in affecting software quality. However,
these technologies [11], [20] do not take into account the
internal structure of software. Modification impact analysis
of software internal structures is important because it can
also help determine the consequences of modifications [22].
Changes in the internal structure (activity) of software can
affect the quality of software, which is very important in
software maintenance [15]. Program tracking and module
analysis techniques can be used to identify changes in the
internal structure of software. Therefore, we use module
dependency technology to quantitatively analyze the internal
structure changes in service-oriented workflow applications.
In a service-oriented workflow application, when an activity
(whether or not it introduces bugs/errors) is modified,

its modification is most likely to have a direct impact on its
child activities. Based on this idea, in this article, we prefer-
entially select test cases that correspond to the activities that
have the greatest impact to rerun. The modification effect of
this activity is mainly achieved by analyzing the dependency
relationship between any two activities. The following two
assumptions are the base of our approach. Informally:
Assumption 1: An error or modification in an activity will

spread to other sub activities that are directly or indirectly
dependent on it.

Let us take the BPEL workflow application of travel
agency in Figure1 for example to illustrate Assumption
1. The travel agency application calls AirlinePriceService
(activity A5) and HotelPriceService (activity A4) to check
airline and hotel prices. In fact, activities A4 and A5 use
the variable query is defined by A3. Therefore, these two
activities are true data dependent on activity A3 [23]. With
Assumption 1 in mind, the modification or error will propa-
gate to activities A4 and A5 when the activity A3 is modified
or implanted errors.
Assumption 2: Any activity that relies on other activities is

100% to be propagated when other activities are modified or
implanted errors.

This assumption ensures that the probability (i.e., a bug
arises in an activity) is 100%. With Assumption 2 in mind,
when activity A3 is modified or seeded in a fault, activities
A4 and A5 are influenced and the probability is the same and
still 100% in this paper.

Based on the above two assumptions, we should first
analyze the various program dependences between activi-
ties in service-oriented workflow applications. In addition
to data dependence, control dependence and asynchronous
dependence, we also found two other program dependences
in service-oriented workflow applications: synchronization
dependence and correlation dependence [15].

In this paper, we mainly consider these 5 dependences,
and define BPEL activity dependence graph based on
these 5 dependences. Based on BPEL program dependence
graph, we can easily identify the dependences between any
two activities. In order to make this paper self-sufficient,
the concepts of data dependence, control dependence and
aysn-invocation dependence are introduced at first.

Informally, an activityAj is control dependent on activityAi
if and only if Ai represents the predicate of a conditional
branch or entry activity (assumed that every BPEL work-
flow application has an entry activity) that directly controls
whether Aj is executed. Taking the BPEL workflow applica-
tion in Figure 1 as an example, all of the activities of A1 ∼ A6
in the BPEL workflow application of Figure 1 are control
dependent on entry activity.

1) CONTROL DEPENDENCE
Each BPELworkflow application is assumed to have an entry
activity. For an activity Ai and an activity Aj, if the activ-
ity Ai is a predicate of a conditional branch or entry activity,
and if the execution of the activity Aj is directly controlled

VOLUME 8, 2020 101263



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

by Ai, then the activity Aj is called control dependent on the
activity Ai. For example, as shown in Figure 1, all of the
activities A1 through A6 in its BPEL workflow application
are control dependent on its entry activity.

2) DATA DEPENDENCE
Data dependence can be divided into true dependence, anti-
dependence and output dependence. More vividly, it can also
be called def-use dependence, use-def dependence and use-
use dependence. For an activity Ai and an activity Aj, if a
variable is defined at Ai and used at Aj, then the activity Aj is
def-use dependent on the activity Ai; if a variable is used at Ai
and defined at Aj, then the activity Aj is use-def dependent on
the activity Ai; if a variable is used at Ai and is also used at Aj,
then the activity Aj is use-use dependent on the activity Ai.
E.g., in Figure1, the variable hotelInput defined at A2 is
used at A3, the activity A3 is def-use dependent on the activ-
ity A2, and there is no use-def dependence and use-use depen-
dence in Figure1. Actually, we can avoid use-def dependence
and use-use dependence by renaming variables. Therefore,
when this paper refers to data dependence, it means def-use
dependence.

3) ASYNC-INVOCATION DEPENDENCE
Async-invocation dependence originated from async-
communication mechanisms. For an activity Ai and an activ-
ity Aj, if Ai is an ongoing one-way < invoke > activity and
Aj is a <receive> activity for receiving the corresponding
returned result, then the activityAj is async-invocation depen-
dent on activity Ai. E.g., in Figure1, A9 is an ongoing one-way
< invoke > activity and A10 is a <receive> activity which is
responsible for receiving the corresponding returned result,
so that the activity A10 is async-invocation dependent on
activity A9.

In this paper, we focus on these three dependences
described above. In addition, we have defined two other
BPEL program dependences.

The first program dependence is proposed based on the cor-
relation mechanism between reception activities in a BPEL
workflow application. Receive activities include <receive>,
<invoke> and <onMessage>, and its two properties
‘‘createInstance’’ and ‘‘correlation’’ play key role in mes-
sage routing (see WS-BPEL 2.0). If the ‘‘creatinstance’’
attribute value of a start activity is ‘‘yes’’, then this is a
reception activity. Suppose there is a BPEL workflow appli-
cation whose startup activity is a receiving activity with a
createInstance attribute value of ‘‘yes’’. We can create an
instance and then route all other messages received by its
corresponding receiving activity to the newly created one.
We found that in this BPEL workflow application, there is no
such three dependences between the <receive> activity and
other receiving activities that have the same correlation set as
the <receive> activity. However, if the order of execution
of these two activities is broken, the workflow application
may deadlock, indicating that there are some dependences

between two activities. We can informally define this depen-
dency as follows:
Definition 2 (Correlation Dependence): For an activity Ai

and an activity Aj in a BPEL workflow application, start
activity Ai is a reception activity with a createInstance
attribute value of ‘‘ye’’, Aj is a reception activity, both of them
share the common attribute, then activity Aj is correlation
dependent on activity Ai.

In the BPEL workflow application of Figure 1, the start
activity A1 is a receive activity with the createInstance prop-
erty set to ‘‘yes’’, and the activities A2, A4, A5, A7 ∼ A10 are
receive activities. At the same time, in order to ensure that
the receiving activities A1, A2,A4, A5,A7 ∼ A10 interact with
the same client, each of their messages is associated via an
correlation set ID. Hence, activities A2,A4, A5,A7 ∼ A10 are
dependent on A1.
The second program dependence is proposed based on the

association mechanism between the activities contained in
the <flow> activity. The <flow> activity is a structured
activity that describes the mechanism of concurrency and
synchronization. There is a group of activities in the<flow>

activity. Except for the defined precedence relationship of
<sequence>, this group of activities can be executed in any
order, and only all activities contained in the<flow> activity
are executed, and the <flow> activity is finished. In the
WS-BPEL language, <link> represents the synchronization
dependency between activities. In the <flow> activity, if the
execution order of two activities connected through < link >

is reversed, the workflow applicationwill lock up, which indi-
cates that two activities do have some dependency. We can
define this dependence informally as follows:
Definition 3 (Synchronization Dependence): For the activ-

ities Ai and Aj contained in the<flow> activity, if the activity
Aj is the target of the<link>with the activity Ai as the source,
the activity Aj is synchronization dependent on the activity Ai.
In the BPELworkflow application of Figure 1, we find that

the execution order of activity A4 and activity A5 contained
in the <flow> activity can be reversed at will, and there is
no dependence between them. So there is no synchronization
dependence in this BPEL workflow application.
So far, we have found five dependences in the BPEL

workflow application, and now we can define BPEL activity
dependence graph based on these five dependences. In the
BPEL activity dependence graph, nodes are used to rep-
resent basic activities or structured activities (except for
the Entry node). The directed line segments represent the
dependences between nodes and nodes. The directed line
segments that control dependences and data dependences are
marked with True (T ) or False (F), for the sake of sim-
plicity, data dependence tags are generally omitted. We can
informally define BPEL activity dependence graphs as
follows:
Definition 4 (BPEL Activity Dependence Graph): For

directed graphs <N, E>, where:
a) N is a set of n nodes containing 1 entry node and n-1

basic active or structured active nodes;

101264 VOLUME 8, 2020



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

b) E is a set of directed line segments of n×n order, and
the directed line segment <X, Y>∈ E from node X to node Y
represents the dependence between the two activities X and Y.
The directed graph <N, E> is called the BPEL activity

dependence graph.
Let us discuss how to identify all the BPEL program

dependences in a BPEL process. Control dependences can be
obtained by the post-dominator analysis based on the BPEL
control flow graph (CFG). Data dependences in a BPEL
process can be obtained based on the well-established data
flow analysis techniques.

As a first-class citizen of BPEL specification, a <link>
element represents a synchronization dependence directly.
Therefore, the synchronization dependences introduced by
<link>s can be conveniently obtained for free. Similar
to the control dependence analysis, asyn-invocation depen-
dences and interaction dependences in a BPEL process can
also be obtained by traversing the BPEL CFG. However,
the procedures of analyzing asyn-invocation, correlation and
synchronization dependences are somewhat technical. Some
syntactical details of BPEL and WSDL need to get involved
here. For this reason, we assume that readers are familiar
with both BPEL and WSDL. For asyn-invocation and inter-
action dependence analysis, the attributes ‘‘partnerLink’’,
‘‘portType’’, and ‘‘operation’’ of communicating activities
are indispensable. To this end, we associate these attributes
with the corresponding activity nodes in the BPEL CFG.

Let us first discuss how to identify the asyn-invocation
dependences in the BPEL CFG. A <receive> activity Aj is
asyn-invocation dependent on an <invoke> activity Ai if the
following conditions are met: (1) Aj is reachable from Ai
in the BPEL CFG. (2) Ai and Aj share the same ‘‘partner-
Link’’ of a ‘‘partnerLinkType’’, where the ‘‘portType’’s of
both activities are declared respectively in two ‘‘role’’s of the
‘‘partnerLinkType’’.

In addition, the synchronization and correlation depen-
dences can be obtained from their respective definition.
Now the travel agency application case of Figure 1 can be
converted into the BPEL activity dependence graph shown
in Figure 2. As shown in the legend in Figure 2, the depen-
dence type is distinguished by the arrow color. This case
involves the four dependences introduced earlier without syn-
chronization dependence.

After obtaining the activity dependence graph of the BPEL
workflow application, we can then analyze the impact on the
entire application when an activity in the program is modified
or an error occurs based on the BPEL activity dependence
graph.

The method adopted in this paper is the program slicing
method, which is to delete other activities in the program
that have no direct or indirect dependence on the activities
we analyze. For the activity dependence graph G of BPEL
workflow application program and the activity Ai therein,
the slicing of activity Ai is only to retain the activities directly
or indirectly related to Ai in G, and delete irrelevant activi-
ties. The slicing algorithm is shown in Figure 3. The slicing

FIGURE 2. BPEL activity dependence graph for the travel agency
application.

FIGURE 3. Slicing algorithm for dependence graph.

method can be divided into forward slicing and backward
slicing according to different search directions. Because this
paper mainly discusses the influence of activity modification
or error on the application program, so forward slicing is
used here. We can define Modification Impact of Activity
informally as follows:
Definition 5 (Modification Impact of Activity, MIA): For

the activity dependence graph G of the BPEL workflow appli-
cation and its activity Ai, we call the forward slice of Ai in
the activity dependence graph G as the modification impact
of activity Ai, and its expression can be written as:

MIA(Ai) = ForwardSlice(G,Ai) (4)

On the basis of MIA, we also proposed the concept of
Testing Importance of Activity (TIA), that is, the sum of the
number of activities affected by the modification of activ-
ity Ai in the BPEL workflow application, which is defined
as follows:
Definition 6 (Testing Importance of Activity, TIA): For the

activity dependence graph G and its activities Ai of the BPEL
workflow application, we call the total number of activities
in the MIA (Ai) of the BPEL program dependency graph G as
the test importance of activity Ai, Its expression is as follows:

TIA(Ai) =
∑
M

(MIA(Ai)) (5)

According to Definition 5 and Definition 6, we can obtain
the MIA and TIA of the BPEL activity dependence graph
in Figure 2. Taking activity A6 as an example, we can get

VOLUME 8, 2020 101265



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

FIGURE 4. MIA (A6) of Figure 2.

MIA(A6) as shown in Figure 4 by forward slicing activity A6,
then TIA(A6) = 5.

B. OUR PRIORITIZATION APPROACH
After the activities in the BPEL workflow application are
modified, in order to verify the impact of activity modifica-
tion on the program, it is necessary to introduce active test
cases for verification. When multiple activities are modified
at the same time, it is necessary to determine the execution
sequence of different test cases, that is, to determine the
priority of test cases. To solve this problem, this section
introduces the concept of Testing importance of Test Case
(TITC).
Definition 7 (Test Importance of Test Case, TITC): For

activity Ai in BPEL workflow application, let ti be the test
case of activity Ai, then the test importance of test case ti is
equal to the sum of TIA values of all activities in the slice
diagram of MIA (Ai), and its expression is:

TITC(ti) =
m∑
j=1

TIA(Aj) (6)

Aj is the set of all activities in the MIA(Ai) slice graph,
j = {1,. . ., m}, and m = TIA(Ai).
According to the TITC value of the test case, the test case

priority of the BPEL workflow application can be obtained.
In summary, we summarize the test case prioritization meth-
ods as follows (see the flowchart in Figure 5):

FIGURE 5. The framework of our approach.

Let the initial BPEL workflow application be P1, and the
modified BPEL workflow application be P2.

Step 1: According to the definitions and determination
methods of the various dependence relationships given above,
analyze the various dependence relationships of activities
in P1 / P2 to establish the BPEL activity dependence
graph (BADG) of P1 / P2;

Step 2: Compare P1 and P2, and determine Modify
Activity Set [Ai] (i = 1, . . ., n);
Step 3: Analyze the Modification Impact of Activity

MIA([Ai]) of the Modification Activity Set [Ai];
Step 4: Calculate the Testing Importance of Activity

TIA([Ai]) of the Modification Activity Set [Ai];
Step 5: Select the appropriate test case [ti] of Modify

Active Set [Ai], and use theMIA([Ai]) and TIA([Ai]) obtained
in step 3 and step 4 to calculate the Testing importance of Test
Case TITC([ti]) of the test case [ti]. The TITCs of the test
cases are arranged in descending order. The higher the TITC
value, the higher the priority. The test case execution order
can be randomly arranged when the TITC values are equal.

So far, we have introduced the test sequence of the test
cases for regression testing. Take the application in Figure 1
as an example. The BPEL activity dependence graph of the
program has been given in Figure 2. Now we assume that the
activitiesA1 andA6 in the program have been revised, then the
ModifyActivity Set is [A1,A6],MIA(A6) is shown in Figure 4.

According to definition 7, the Testing importance of test
case t6 of A6 is TITC(t6) = TIA(A6)+ TIA(A7)+ TIA (A8)+
TIA (A9)+ TIA (A10) = 10, the same can be obtained for
the testing importance of test case t1 of A1 is TITC(t1) = 1.
Therefore, the priority of test case t6 is higher than t1, and t6
should be re-run in advance.

V. EXPERIMENTS
In this part, we will test the proposed method and several
typical methods through experiments. Compare and analyze
the three indicators of test case priority: Average of the
Percentage of Faults Detected (APFD), the average relative
position (RP), and The harmonic mean of the rate of fault
detection (HMFD), so as to illustrate the superiority of the
proposed method.

A. EXPERIMENTAL SETUP
As shown in Table 1, we selected 8 BPEL applications of
A-H to evaluate the superiority of the proposed method.
These programs were selected from BPEL engines such
as ActiveBPEL, Web Services Innovation Framework, IBM
BPWS4J, or BPEL specifications. Table 1 details the name,
source, number of XML elements, number of codes (locs),
whether the correlation set has been used in the program
(COR) and whether the link has been used in the pro-
gram (link) of each BPEL application. It should be noted
that our experiment is based on the ActiveBPEL (version 4.1)
engine to run BPEL workflow applications and their partner
web services.

101266 VOLUME 8, 2020



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

TABLE 1. Relevant information of the experimental applications.

Then we plant some different modifications or errors into
these eight BPEL workflow applications to form different
program versions, and only one modification or error is
implanted into each version, which can ensure the indepen-
dence of the test. Based on the idea of mutation testing,
we embed errors into BPEL, WSDL and XPath respectively.
In BPEL, errors are mainly logic errors or spelling errors
related to execution results. In WSDL, errors are mainly
embedded in various elements, including errors in types, mes-
sages, port types, bindings and services. In XPath, errors are
mainly embedded in path expressions error, which will result
in unable to select content or wrong content. In accordance
with the above rules, we invited research partners (non paper
authors) to generate a total of 59 different program versions
for the eight BPEL workflow applications, and the number
of versions for each BPEL workflow application is shown
in the ‘‘Versions’’ column in Table 1. Similar methods are
also used in [10], [11], [20] to generate different program
versions.

This paper uses the test case generation method proposed
in [20] to generate the required test cases. For example,
as shown in Figure 6 is the program section of Ref.
C gymlocker in Table 1, a test case (locklockerinfo, unlock-
lockerinfo) can be obtained by using this method to effec-
tively test Ref. C gymlocker program. Now we build a test
pool for each application of A-H , and each test pool contains
1000 test cases. We also use the construction method of test
set in reference [10] to ensure that the efficiency of fault
detection is not affected by the order of test case generation,
that is, for application x, set the active branch coverage of test
case contained in its test set TS (initially empty) asAC, andwe
take test case TC from the test pool TP of the program one by
one, if TC can expand the active branchCoverageAC, then TC
is added to TS until all activities of program X are executed by
more than 10 test cases. Finally, we get 100 test sets for each
application. Table 2 shows the statistics of the number of test
cases in the test sets of 8 applications: maximum, minimum
and average.

For different program versions, if more than 20% of the
test set can detect errors in this version, this version will be
discarded because these faults are basically eliminated during
developer development and before regression testing.

FIGURE 6. BPEL program segment of GymLocker.

TABLE 2. Statistics of test suite sizes.

Five different test case priority technologies are discussed
in the test of this paper. the approaches of total activity
coverage prioritization and additional activity coverage pri-
oritization in our experiments are the technologies of Mei
et al [20].

1. Random ordering. The order of test cases in test set is
arranged by computer pseudo randomly;

VOLUME 8, 2020 101267



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

2. Total activity coverage prioritization [20]. It is sorted
by the total number of activities covered by each test case in
the test set. Test cases with equal total activity coverage are
randomly sorted;

3. Additional activity coverage prioritization [20]. Which
is to say, after the execution of the test case, the increase of
total activity coverage is the largest among all the test cases
being executed. When the total activity coverage reaches
100%, set zero and continue to sequence iteratively according
to this rule. Test cases with equal increase of activity coverage
are randomly selected;

4. Modification impact analysis based approach. The activ-
ity modification impact analysis method proposed in this
paper, which is ranked according to calculated test case test
importance. Test cases with equal importance are randomly
ordered;

5. Optimal ordering. When the error location and type are
known, the test cases are optimally arranged to make the
test set the most efficient in discovering the errors in the
program. This method is the theoretical upper limit of test
case prioritization.

For each subject and each constructed test suite T for the
subject, we applied every technique to prioritize T . We exe-
cuted each prioritized T against every modified version of
the subject. It used the outputs of the original version as
expected outputs. It calculated the corresponding APFD, PR,
and HMFD values. In total, 783,451 APFD values, 476 RP
values, and 783,451 HMFD values were collected.

B. RESULTS AND ANALYSIS
For each application and test set Ts of each application,
the priority of test cases in test set Ts is determined through
Random ordering, Total Activity Coverage Prioritization,
Additional Activity Coverage Prioritization, Modification
impact analysis based approach and Optimal ordering. Each
modified version of each program executes the test set Ts
according to different test case priorities. The output value
of the original version is used as the expected output value.
The above methods are compared by statistical analysis of the
values of APFD, RP and HMFD. In this experiment, we use
each test set Ts to repeat the test 10 times, and find the average
value of each test as the output result. In the end we obtained
a total of 783451 APFD values, 476 RP values and 783451
HMFD values.

Figure 7 is a box-whisker diagram of APFD values.
Figure 7 (a) - Figure 7 (h) respectively show the APFD mea-
surements of Ref. A - Ref. H, the eight applications applying
five test case prioritization techniques. The vertical axis of
each sub-picture represents the APFD value, and the horizon-
tal axis represents different test case prioritization techniques
(Random indicates Random ordering; Total-activity indicates
Total Activity Coverage Prioritization; Addtl-activity indi-
cates Additional Activity Coverage Prioritization; Modifi-
impact means Modification impact analysis based approach;
Optimal means Optimal ordering, the same below).

It can be seen from Figure 7 that the APFD values of three
methods of Total-activity, Addtl-activity, and Modifi-impact
are higher than random ordering. For these three methods,
although the APFD value is almost the same sometimes
(such as Ref.C & Ref.H), in most cases, the APFD value of
Modifi-impact is better than the other two methods. There-
fore, through this experiment, we can find that the approach of
Modifi-impact outperforms than approaches of Total-activity
and Addtl-activity.

We also collected the 1/4-quantile, median, 3/4-quantile
and average of APFD values, RP average andHMFD average
of five test case prioritization techniques. Figure 8 shows
the results. Each sub graph shows the 1/4 quantile value,
the median value and the 3/4 quantile value of different
statistical values in the form of box-plot. For example,
the fourth box in Figure8(b) represents the 1/4-quantile value,
the median value, and the3/4-quantile value of the APFD
median value of the Modifi-impact method.

We find across three subfigures (Figure 8 (a) – (c)) that,
for each technique, as the percentile progresses (namely,
from 25th percentile to median and from median to 75th per-
centile), the performance of the technique shows a trend. As is
depicted in Figure 8 (d), the box-plot of Random and Optimal
show the worst and the best mean APFD in the figure. Our
approach (Modifi-Impact) outperforms approaches of Total-
Activitiy and Addtl-Activity. This result is consistent to the
result of Figure 7. The bars for measurement RP and HMFD
in Figure 8 (e) and Figure 8 (f) also demonstrate this similar
result.

C. THREATS TO VALIDITY
This paper proposes a new way to improve the method
of test case prioritization for BPEL workflow applications.
The proposed method based on modification impact analysis
is only for the initial application of the improved method.
In this paper, the number of BPEL workflow application
samples and the number of modified versions are limited,
which can not cover all cases, and our experiment only runs
in ActiveBPEL (version 4.1) engine. In view of the above
situation, we will continue to apply this method to a vari-
ety of large-scale BPEL applications, and further improve
the method through practice. At the same time, in the
future, we will test in different engines to reduce platform
threats.

At the same time, there are three main reference indi-
cators for discussing the superiority of the program test
case prioritization method: APFD, RP, and HMFD. Because
these three values need to be obtained when the error is
known, they cannot be obtained until the test is complete.
However, these three reference indicators can verify the
superiority of the prioritization method after the test being
completed.

VI. DISCUSSION
In the research of this article, we have proved that in some
aspects, our proposed method based on modified impact

101268 VOLUME 8, 2020



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

FIGURE 7. Comparisons on each BPEL workflow application using APFD measurement.

analysis is better than some traditional methods, which can
efficiently test BPELworkflow applications, but there are still
some problems and disadvantages:

Firstly, because the method proposed in this paper needs
to obtain and analyze the BPEL activity dependence graph,it
will add some additional workload. Especially for large
BPEL workflow applications, it will add more workload.

In this article, we quote some relatively simple BPEL
workflow applications to test the effectiveness of our pro-
posed method, and the results also show that our improved
method is a new way worth trying. In the following explo-
ration, we need to further optimize the algorithm to achieve a
trade-off between program detection effectiveness and work
efficiency [37].

VOLUME 8, 2020 101269



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

FIGURE 8. Overall comparisons in terms of APFD, RP, HMFD.

Secondly, in the quantitative calculation of test case impor-
tance, we assume that all activities can be modified or
affected; and assume that errors or modifications of an activ-
ity will be 100% propagated to all activities that directly and
indirectly depend on this activity in the activity dependence
graph. These two assumptions may be inconsistent with the
facts, and this is the problem that we will solve next.

Thirdly, our current research ignores some of the advanced
activities of WS-BPEL 2.0 and only considers its basic
elements and structure. For example, the fault handling
<scope> activity used to eliminate <scope> faults in
WS-BPEL 2.0 has not been considered. These are also issues
that we need to consider in the future.

In addition, the test case prioritization method for service-
oriented workflow applications proposed in this article is not
limited to workflow applications that are applied to BPEL,
but can also be applied to applications such as executable

WS-CDL applications, OWL-S Applications, flow-driven
Mashup applications, and other service-oriented workflow
applications.

VII. RELATED WORK
Regression testing is a recognized and effective testing tech-
nology to confirm that the modified program has not intro-
duced errors or caused other code to run improperly. The
research on regression testing mainly focuses on test case
generation, test method selection, test prioritization, and test
minimization. Scientists have proposed various methods for
the above problems [8], [9], [12]. In this section we first
review the work on test case generation methods and test
method selection. These are the basis for our prioritization of
test cases. We will then review the prioritization of regression
test cases and compare these methods with our proposed
method based on Modification impact analysis.

101270 VOLUME 8, 2020



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

A. TEST CASE GENERATION OF SERVICE-ORIENTED
WORKFLOW APPLICATIONS
Mei et al. [27] addressed the integration issues that might
be caused by XPath in BPEL workflow applications such
as extracting wrong data from an XML message. In addi-
tion, Mei et al. [27] proposed a set of test coverage criteria
to test WS-BPEL applications from the perspective of data
flow. They mainly focused on the XPath, which is used to
manipulate XML documents. They developed a graph model
known as XPath Rewriting Graph (XRG) to capture how
an XPath can be rewritten from one form to another in a
stepwise fashion. By using this model, they also studied the
test case prioritization for regression testing of WS-BPEL
applications. Ni et al. [28] generated a message sequence
based on Message Sequence Graph (MSG), which contains
the information of message sequences and message parame-
ters. This approach mainly considers correlation mechanism
and generates message sequence based on random testing.
However, this work may still instantiate some idle instances.
Moreover, Tan et al. are focusing on how to design, analyze,
and deploy web service–based workflows for both business
and scientific applications [29]–[31].

For this reason, we propose a method based on satisfi-
ability module theory solver in reference [19], which is a
message sequence generated on a structured basis, and uses
concurrent BPEL activity path coverage standard to sample
the execution of WS-BPEL. Because DPE and association
mechanism are considered, this method will not instantiate
any idle instances. However, reference [28] is more practical
for some applications without associated activities and fewer
predicates, which belongs to a simplified method.

B. REGRESSION TEST SELCTION OF SERVICE-ORIENTED
WORKFLOW APPLICATIONS
These methods [32], [33] about regression test selection in
BPEL workflow application are mostly variations of the
approaches proposed by Rothermel and Harrold [34]. These
methods are in view of the control flow analysis between
the old version. and the new version. Based on the modified
and original control flow graph, the modified nodes or edges
are identified by graph comparison algorithm. Test cases that
override changing nodes or edges are selected as affected
cases and selected for rerun. These methods are usually dif-
ferent for different test objectives and test perspectives of
BPEL applications. From the service integrator’s perspective,
capture the impact of process changes, binding changes, and
interface changes, Li et al. proposes a regression test selection
method based on extensible BPEL flow graph (XBFG) [32].
The XBFG path generated from partner service and BPEL
workflow is divided into two parts. One part is retested by
selecting test cases in the original version, and the other
part is tested by generating new test cases after executing
message sequence comparison, path condition analysis, and
XBFG path comparison. From the point of view of service
integrator, uses a special algebraic expression is selected by

Lin et al. [33] to represent test paths, and compares these
test paths to select the affected test cases. For this method,
the influence of concurrency on test path can be divided into
two categories. By applying impact analysis rules to analyze
the above two types of concurrent control processes, this
method can not only select test cases through the affected
path, but also select test cases without test path.

Considering the unique features of BPEL applications,
we present an optimal controller guided by behavioral dif-
ference based on BPEL program dependence graphs [35].
Compared with the previous approaches, our approach can
eliminate some unnecessary test cases to be rerun. We show
the validity and feasibility of our approach through empirical
studies.

C. TEST CASE PRIORITIZATION OF SERVICE-ORIENTED
WORKFLOW APPLICATIONS
There are two types to solve the prioritization problems
of BPEL workflow application test cases. The first type
supposes that the test environment is static. Based on this,
the partner web services that BPEL workflow application
calls are unchanged for regression testing.Mei et al. [10], [20]
mainly study whether XPath and WSDL information con-
tribute to effective regression testing of service-oriented
workflow applications. Based on the above information, they
proposed a multi-level coverage standard. This multi-level
coverage standard includes XPath, WSDL, and business pro-
cesses. In addition, they developed a series of test case
prioritization approaches based on the model. Unlike them,
we analyze the dependences between activities to calculate
the importance of modification activities to test cases. With
these dependences, this paper proposes the concept of Testing
Importance of Activities (TIA) and Testing Importance of
Test Case (TITC) to prioritize the sequence of test cases.
As a matter of fact, these two methods complement each
other. Our method is depth first and Mei et al.’s method is
breadth first. By considering the quota of specific external
web service requests, To reduce the cost of service invocation,
Zhai et al. [18], [36] take advantage of the dynamic char-
acteristics of service selection. The method proposed by us
belong to this category. We propose a test case prioritiza-
tion method considering the impact of activity modification,
which belongs to this category. As a matter of fact, these
methods and our methods are complementary.

The second type of hypothetical testing environment is
unstable. In this case, the partner web services that BPEL
workflow applications call can be different. Mei et al. [11]
proposed a new strategy, which rearranges test cases in
planned regression test sessions based on the changes of
tested services detected during actual regression test session.
They also proposed 3 special strategies that can be
integrated with existing test case prioritization methods.
However, their method does not consider the modification
impact of internal activities in service-oriented Workflow
applications.

VOLUME 8, 2020 101271



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

VIII. CONCLUSION
In regression testing, test case prioritization is a method to
improve the efficiency of error detection in modified service-
oriented workflow applications by changing the test order
of test cases. For service-oriented workflow applications,
this paper proposes a new test case prioritization method
considering the internal structure of their activities and fault
propagation behavior. Compared with the traditional meth-
ods, the proposed method is proved to be efficient, feasible
and effective.

On the other hand, the application effect of the method
proposed in this paper in some large-scale service-oriented
workflow applications needs to be tested, and some advanced
activities of WS-BPEL 2.0 are not considered, which are all
to be further studied in this paper.

REFERENCES
[1] X. Chen, J. Lin, Y. Ma, B. Lin, H. Wang, and G. Huang, ‘‘Self-adaptive

resource allocation for cloud-based software services based on progressive
QoS prediction model,’’ Sci. China Inf. Sci., vol. 62, no. 11, pp. 1–3,
Nov. 2019.

[2] D. S. Han, ‘‘Modeling and verification approach for temporal properties
of self-adaptive software dynamic processes,’’ J. Comput. Appl., vol. 28,
no. 1, pp. 165–187, Nov. 2018.

[3] H. Mei, ‘‘A Review of Software Engineering Research in China,’’ ACM
SIGSOFT Softw. Eng. Notes, vol. 42, no. 4, Feb. 2018.

[4] Z. Hong and Z. Y. Feng, ‘‘Collaborative testing of Web services,’’ IEEE
Trans. Services Comput., vol. 5, no. 1, pp. 116–130, Jan./Mar. 2012.

[5] Z. Y. Zhang, C. Zhenyu, and X. Baowen, ‘‘Research Progress on test case
evolution,’’ (in Chinese), J. Softw., vol. 24, no. 4, pp. 663–674, Jan. 2013.

[6] Z. J. Ding and Z. X. Zhou, ‘‘Survey on Web service composition testing,’’
(in Chinese), J. Softw., vol. 29, no. 2, pp. 299–319, Feb. 2018.

[7] X. Chen, J. H. Chen, X. L. Ju, and Q. Gu, ‘‘Survey of test case prioritization
techniques for regression testing,’’ (in Chinese), J. Softw., vol. 24, no. 8,
pp. 1695–1712, Feb. 2013.

[8] M. Bozkurt, M. Harman, and Y. Hassoun, ‘‘Testing and verification in
service-oriented architecture: A survey,’’ Softw. Test., Verification Rel.,
vol. 23, no. 4, pp. 261–313, Jan. 2013.

[9] S. Yoo and M. Harman, ‘‘Regression testing minimization, selection and
prioritization: A survey,’’ Softw. Test., Verification Rel., vol. 22, no. 2,
pp. 67–120, Mar. 2012.

[10] L. Mei, W. K. Chan, T. H. Tse, and R. G. Merkel, ‘‘XML-manipulating test
case prioritization for XML-manipulating services,’’ J. Syst. Softw., vol. 84,
no. 4, pp. 603–619, Apr. 2011.

[11] L. Mei, W. K. Chan, T. H. Tse, B. Jiang, and K. Zhai, ‘‘Preemptive
regression testingof workflow-based Web services,’’ IEEE Trans. Services
Comput., vol. 8, no. 5, pp. 740–754, Sep./Oct. 2015.

[12] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R. Tumeng, ‘‘Test
case prioritization approaches in regression testing: A systematic literature
review,’’ Inf. Softw. Technol., vol. 93, pp. 74–93, Jan. 2018.

[13] M. Hamill and K. Goseva-Popstojanova, ‘‘Common trends in software
fault and failure data,’’ IEEETrans. Softw. Eng., vol. 35, no. 4, pp. 484–496,
Jul. 2009.

[14] Y. Zhou and H. Leung, ‘‘Empirical analysis of object-oriented design
metrics for predicting high and low severity faults,’’ IEEE Trans. Softw.
Eng., vol. 32, no. 10, pp. 771–789, Oct. 2006.

[15] H. Wang, J. Xing, Q. Yang, D. Han, and X. Zhang, ‘‘Modification impact
analysis based test case prioritization for regression testing of service-
oriented workflow applications,’’ in Proc. IEEE 39th Annu. Comput. Softw.
Appl. Conf., Jul. 2015, pp. 39–48.

[16] Web Services Business Process Execution Language Version 2.0: OASIS
standard, Organization for the Advancement of Structured Information
Standards (OASIS), Burlington, MA, USA, 2007. [Online]. Available:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[17] R.Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, ‘‘Test generation
and test prioritization for simulink models with dynamic behavior,’’ IEEE
Trans. Softw. Eng., vol. 32, no. 9, pp. 919–944, Sep. 2019.

[18] K. Zhai, B. Jiang, and W. K. Chan, ‘‘Prioritizing test cases for regression
testing of location-based services: Metrics, techniques, and case study,’’
IEEE Trans. Services Comput., vol. 7, no. 1, pp. 54–67, Jan./Mar. 2014.

[19] H. Wang, J. Xing, Q. Yang, W. Song, and X. Zhang, ‘‘Generating effective
test cases based on satisfiability modulo theory solvers for service-oriented
workflow applications,’’ Softw. Test., Verification Rel., vol. 26, no. 2,
pp. 149–169, Mar. 2016.

[20] L. Mei, Y. Cai, C. Jia, B. Jiang, W. K. Chan, Z. Zhang, and T. H. Tse,
‘‘A subsumption hierarchy of test case prioritization for composite ser-
vices,’’ IEEE Trans. Services Comput., vol. 8, no. 5, pp. 658–673,
Sep. 2015.

[21] W. Abdelmoez, M. Shereshevsky, B. Yu, S. Bogazzi, M. Korkmaz, and
A. Mili, ‘‘Quantifying software architectures: An analysis of change prop-
agation probabilities,’’ in Proc. 3rd ACS/IEEE Int. Conf. Comput. Syst.
Appl., Jan. 2005, pp. 687–694.

[22] A. MacCormack, J. Rusnak, and C. Y. Baldwin, ‘‘Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code,’’Manage. Sci., vol. 52, no. 7, pp. 1015–1030, Jul. 2006.

[23] J. Ferrante, K. J. Ottenstein, and J. D. Warren, ‘‘The program dependence
graph and its use in optimization,’’ ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, Jul. 1987.

[24] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang, ‘‘BPEL4WS unit testing: Test
case generation using a concurrent path analysis approach,’’ in Proc. 17th
Int. Symp. Softw. Rel. Eng., Nov. 2006, pp. 75–84.

[25] Y. Yuan, Z. Li, andW. Sun, ‘‘A graph-search based approach to BPEL4WS
test generation,’’ in Proc. Int. Conf. Softw. Eng. Adv. (ICSEA), Oct. 2006,
pp. 14–22.

[26] C.-H. Liu, S.-L. Chen, and X.-Y. Li, ‘‘AWS-BPEL based structural testing
approach forWeb service compositions,’’ inProc. IEEE Int. Symp. Service-
Oriented Syst. Eng., Taiwan, China, Dec. 2008, pp. 18–28.

[27] L. Mei, W. K. Chan, and T. H. Tse, ‘‘Data flow testing of service-oriented
workflow applications,’’ in Proc. 13th Int. Conf. Softw. Eng. (ICSE), 2008,
pp. 371–380.

[28] Y. Ni, S.-S. Hou, L. Zhang, J. Zhu, Z. Jie Li, Q. Lan, H. Mei, and J.-S. Sun,
‘‘Effective message-sequence generation for testing BPEL programs,’’
IEEE Trans. Services Comput., vol. 6, no. 1, pp. 7–19, Nov. 2013.

[29] K. Huang, Y. Fan, and W. Tan, ‘‘Recommendation in an evolving service
ecosystem based on network prediction,’’ IEEE Trans. Autom. Sci. Eng.,
vol. 11, no. 3, pp. 906–920, Jul. 2014.

[30] W. Tan, Y. Fan, M. Zhou, and M. Zhou, ‘‘A Petri net-based method
for compatibility analysis and composition of Web services in business
process execution language,’’ IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1,
pp. 94–106, Jan. 2009.

[31] Y. Du, W. Tan, and M. Zhou, ‘‘Timed compatibility analysis of Web
service composition: A modular approach based on Petri nets,’’ IEEE
Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 594–606, Apr. 2014.

[32] B. Li, D. Qiu, H. Leung, and D. Wang, ‘‘Automatic test case selection for
regression testing of composite service based on extensible BPEL flow
graph,’’ J. Syst. Softw., vol. 85, no. 6, pp. 1300–1324, Jun. 2012.

[33] F. Lin, M. Ruth, and S. Tu, ‘‘Applying safe regression test selection
techniques to java Web services,’’ in Proc. Int. Conf. Next Gener. Web
Services Practices, Sep. 2006, pp. 133–142.

[34] G. Rothermel and M. J. Harrold, ‘‘A safe, efficient regression test selection
technique,’’ ACM Trans. Softw. Eng. Methodol. (TOSEM), vol. 6, no. 2,
pp. 173–210, Apr. 1997.

[35] H. Wang, J. Xing, Q. Yang, P. Wang, X. Zhang, and D. Han, ‘‘Optimal
control based regression test selection for service-oriented workflow appli-
cations,’’ J. Syst. Softw., vol. 124, pp. 274–288, Feb. 2017.

[36] K. Zhai, B. Jiang, W. K. Chan, and T. H. Tse, ‘‘Taking advantage of service
selection: A study on the testing of location-based Web services through
test case prioritization,’’ in Proc. IEEE Int. Conf. Web Services, Jul. 2010,
pp. 211–218.

[37] S. Tahvili, M. Bohlin, M. Saadatmand, S. Larsson, W. Afzal, and
D. Sundmark, ‘‘Cost-benefit analysis of using dependency knowledge
at integration testing,’’ in Proc. 17th Int. Conf. Product-Focused Softw.
Process Improvement, 2016, pp. 122–130.

HONGDA WANG received the Ph.D. degree in
information system engineering from the PLA
University of Science and Technology, Nanjing,
in 2017. He is currently a Lecturer with Naval
Logistics Academy. His research interests include
service computing and workflow technology.

101272 VOLUME 8, 2020



H. Wang et al.: Test Case Prioritization for Service-Oriented Workflow Applications

MAN YANG received the M.S. degree from the
Hebei University of Technology. Her research
interests include software engineering and service
computing.

LIHUA JIANG received the Ph.D. degree in
business management from the Tianjin Univer-
sity of Finance and Economics. She is currently
a Professor with Naval Logistics Academy. Her
research interests include management innovation,
and logistic and supply chain management.

JIANCHUN XING (Member, IEEE) received the
B.S. and M.S. degrees in electrical system and
automation from the Engineering Institute of
Engineering Corps, China, in 1984 and 1987,
respectively, and the Ph.D. degree in information
system engineering from the PLA University of
Science and Technology, China, in 2006. He is
currently a Professor with the Army Engineer-
ing University of PLA. His research interests
include intelligent control, artificial intelligence,
and information processing.

QILIANG YANG (Member, IEEE) was born
in 1975. He received the Ph.D. degree from
Nanjing University. He is currently an Associate
Professor with the Army Engineering University
of PLA.His research interests include self-adaptive
software systems, mission-critical systems and
software and pervasive computing, and cyber-
physical systems. He is a member of CCF.

FUYONG YAN was born in 1976. He received the
M.S. degree from the PLA University of Science
and Technology. He is currently a Lecturer of PLA
32752 Troops. His research interests include artifi-
cial intelligence instrument, electromagnetic com-
patibility technology, and teaching of equipment
support training.

VOLUME 8, 2020 101273


	INTRODUCTION
	PRELIMINARIES
	TEST CASE PRIORITIZATION
	BASICS OF WS-BPEL LANGUAGE

	RUNNING EXAMPLE
	OUR TEST CASE PRIORITIZATION APPROACH
	TESTING IMPORTANCE OF ACTIVITY
	CONTROL DEPENDENCE
	DATA DEPENDENCE
	ASYNC-INVOCATION DEPENDENCE

	OUR PRIORITIZATION APPROACH

	EXPERIMENTS
	EXPERIMENTAL SETUP
	RESULTS AND ANALYSIS
	THREATS TO VALIDITY

	DISCUSSION
	RELATED WORK
	TEST CASE GENERATION OF SERVICE-ORIENTED WORKFLOW APPLICATIONS
	REGRESSION TEST SELCTION OF SERVICE-ORIENTED WORKFLOW APPLICATIONS
	TEST CASE PRIORITIZATION OF SERVICE-ORIENTED WORKFLOW APPLICATIONS

	CONCLUSION
	REFERENCES
	Biographies
	HONGDA WANG
	MAN YANG
	LIHUA JIANG
	JIANCHUN XING
	QILIANG YANG
	FUYONG YAN


