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ABSTRACT Image-text hashing approaches have been widely applied in large-scale similarity search
applications due to their efficiency in both search speed and storage efficiency. Most recent supervised
hashing approaches learn a hash function by constructing a pairwise similarity matrix or directly learning the
hash function and hash code (i.e.,1 or−1) procedure based on class labels. However, the former suffers from
high training complexity and storage cost, and the latter ignores the semantic correlation of the original data,
both of which prevent discriminative hash codes. To this end, we propose a novel discrete hashing algorithm
called supervised matrix factorization hashing with quantitative loss (SMFH-QL). The proposed SMFH-QL
first generates hash codes via the class label, avoiding the construction of a pairwise similarity; then, matrix
factorization is used to design hash codes from original image-text data, thereby eliminating the impact of
class labels and reducing the quantization error. Moreover, we introduce a quantitative loss function term
to learn hash codes by incorporating class labels and the original data information, facilitating learning
a similarity-preserving hash function in image-text search. Extensive experiments show that SMFH-QL
outperforms several existing hashing methods on three representative datasets.

INDEX TERMS Image-text search, supervised hashing, hash function, hash codes, quantitative loss function.

I. INTRODUCTION
Image-text search has attracted much attention due to the
explosive growth of data in search engines and social net-
works in recent years. Image-text search plays an important
role in many scenarios in the fields of target monitoring and
object tracking [1]–[3], video surveillance [4], [5], audio-text
recognition [6], face and saliency detection [7], [8], human
computer interaction [9], [10] and multimodal modelling
[11], [12], etc. Given an image query, the task of image-text
search is to retrieve the most relevant texts in a text dataset,
and vice versa. However, performing accurate and efficient
image-text similarity searches on large-scale datasets is
challenging when faced with limited storage resource and
search ability. To address this challenge, many hashing-based
methods have been proposed to transform image-text data in
original feature space into compact binary codes(e.g., hash
codes) in low-dimensional Hamming space. The crucial prob-
lem of hashing-based image-text search is how to preserve
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the intermodal and intramodal similarity correlation of the
original image-text data for hash codes in Hamming space.

Generally, according to whether label information is uti-
lized, existing hashing-based image-text methods can be
classified as unsupervised methods and supervised methods.
Unsupervised methods [13]–[22] utilize only the image-text
pair, including co-occurrence information, to explore their
semantic correlation in the shared image-text feature repre-
sentation space. However, these methods cannot take advan-
tage of semantic label information, i.e., cannot exploit class
labels to preserve the intermodal and intramodal correlations
of image-text data from the original feature space, which
deteriorates the image-text search performance. By contrast,
supervised methods [23]–[32] attempt to preserve correlation
by exploiting the semantic labels to learn more consistent
hash codes for the original image-text data, resulting in
efficient retrieval performance. In this paper, we focus on
supervised hashing-based methods for similarity image-text
search.

Although many supervised hashing-based methods have
achieved promising results, they still confront some common
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drawbacks in learning common feature representations or
hash codes and controlling the quantization error. (1) Most
hashing-based image-text methods directly quantize the com-
mon potential real number representation into hash code
in the process of binary quantization. Due to the inherent
discrete characteristics of hash code, the constraints are
relaxed to continuous values to obtain a solution, resulting in
a large quantization error, which makes the generated hash
code suboptimal. Consequently, this process substantially
affects the retrieval accuracy of image-text search. (2) Most
existing hashing approaches learn a hash function using the
class label to construct a pairwise similarity matrix. However,
these approaches entail high computational complexity and
storage cost. (3) Another approach is to obtain hash codes
directly by class label, which ignores the influence of the
original image-text data. Moreover, this approach cannot
take advantage of the semantic correlation of intramodal
and intermodal (e.g., image and text) information to learn
discriminative hash codes.

In light of the aforementioned problems, we propose a
novel supervised hashing method called supervised matrix
factorization hashing-based quantitative loss (SMFH-QL).
The main contributions of the proposed method are summa-
rized as follows:

• We propose a SMFH-QL algorithm for image-text
searching by combining class labels with a matrix fac-
torization strategy. SMFH-QL introduces class labels
to generate hash codes directly and exploits matrix
factorization to learn the hash function. Based on
this fusion strategy, the proposed approach maintains
the well-learned similarity correction of the original
image-text data, generating more discriminative hash
codes.

• We introduce a quantization loss function term to con-
strain the objective function of SMFH-QL to achieve
a closer correlation between the common representa-
tion and hash codes. Thus, we can eliminate redundant
feature by label information, which eventually reduces
the quantitative loss and improves the quality of hash
function when performing quantization.

• We evaluate the proposed SMFH-QL in an extensive
experiment on three image-text retrieval datasets. The
results demonstrate that SMFH-QL obtains the best
retrieval performance over the state-of-the-art hashing
methods.

The rest of this paper is organized as follows. Section II
introduces related work. Section III presents the details of
our method, includingmatrix factorization, the hash function,
and the optimization algorithms. Section IV presents the
experimental results, followed by conclusions and directions
for future work in Section IV.

II. RELATED WORK
As mentioned previously, a variety of unsupervised and
supervised image-text hashing methods have been proposed.

The following review of related work focuses on these two
aspects.

A. UNSUPERVISED IMAGE-TEXT HASHING METHODS
Unsupervised image-text hashing methods exploit only
image-text original data to find intramodal and intermodal
semantic correlations when learning the hash function.
Kumar and Udupa [33] proposed cross-view hashing (CVH),
which is an extension of the spectral hashing (SH) [34]
method, that minimizes the weighted average distance
between hash codes to preserve the similarity between data
modalities. Zhu et al. [35] proposed linear cross-modal hash-
ing (LCMH), which adopts anchor maps to preserve the sim-
ilarity between the same modality, avoiding the construction
of similarity maps for all training datasets and thus greatly
improving the hash search efficiency. Zhou et al. [36] pro-
posed latent semantic sparse hashing (LSSH), which first
performs sparse coding andmatrix factorization to capture the
latent semantic features of images and texts and then projects
features into a latent semantic space quantized to obtain an
optimized hash code. Ding et al. [37] presented collective
matrix factorization hashing (CMFH). This method was the
first attempt to project data of different modalities into a com-
mon subspace by exploiting collective matrix factorization
hashing to learn unified hash codes. Unsupervised methods
cannot use class label information to guide the similarity
correlation of original image-image, text-text and image-data
data, leading to degradation of retrieval performance.

B. SUPERVISED IMAGE-TEXT HASHING METHODS
Supervised image-text hashing methods can improve upon
the retrieval performance of unsupervised methods by con-
sidering label information. Therefore, supervised methods
can be applied in more scenarios than can unsupervised
approaches. In general, supervised image-text hashing meth-
ods can be further categorized into supervised nonmatrix
factorization schemes and supervised matrix factorization
schemes.

1) SUPERVISED NONMATRIX FACTORIZATION METHODS
Supervised nonmatrix factorization schemes employ given
class labels to guide the hash code or hash function learn-
ing procedure. Bronstein et al. [38] proposed a sensitive
image-text hashing method called CMSSH, which was the
first attempt to apply the binary classification to hash code
learning, and then applied a boosting algorithm to the learn
hash codes of different modalities. Lin et al. [39] proposed
semantics-preserving hashing (SePH), which first adopts the
semantic correlation matrix of the training data as the super-
vised information, then transforms the semantic correlation
matrix and the learned hash code into a probability dis-
tribution, and finally minimizes the Kullback-Leibler (KL)
divergence of the two probability distributions. In the pro-
cess of hash code learning, the method performs nonlinear
projection via kernel logistic regression (KLR) and maps
data features into hash codes, which are then utilized to
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learn hash functions. Zhang and Li [40] proposed semantic
correlationmaximization (SCM), whichmeasures the seman-
tic similarity between data modalities by multiplying the
class matrix of the training data. Xu et al. [41] proposed
discriminative cross-modal hashing (DCH). DCH directly
generates discriminative binary hash codes via a discrete
coordinate descent strategy and then learns modality-specific
hash functions based on the learned binary codes. However,
these supervised nonmatrix factorization schemes ignore the
co-correlation of the original image-text features and can-
not mine and employ the semantic similarity correlation of
image-text modalities.

2) SUPERVISED MATRIX FACTORIZATION METHODS
Supervised matrix factorization schemes apply matrix fac-
torization to mine the intramodal and intermodal semantic
correlations from the original image-text modality, which
improves the hash function or hash code. For instance,
Liu et al. [42] proposed supervised matrix factorization
hashing (SMFH), which can utilize the label information
to preserve the semantic similarity between different data
modalities. Moreover, the adjacent structure is used to main-
tain the similarity between data of different modalities based
on the CMFH method, which further enhances retrieval
accuracy. Tang et al. [28] proposed a similar supervised
matrix factorization method based on the class label matrix.
However, the above approaches require a pairwise semantic
similarity matrix, which leads to a large storage and computa-
tional cost. Wang et al. [43] proposed label-consistent matrix
factorization hashing (LCMFH), which directly guides the
process of learning the hash function via the label infor-
mation of the training data. Therefore, LCMFH achieves a
short training time and high search precision by avoiding
the construction of a pairwise semantic similarity matrix.
However, this method focuses on the similarity between hash
codes of the same type of data, which ignores the feasibility
of different data hash codes.

By reviewing the aforementioned methods, supervised
approaches can achieve better retrieval performance than
unsupervised approaches by considering class labels. Some
supervised nonmatrix factorization hashing methods ignore
the co-correlation of original image-text features and do not
consider the semantic similarity correlation of image-text
modalities. Meanwhile, supervised matrix factorization
approaches are designed to preserve semantic relationships
through class labels to construct pairwise similarity matrices.
However, pairwise similarity matrices entail high training
complexity and storage costs. In this paper, the SMFH-QL
algorithm is proposed to address the two drawbacks and to
optimize the hash codes and hash function directly via the
class label, taking into account the intermodal and intramodal
semantic correlations in the original image-text feature space
and avoiding the construction of pairwise similarity matri-
ces. The main differences between the proposed SMFH-QL
and several state-of-the-art hashing methods are summarized
in Table 1.

TABLE 1. Characteristics of existing image-text hashing methods
(N is the number of training samples, relaxation denotes
‘‘relaxing+rounding’’ strategy for hash optimization, relaxing the
discrete constraints and simply acquiring the hash codes by threshold
function).

III. THE PROPOSED SMFH-QL
Fig. 1 shows an overview of our proposed SMFH-QL.
It includes collectivematrix factorization to produce common
representation, a hash function to learn mapping matrices
for guiding the query procedure, a classification loss func-
tion to directly generate a unified hash code via the class
label matrix, and a quantitative loss function to maintain
the well-learned similarity correlation between the hash code
and common representation when performing quantization.
These parts are combined with a training procedure for learn-
ing the common representation for each image or text modal-
ity to calculate image-text similarities.

A. MODELS AND PROBLEM FORMULATION
Table 2 lists the notations and corresponding definitions used
in the study. SMFH-QL accepts original paired image-text
data as the input and processes them through common rep-
resentation learning and hash coding. The ultimate goal of
the proposed approach is to retrieve the most relevant texts
given an image query and vice versa.

TABLE 2. Notation used in the study of SMFH-QL.

1) COLLECTIVE MATRIX FACTORIZATION
Collective matrix factorization is commonly used in low-rank
representation learning. Ding et al. [37] demonstrated that
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FIGURE 1. An overview of our proposed SMFH-QL, which consists of four parts that employ a collective matrix
factorization strategy to produce a common representation from the features of image-text modality to learn the hash
function and generate hash codes based on the semantic label. We also exploit a quantitative loss function term to
strengthen the semantic correlation between the common representation and hash codes when performing quantization.

collective matrix factorization is effective in mining the rela-
tionships between multimodal data and shallow semantics in
image-text retrieval. Given the image and text modalities X
and Y , the proposed method needs to find the basic matrices
U1 ∈ Rd1×l ,U2 ∈ Rd2×l and the shared latent representation
V ∈ Rl×n via matrix factorization.

Although the features extracted from different data of
an image-text instance are heterogeneous, the two modali-
ties still have common semantic information because they
describe the contents of the identical instance. Hence,
we assume that different modalities can share a common
latent space generated by collective matrix factorization.
Considering this, we define the following formulation:

J1 (U1,U2,V ) = ‖X − U1V‖2F + ‖Y − U2V‖2F . (1)

2) HASH FUNCTION
As mentioned above, we have obtained the unified repre-
sentation V by Eq. (1), but it cannot be used for similarity
query owing to its high dimensionality. Given out-of-sample
instances, we need to learn two mapping functions of image
and text modalities for hash code. Therefore, the correspond-
ing transformation is defined as follows:

J2 (W1,W2,V ) = ‖V −W1X‖2F + ‖V −W2Y‖2F , (2)

whereW1 andW2 are the mapping matrices.

3) CLASSIFICATION LOSS FUNCTION
To maintain the consistency between the learned hash code
and the original semantic label, we utilize a shared label
matrix to produce a unified hash code directly. That is, a clas-
sification error term is introduced to constrain the hash code,
and a classifier is trained via minimizing the classification
error in the process of learning the corresponding objective
function, which improves the discrimination of learned hash
codes; i.e.,

J3 (H ,Z ) =
∥∥∥T − ZTH∥∥∥2

F
, (3)

subject to H ∈ {−1, 1}l×n, where Z ∈ Rl×c is a projection
matrix.

4) QUANTITATIVE LOSS FUNCTION
In order to avoid a continuous relaxation strategy, we directly
generate binary hash codes. Hence in the sequel, we construct
a connection between H and V , where the matrix V can be
accurately represented via the learned hash codes. In this
paper, we minimize the difference between a square loss
measure H and V to eliminate the large quantitative loss:

J4 (H ,V ) = ‖H − V‖2F , (4)

subject to H ∈ {−1, 1}l×n.

5) THE KERNEL METHOD
In this work, to address the linear indivisibility of data in
low-dimensional space, we adopt a nonlinear embedding
method for all training samples, which ensures that the
data are linearly separable in the high-dimensional kernel
space [44], [45]. The corresponding formulation is listed as
follows:

φ(S(t)) =
{
φ
(
sti
)}n
i=1 , (5)

where S(t) = {X ,Y } denotes the aggregation of image and
text modalities.

φ
(
x(t)

)
= [A1, . . .Am]T , (6)

where A1 = exp

(
−

∥∥∥x(t)−b(t)1 ∥∥∥2
ε

)
, Am = exp

(
−

∥∥∥x(t)−b(t)m ∥∥∥2
ε

)
,

and
{
b(t)j
}m
j=1

are m randomly selected anchor points.

6) OVERALL OBJECTIVE FUNCTION
Integrating Eq. (1), Eq. (2), Eq. (3), Eq. (4) with Eq. (5),
we establish a unified hashing framework and express the
overall objective function of the proposed SMFH-QL. How-
ever, the excessive number of parameters in the above five for-
mulations increase the complexity of the proposed model and
may lead to overfitting. Thus, we further consider introducing
a regularization term to solve the overfitting problem, which
keeps the model simple and constrains the characteristics of
the model. Concretely, the regularization term is defined as
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follows:

J5(U1,U2,W1,W2,Z ,V)=‖U1‖
2
F+‖U2‖

2
F+‖W1‖

2
F

+‖W2‖
2
F+‖Z‖

2
F+‖V‖

2
F . (7)

Based on the above illustration, the final objective function
of SMFH-QL is as follows:

argmin J = λJ1 + βJ2 + µJ3 + αJ4 + γ J5, (8)

subject to H ∈ {−1, 1}l×n, where λ, β, µ, α, γ are the
trade-off coefficients. A detailed definition of Eq. (8) is given
by the following:

J = µ
∥∥∥T − ZTH∥∥∥2

F
+ α ‖H − V‖2F

+ λ ‖φ (X)− U1V‖2F + λ ‖φ (Y )− U2V‖2F
+β ‖V −W1φ (X)‖2F + β ‖V −W2φ (Y )‖2F
+ γRe (U1,U2,W1,W2,V ,Z ) , (9)

subject to H ∈ {−1, 1}l×n. The objective function for
SMFH-QL is formulated to generate discriminative hash
codes by preserving the label consistency and distribution of
features. Therefore, our final aim is to optimize and minimize
Eq. (9).

B. OPTIMIZATION ALGORITHM OF THE PROPOSED
SMFH-QL
Eq. (9) is a nonconvex problem on matrix variables
U1,U2,W1,W2,V ,Z . Fortunately, the problem is convex
with respect to any one of the six matrix variables if the other
variables are fixed [43]. Therefore, an iterative optimization
strategy is adopted to approach the optimal solution gradu-
ally. We adopt this strategy to optimize the objective function
of SMFH-QL. Then the optimization problem in Eq. (9) can
be solved by updating the following steps iteratively.
Step 1: Updating U1. Fixing U2,W1,W2,V ,Z , we learn
basic matrices U1 as below:

min
U1
λ ‖φ (X)− U1V‖2F + γ ‖U1‖

2
F . (10)

Let ∂J
∂U1
= 0; we then have

U1 = λφ (X)V T
(
λVV T

+ γ I
)−1

. (11)

Step 2: Updating U2. Similarly, we can obtain

U2 = λφ (Y )V T
(
λVV T

+ γ I
)−1

. (12)

Step 3: Updating W1. Fixing U1,U2,W2,V ,Z , we learn
mapping matricesW1 as follows:

min
W1

β ‖V −W1φ (X)‖2F + γ ‖W1‖
2
F . (13)

Let ∂J
∂W1
= 0; we then have

W1 = βV (φ (X))T
(
βφ (X) (φ (X))T + γ I

)−1
. (14)

Step 4: UpdatingW2. Similarly, we can obtain

W2 = βV (φ (Y ))T
(
βφ (Y ) (φ (Y ))T + γ I

)−1
. (15)

Step 5: Updating Z . Fixing U1,U2,W1,W2,V , the opti-
mization for projection matrix Z is:

min
Z
µ

∥∥∥T − ZTH∥∥∥2
F
+ γ ‖Z‖2F . (16)

Let ∂J
∂Z = 0; we then have

Z =
(
µHHT

+ γ I
)−1

µHT T . (17)

Step 6: Updating V . Fixing U1,U2,W1,W2,Z and setting
∂J
∂V = 0, we have

V =
[
λ(U1)

TU1 + λ(U2)
TU2 + (α + 2β) I

]−1
×

[
λ(U1)

Tφ (X)+ λ(U2)
Tφ (Y )

+βW1φ (X)+ βW2φ (Y )+ αH

]
. (18)

Step 7: UpdatingH . The hash codeH is optimized by fixing
other variables as follows:

min
H
µ

∥∥∥T − ZTH∥∥∥2
F
+ α ‖H − V‖2F , (19)

subject to H ∈ {−1, 1}l×n. The two terms in Eq. (19) are
expanded into the following two formulas:∥∥∥T − ZTH∥∥∥2

F
= tr

(
T TT

)
− 2tr

(
T TZTH

)
+ tr

(
HTZZTH

)
= const1− 2tr

(
T TZTH

)
, (20)

and

‖H − V‖2F = tr
(
HTH

)
− 2tr

(
V TH

)
+ tr

(
V TV

)
= const2− 2tr

(
V TH

)
, (21)

where tr( • ) is the trace of the matrix and

const1 = tr
(
T TT

)
+ tr

(
HTZZTH

)
,

const2 = tr
(
HTH

)
+ tr

(
V TV

)
.

Updating H by fixing the other variables, we regard const1
and const2 as constants. By combining Eq. (18) and Eq. (19),
we see that Eq. (20) is equivalent to the following problems:

min
H
−µtr

(
T TZTH

)
− αtr

(
V TH

)
, (22)

subject toH ∈ {−1, 1}l×n. Therefore, we can obtain the final
closed-form solution for H , i.e.,

H = sign (αV + µZT ) , (23)

where sign (·) is the element-wise sign function. According to
Eq. (23), we can directly obtain a closed-form solution forH .
The optimization strategy can discretely generate all bits of
the hash code via the class label and common representation.
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Here, SMFH-QL avoids the large quantitative loss suffered by
relaxation and reduces the time consumption of a bit-by-bit
optimization scheme. Meanwhile, the discrete optimization
strategy accelerates the training process.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, we theoretically analyze the computational
complexity of SMFH-QL. Suppose that d = {d1, d2} is the
feature dimension of the modalities and c, l, n and w are
the length of the class label, the length of the hash codes,
the number of training instances, and the number of iterations,
respectively. The computational complexity of each step of
the optimization process for SMFH-QL is shown in Table 3.
During the training of the SMFH-QL algorithm, because
l, d, c � n, the overall computational complexity is O (nw).
In the query procedure, the computational complexity of
SMFH-QL is O (dl), which is also linear with respect to
the query complexity of the proposed method. In summary,
SMFH-QL is highly scalable for large-scale datasets due to
the linear training complexity and query complexity.

TABLE 3. The detailed computational complexity of SMFH-QL.

D. OUT-OF-SAMPLE EXTENSION
For a new query instance x or y, its corresponding hash
codes b can be generated by the trained mapping matrices
W1, W2. We can obtain the hash functions h (x) and h (y)
for out-of-sample extension: b = h (x) = sign (W1x) and
b = h (y) = sign (W2y).

IV. EXPERIMENTS
To demonstrate the effectiveness of SMFH-QL, we conduct
extensive experiments on three widely used datasets. First,
we introduce the three representative datasets and the evalua-
tion and comparison methods. Then, we perform comparative
experiments using SMFH-QL and other methods. Finally,
to further validate the efficacy of SMFH-QL, we evaluate the
experiments via empirical analysis, including convergence
analysis, training time results and parameter analysis.

A. DATASETS
We evaluate the SMFH-QL on the three representative
image-text search datasets: Wiki, MIRFLICKR-25K and
NUS-WIDE. The details of the three datasets are shown
in Table 4.
• Wiki [46]: This dataset consists of 2,866 image-text
pairs fromWikipedia. Each instance contains ten topics,

TABLE 4. The details of the three evaluated datasets.

such as warfare, art, and sky, and each sample is an
image-text pair. Each image is represented as a 128-D
SIFT feature vector, and each text is represented by a
10-D LDA topics vector. Following the experimental
protocol in SePH [39] and DLFH [30], we randomly
select 2173 pairs as a training set and the rest as the query
set.

• MIRFILCKR-25K [47]: The dataset contains approx-
imately 25K instances, and each image is annotated by
several user-assigned tags selected from 24 labels. Each
image is represented as a 512-dimension GIST feature
vector. Each text is represented by a 1386-D BOW vec-
tor. Following the experimental protocol, we randomly
sample 5000 instances as the training set and select
2000 instances as the query set.

• NUS-WIDE [48]: This dataset contains approximately
270K images with annotated tags from 81 semantic
concepts. Following DLFH, we choose the 10 most
frequent concepts consisting of 186,577 images as the
experimental data. Each image is a 500-D bag-of-visual
words (BOVW) vector, and each text is represented as a
1000-D BOW vector.

B. EVALUATION METRIC
The mean Average Precision (mAP) is a common evaluation
metric. The mAP is the mean of the average precision (AP),
and the AP of the top R instances is defined as:

AP(q) =
1
L

R∑
r=1

Pq(r)ξ (r), (24)

where q is a query instance, R is the number of instances
and N is the number of queries. L is the number of relevant
instances in the retrieved set, andP(r) represents the precision
of the top r retrieved instances. ξ (r) is an indicator function,
and ξ (r) = 1 if the rth instance is relevant to the query and
ξ (r) = 0 otherwise. Therefore, mAP can be computed by:

mAP =
1
N

N∑
i=1

AP(qi), (25)

where R is the size of the query set in the following experi-
ments.

Moreover, we adopt two other criteria, i.e., the
Precision-Recall curve and topN-Precision curve [49], which
are frequently used in image-text searches.
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C. BASELINE METHODS AND EXPERIMENTAL SETUP
Our method is compared against several state-of-the-art hash-
ing methods: LSSH, CMFH, SMFH, SCM-seq, DCH and
LCMFH. The first two are unsupervised methods and the last
four are supervised methods.
• LSSH [36] extracts an image representation via sparse
coding and a text representation via matrix factorization
and conducts unified optimization of the objective func-
tion by means of hash code learning.

• CMFH [37] learns a unified hash code via matrix factor-
ization with a latent factor model, which can decompose
the characteristics of different modes of samples into the
same space.

• SMFH [42] constructs a similarity matrix with class
label information to strengthen the constraint of data
similarity between modalities based on the CMFH
method.

• SCM-seq [40] utilizes the label information of
samples to maximize the semantic correlation between
modalities and proposes two learning models as opti-
mization algorithms. In this paper, we adopt the supe-
rior approach SCM-seq, which implements sequential
learning.

• DCH [41] directly generates discriminative hash
codes via discrete coordinate descent and then learns
modality-specific hash functions based on the learned
binary codes.

• LCMFH [43] directly guides the procedure of hash
function learning based on the semantic labels of the
training data. Therefore, LCMFH avoids the construc-
tion of a pairwise similarity matrix, which reduces the
number of calculations.

• SMFH-NQL is a version of SMFH-QL that lacks a
quantitative loss function term, i.e., α = 0 in Eq. (9).
Here, SMFH-NQL is used to demonstrate the influence
of quantitative loss and the retrieval performance of the
proposed SMFH-QL. For fairness, we adopt the same
parameters used for SMFH-QL.

To validate the superiority of SMFH-QL, several state-of-
the-art hashing methods are used for comparisons, including
unsupervised hashing (LSSH, CMFH), supervised nonma-
trix factorization hashing (SCM-seq, DCH) and supervised
matrix factorization (SMFH, LCMFH). The source codes of
the baseline methods were kindly provided by the authors.
All parameters in their objective functions are set according
to their original papers.

All baseline methods and our SMFH-QL are implemented
in MATLAB (64 bit). We perform two image-text search
tasks: I→T and T→I. I→T task represents image retrieval
from relevant texts, and T→I utilizes text querying of relevant
images. The experiments are conducted on a personal com-
puter with an Intel (R) Core (TM) CPU i7-8550U@1.80 GHz
and 8 GB RAM and 64-bit Windows 10 operating
system.

D. RESULTS AND DISCUSSION
1) ASSSESSMENT OF SMFH-QL’S QUALITY ON WIKI
The first experiment compares the baseline approaches
and SMFH-QL on the Wiki dataset. The parameters
{λ, β, α, µ, γ } for Eq. (9) are {0.5, 10, 10, 10000, 0.1}. The
mAP values of all methods onWiki are shown in Table 5. The
Precision-Recall curves and the topN-precision curves for all
compared methods are plotted in Fig. 2 and 3, respectively.

FIGURE 2. Precision-Recall curves on Wiki dataset when the hash code
length is set to 32 bits or 64 bits.

FIGURE 3. topN-Precision curves on Wiki dataset when the number of
hash bits is 32 or 64.

From Table 5, we have the following observations:
(1) SMFH-QL achieves the best results, which confirms the
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TABLE 5. The mAP results on Wiki, MIRFLICKR-25K and NUS-WIDE datasets with different hash code length.

efficiency of the proposed algorithm. (2) The mAP values of
LCMFH, DCH and SMFH-QL are much better than those
of the other baseline methods because generating hash codes
directly from the class label matrix improves the performance
of hashing-basedmethods. SMFH-QL again achieves the best
results, followed by DCH, possibly because it introduces a
quantization loss term, which can learn discriminative com-
mon representation via the generated hash code. (3) As the
hash code length increases, the performance of SMFH-QL
improves, which indicates that longer hash codes embedmore
semantic information. (4) The mAP values of most algo-
rithms are better in T→I than in I→T because the features of
the text modality can better express the semantic information
from an original instance. (5) SMFH-NQL achieves much
worse mAP scores than the proposed SMFH-QL because the
quantitative loss term is not included in SMFH-QL, which
leads to large quantization error. These experimental results
illustrate the importance of the quantitative loss term and
demonstrate the effectiveness of SMFH-QL.

The Precision-Recall curves and the topN-Precision curves
on the Wiki dataset are shown in Figures 2 and 3 from
16 bits to 128 bits, respectively. We make the following
observations from Fig. 2 and 3. (1) SMFH-QL has the highest
precision in image-text searching, which is consistent with
the mAP results. (2) SMFH-QL achieves higher precision
than SMFH-NQL because of the missing quantitative loss
term, which further confirms that our proposed algorithm is
superior.

2) ASSESSMENT OF SMFH-QL’S QUALITY ON
MIRFLICKR-25K
In this part, we conduct the same experiments as those for the
Wiki onMIRFLICKR-25K, where the length of the hash code
is 16, 32, 64, and 128 bits. The parameters {λ, β, α, µ, γ } for
Eq. (9) are {0.5, 10, 100, 1000, 0.1} on MIRFLICKR-25K.
The mAP scores of SMFH-QL and the baseline methods
are reported in Table 5. From Table 5, we can observe the

following results: (1) SMFH-QL outperforms the other meth-
ods in terms of mAP on MIRFLICKR-25K, confirming that
our proposed algorithm is effective for large-scale datasets.
(2) As the hash code length increases, the mAP values of
all comparison methods increase because the longer the
code length is, the more semantic information the hash code
contains. (3) The results of I→T and T→I differ greatly on
Wiki, whereas they are similar on MIRFLICKR-25K. There
are two reasons for this observation. First, the quality of
images onWiki is poor, and the correlation with semantic tags
is inferior. By contrast, the text on Wiki is well edited at the
beginning of collection and more tag relevant. Second, there
are 25k images on MIRFLICKR-25K with a corresponding
tag and annotation attached to each image, which greatly
reduces the semantic gap of heterogeneous data and results
in inferior retrieval performance.

The Precision-Recall curves and the topN-Precision curves
are illustrated in Fig. 4 and 5, respectively. Clearly,
SMFH-QL achieves the best results, consistent with the mAP
values. In addition, all methods have higher precision on
MIRFLICKR-25K than on Wiki because the semantic gap
is much smaller for MIRFLICKR-25K. Finally, SMFH-QL
achieves higher precision than SMFH-NQL, which confirms
the influence of the quantitative loss term and the effective-
ness of SMFH-QL.

3) ASSESMENT OF SMFH-QL’S QUALITY ON NUS-WIDE
In this part, we compare SMFH-QL and other methods on
the NUS-WIDE dataset. The parameters {λ, β, α, µ, γ } for
Eq. (9) are {0.5, 10, 100, 1000, 0.1}. Table 5 shows the mAP
values of all baseline methods on NUS-WIDE. Fig. 6 and 7
plot the Precision-Recall curves and the topN-Precision
curves for all methods, respectively. According to the experi-
mental results from Table 5 and Fig. 6 and 7, the proposed
SMFH-QL outperforms the other methods in image-text
search tasks because SMFH-QL introduces a quantiza-
tion loss function term to constrain the objective function,
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FIGURE 4. Precision-Recall curves on MIRFLICKR-25K dataset when the
hash code length is set to 32 bits or 64 bits.

FIGURE 5. topN-Precision curves on MIRFLICKR-25K dataset when the
number of hash bits is 32 or 64.

which yields a closer correlation between the shared semantic
representation and hash codes. In addition, SMFH-NQL per-
forms much worse than SMFH-QL, which is consistent with
evaluation ofWiki andMRIFLICKR-25K. These experimen-
tal results demonstrate the superior retrieval performance of
SMFH-QL.

4) EVALUATION OF THE QUANTITATIVE LOSS TERM
The parameter µ controls the importance of label consis-
tency and hash codes, α influences the quantitative loss
function term, and β influences the performance of the
learning hash function. Here, we analyze the effect of the

FIGURE 6. Precision-Recall curves on NUS-WIDE dataset when the hash
code length is set to 32 bits or 64 bits.

FIGURE 7. topN-Precision curves on NUS-WIDE dataset when the number
of hash bits is 32 or 64.

quantization loss term on generating hash code and learning
the hash function during the training procedure. After fixing
the code length to 64 bits, we vary α ∈ {0, 0.1, 1, 10,
1e2, 1e3, 1e4}, µ ∈ {0, 1, 10, 1e2, 1e3, 1e4, 1e5} and β ∈
{0, 0.01, 0.1, 1, 10, 1e2, 1e3}. Then, we assess α and µ, α
and β on two retrieval tasks on the three benchmark datasets.
The six subfigures in Fig. 8 illustrate themAP values on the

two retrieval tasks with the different settings of α and µ on
the three image-text datasets. The results shown in Fig. 8 yield
the following observations.

Observation 1: Performance onWiki. (1) SMFH-QL can
achieve stable performance when α varies in [10,1e4] and
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FIGURE 8. Performance variation for mAP with respect to α and
µ @ 64 bits on the three datastes.

µ varies in [1e3,1e5]. (2) When α is excessively small,
e.g., α is in [0,1], the mAP scores of SMFH-QL deteriorate
because the learned hash codes do not consider the common
latent features, which makes the hash function poor. When
α is excessively large, e.g., α is in [1e3,1e4], the mAP scores
of SMFH-QL start to decline because the learned hash codes
consider more common latent features, which makes the
hash function imprecise. Therefore, a suitable score for α
can decide the range of µ. (3) In addition, when α is in
[1,100], SMFH-QL achieves the best performance on the
three datasets for µ in [1e3,1e4]. Thus, as for Wiki, if the
value of α is excessively large or small, it can affect the value
of µ, which prevents the generated hash codes from learn-
ing a discriminative common feature representation. In addi-
tion, the imprecise common feature representation worsens
the to-be-learned hash function and ultimately degrades the
image-text search performance.

Observation 2: Performance on MIRFLICKR-25K.
(1) For α = 0, the mAP values are the worst result on
both retrieval tasks, regardless of the value of µ. The main
reason is that SMFH-QL can only learn the hash function
from the common feature representation obtained by matrix
factorization of the original image-text data. Thus, in this
case, the label information does not effect common feature
representation, which makes the to-be-learned hash func-
tion weak and consequently affects the efficiency of the

image-text search. (2) When the values of α vary in the
range of [1e3, 1e4], the mAP values corresponding to µ are
unstable. (3) When the value of α is in [10,100], SMFH-QL
achieves the best performance on the three datasets for µ in
[1e3,1e4].

Observation 3: Performance on NUS-WIDE. Similarly,
the same observations can be found on NUS-WIDE. Thus,
the quantitative loss term has a substantial effect on the
classification loss term, which demonstrates the importance
of the quantitative loss function term.

The six subfigures in Fig. 9 illustrate the mAP scores in the
two retrieval tasks under different settings of α and β on the
three benchmark datasets. From Fig. 9, we have the following
observations. (1)When α is in the range of [0,1], the results of
mAP corresponding to parameter β are sensitive and unstable
for the three datasets. For α = 0, the mAP corresponding to
β achieves the worst scores because the generated hash code
cannot be associated with common feature representation.
That is, the label information does not guide the process
of learning the hash function, which impacts the retrieval
performance. (2) From Figure 8, except for Wiki, if α is in
the range of [1e3,1e4], the mAP corresponding to β obtains
worse scores when α is in [0,1]. One potential reason is that
the quantitative loss term generates a large value of matrix V ,
which leads to redundant features in label information during
learning of the hash function. (3) Another phenomenon is

FIGURE 9. Performance variation for mAP with respect to α and
β @ 64 bits on the three datastes.
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that the mAP of β in the range of [10,100] can obtain the
best scores when the values of α is in the range of [10,100],
i.e., SMFH-QL achieves optimal performance.

In summary, the quantitative loss function term establishes
similarity correlation of hash codes H and common feature
representation V , resulting in learning of a better discrimina-
tive hash function during the training procedure. In light of
the aforementioned analysis, we confirm that the quantitative
loss term yields a close connection between the classification
loss term and the hash function term; i.e., the label infor-
mation indirectly guides the procedure of learning the hash
function. Finally, Fig. 8 and 9 directly verify the importance
of the quantitative loss term and indirectly demonstrate the
effectiveness of SMFH-QL in image-text searching.

E. EMPIRICAL ANALYSIS
In the previous section, we conducted extensive experiments
on the three datasets and employed three most common
evaluation metrics, i.e., mAP, Precision-Recall curve and
topN-Precision curve. In this section, we perform an empiri-
cal analysis to validate the retrieval performance of the pro-
posed SMFH-QL algorithm.

1) CONVERGENCE ANALYSIS
The objective function of SMFH-QL is optimized via an
iterative strategy in Algorithm 1. The convergence rate of this
strategy is significant for the retrieval performance of SMFH-
QL. Hence, we perform additional experiments on the same
three datasets with the length of hash code fixed to 64 bits.
The convergence curves are shown in Fig. 10. According to
Figure 10, the following observations can be obtained.

Algorithm 1 SMFH-QL Training Procedure
Input:

Feature matrices X , Y , semantic label matrix T , parame-
ters λ,µ, α, β, γ , number of iterations w;

Output:
Hash code matrix H , mapping matricesW1,W2;

1: Randomly initialize H ,Z ,U1,U2,W1,W2;
2: Randomly select anchor point sets in image-text modal-

ity;
3: for j = 1 to w do
4: CalculateU1,U2 using Eq. (11), Eq. (12), respectively;

5: Calculate W1, W2 using Eq. (14), Eq. (15), respec-
tively;

6: Calculate Z using Eq. (17);
7: Calculate V using Eq. (18);
8: Calculate H using Eq. (23);
9: end for

10: return H , W1, W2;

(1) We conduct 100 iterations for convergence on theWiki,
MIRFLICKR-25K and NUS-WIDE datasets, respectively.
The objective function values of SMFH-QL converge in

FIGURE 10. Convergence curves on Wiki, MIRFLICKR-25K and NUS-WIDE
datasets when the hash code length is set to 64 bits.(a) Wiki.
(b) MIRFLICKR-25K. (c) NUS-WIDE.

approximately 10 iterations, which guarantees the effective-
ness of the proposed method. (2) For Wiki and NUS-WIDE,
the objective function values for SMFH-QL decrease faster,
indicating that the proposed method has better convergence
on these datasets.

2) TRAINING TIME ANALYSIS
To demonstrate the efficiency of SMFH-QL on large-scale
datasets, we analyze and compare the training time (in sec-
onds) of all comparison methods with different code lengths
on MIRFLICKR-25K and NUS-WIDE. The experimental
results are shown in Tables 6 and 7. For all comparison
approaches, the training time includes the time for learning
the hash function and hash code.

TABLE 6. Training time comparison on MIRFLICKR-25K (in seconds) with
code from 16 bits to 128 bits.

(1) As shown in Table 6, LSSH takes the most time in dif-
ferent bits during the training procedure. SCM-seq consumes
more and more time as the code length increases. CMFH and
SMFH require less time than LSSH and SCM-seq but much
more time than DCH, LCMFH,SMFH-NQL and SMFH-QL
because these four methods directly guide the hash code or
hash function procedure based on the semantic label, thereby
avoiding the construction of pairwise similarity matrices that
requires a large quantity of calculation.
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TABLE 7. Training time comparison on NUS-WIDE (in seconds) with code
from 16 bits to 128 bits.

(2) From Table 7, we see that LSSH, CMFH, SMFH,
and SCM-seq require much more training time than DCH,
LCMFH,SMFH-NQL and SMFH-QL. Additionally, the lat-
ter four methods have similar training times, which is the
same as the results for MIRFLICKR-25K. Besides, LCMFH
has achieved the best reesults than other methods. However,
in summary, SMFH-QL possesses the best retrieval perfor-
mance when keeping similar computational efficiency than
several state-of-the-art hashing-based image-text methods.

3) PARAMETER ANALYSIS
In the previous experiments, we empirically set all values of
parameters based on three datasets. In this section, we con-
duct confirmatory experiments to demonstrate the influence
of changing parameters λ, β, α, µ, γ on the proposed SMFH-
QL. All parameter experiments are completed on the same
three datasets with 64 bit hash codes, where ‘‘I→T’’ and
‘‘I→T’’ denote querying text by image and querying image
by text, respectively. As shown in Fig. 11, we have the fol-
lowing observations.
• Parameter λ controls the influence of image-text
modalities during the procedure of matrix factorization.
We consider that the original image-text data play an
identical role in matrix decomposition and keep com-
mon importance in SMFH-QL. Therefore, we set the
value λ = 0.5 without concrete analysis.

• Parameter β influences the performance of learning the
hash function term. From Fig. 11, it can be observed that
SMFH-QL achieves the best results when β = 10 on the
three datasets.

• Parameter µ controls the importance of label consis-
tency and the generated hash codes in the final objective
function. If µ is too small, it cannot make full use
of label information to generate a discriminative hash
code, which reduces the performance of SMFH-QL.
If the value of µ is too large, the redundant features in
the label matrix will be brought into the procedure of
learning the hash code, reducing the quality of the hash
code. Fig. 11 illustrates that SMFH-QL achieves the best
results when µ = 10000 on Wiki and when µ is 1000 on
MIRFLICKR-25K and NUS-WIDE.

• Parameter α influences the quantitative loss func-
tion term. If µ is too small or large, it degrades
the performance of SMFH-QL. The main reason is

FIGURE 11. Parameter analysis curves on the three datasets when the
hash code length is set to 64 bits.

that the common semantic representation V cannot be
accurately represented via the learned binary code H .
Therefore, we obtain α = 10 on Wiki and α = 100 on
MIRFLICKR-25K and NUS-WIDE based on Fig. 11.

• Parameter γ controls the weight of the regularization
term. Thus, when the value of γ is too small, the effect of
the regularization termwill be reduced, which makes the
training process of SMFH-QL overfitted. By contrast,
when γ is too small, underfitting may occur. In addition,
Fig. 11 shows that the mAP of SMFH-QL remains
stable on MIRFLICKR-25K and NUS-WIDE but tends
to decline onWiki when γ is more than 0.1. One possible
reason is that the training sets in Wiki are small, which
results in overfitting.

From Fig. 11, we observe that α ∈ [10, 1000], β ∈
[10, 1000], µ ∈ [0.01, 10], and γ ∈ [0.001, 1] are insensi-
tive, and SMFH-QL achieves satisfactory results with a wide
range of parameter values.

V. CONCLUSION
In this paper, we propose a novel discrete supervised matrix
factorization hashing-based method for image-text search-
ing. The proposed SMFH-QL can learn discriminative hash
codes because of two contributions: (1) it directly generates
hash codes and a common feature representation by employ-
ing semantic class and matrix factorization, respectively;
(2) it constructs a strong similarity correlation between the
common feature representation and hash codes when per-
forming quantization. Extensive experiments on three widely
used benchmark datasets demonstrate that SMFH-QL sub-
stantially outperforms several state-of-the-art hashing-based
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image-text search methods. In future work, we plan to inte-
grate the proposed SMFH-QL with manifold embedding
learning to capture the real local structure in the original
image-text data, which can be used to generate more compact
hash codes.
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