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ABSTRACT Nowadays, the use of electronic tickets in public transport is a reality. Several mobile
phone-based e-ticket systems have been proposed so far. Even so, very few of them include reusability in the
sense that a single e-ticket allows to make several journeys. Although the identity of users is usually hidden
behind a pseudonym, the existing proposals providing reusability allow the system to link all the journeys
made with a given e-ticket. In this paper we present a privacy-preserving construction allowing to endow
a mobile phone-based e-ticket system with reusability. The privacy of users is proven to be preserved even
assuming an internal attacker with full access to all the information managed by the system servers. All the
sensitive interactions of a user with the system keep anonymous and unlinkable. Further, as a result of an
inspection, the system is only able to determine whether the inspected user is allowed to make the current
journey.

INDEX TERMS Cryptographic protocols, data privacy, information security, intelligent transportation
systems, mobile communication.

I. INTRODUCTION
In 1662, the first bus service was deployed in Paris with seven
horse-drawn vehicles running along regular routes [1]. Since
then, public transport systems have evolved continuously.
In the digital era, the world-wide deployment of Internet
together with the popularization of mobile phones have set
the basis for the development of advanced technology for the
management of public transport. As a very relevant example,
we mention the replacement of paper tickets with electronic
ones (e-tickets).
Big data is a branch of computer science focused on the

collection, storage, processing, and analysis of large amounts
of data that frequently originate from disparate sources [2].
The collection and analysis of data about public transport
allows to optimize the number of vehicles available in each
time frame, anticipate an excess or lack of service due to
exceptional events, or modify the routes adapting them to the
dynamics of the city.

From the data privacy point of view, an accurate analysis
of data about the particular way in which a person uses public
transport allows to infer personal information such as her
work schedule, hobbies, or even health problems. Legislation,
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like the EU General Data Protection Regulation [3], protects
citizens from the non-authorized processing of personal data
collected by any organization. Nevertheless, legislation can
not protect people against processing of data with unlawful
purposes in situations in which data has been stolen as a
result of a cyberattack or after being leaked by an internal
dishonest employee. So as to reduce such risks, companies
should guarantee that the information they collect is restricted
to that strictly necessary to provide the service requested by
their customers. In the particular case of public transport
e-tickets, the information managed by a ticket issuer must
not allow to trace the way a specific citizen uses public
transport.

A. E-TICKET SYSTEMS
A ticket is defined as ‘‘a small piece of paper or card given
to someone, usually to show that they have paid for an
event, journey, or activity’’ [4]. The definition for e-ticket is
‘‘a ticket, usually for someone to travel on an aircraft, that is
held on a computer and is not printed on paper’’ [4].

Many e-ticket systems [5]–[9] consider a system model
composed of three actors in which usersmake use of a service
offered by a service provider through an e-ticket generated
and managed by the ticket issuer. The service provider and
ticket issuer roles may be taken by the same entity.
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There exist proposals in which e-tickets can be used ano-
nymously [6]–[8], [10]–[15]. Some of them [6], [8], [11],
[13], [15] include a trusted third party responsible for man-
aging anonymity, whereas in other proposals [7], [10], [12],
[14] anonymity is managed by the ticket issuer itself. Addi-
tionally, there may exist the so-called inspection authorities
responsible for face-to-face checks [16].

Most proposals agree upon the existence of the following
three main phases along the lifetime of an e-ticket [17]:

1) Payment: the user pays for the required service;
2) Issuance: the ticket issuer, after receiving an appropri-

ate payment, generates an e-ticket that is provided to
the user;

3) Validation: before granting the user with access to the
service, the service provider verifies the validity of the
presented e-ticket.

Some proposals consider payment and issuance as being
part of the same phase [10], [12], [18], [19], whereas some
others include an anonymity revocation procedure which
allows to determine the identity of users who have acted
fraudulently [6], [7], [10]–[14]. An additional random inspec-
tion process performed by inspection authorities is also con-
sidered in some proposal [16].

An e-ticket system must guarantee, or at least con-
sider, the security and privacy requirements enumerated in
Table 1 [17]. Reusability allows an e-ticket to be used for
several journeys during a period of time.

TABLE 1. Security and privacy requirements for e-ticket systems.

Along this paper, the word ’journey’ will usually refer to an
‘elementary journey’ in which a user travels from a starting
to a destination station with no transfers.

Reusability is specially useful in cities providing several
means of transport such as bus, tram, train, or underground.
Citizens and tourists benefit from a great flexibility for plan-
ning their journeys inside the city.

The system must allow to check that an e-ticket has not
expired, or that its maximum amount of elementary journeys
has not been exceeded. In both cases, fraudulent uses must be
detectable [17].

B. RELATED WORK
There exist plenty of proposals of e-ticket systems in the
literature. Most of them do not consider the possibility to
do transfers [10]–[12], [14], [16], [18]–[22], but implement
mechanisms allowing clients to purchase and validate
e-tickets anonymously. Specifically, the proposals [14],
[19], [22] make use of pseudonyms so that the system
can not link an e-ticket to the identity of the user who
acquired it. Other proposals provide anonymity by means
of alternative techniques [10]–[12], [18], [20], [21]. In case
of fraudulent behavior, some proposals allow anonymity
revocation [10]–[12], [14].

The proposal in [16] is the only one including the possi-
bility of carrying out random inspections. An inspector can
require a user to prove that she is the owner of the inspected
e-ticket. At this moment the system is able to link the identity
of the user to the e-ticket and get all the information about his
journey (like the starting station).

There exist a few proposals allowing transfers so that the
rider of a public transport vehicle can continue the trip on
another bus or train [7], [15], [23]. In particular [7], [15]
include revocable anonymity. They were both designed so as
to be implemented on mobile devices. Some proposals limit
the amount of transfers, whereas others allow an unlimited
amount within a certain period of time.

Systems limiting the number of transfers usually imple-
ment a mechanism in which an e-ticket includes a hash chain
whose size depends on the maximum number of allowed
transfers. In this way, if T journeys are allowed, a T-element
hash chain {chaink}1≤k≤T is generated so that chaink−1 =
H(chaink ), with chainT being a random number.When begin-
ning the i-th journey, the user is asked to provide chaini.
To the best of our knowledge, no previous proposal allow-

ing a limited amount of transfers includes the possibility of
carrying out random inspections. In such a case, when a user
identified herself and proved that she is the owner of the
e-ticket, the system would be able to link her identity with all
the journeys made with the inspected ticket. In our opinion,
the system should only be able to determine whether the
inspected user is authorized to make the current journey with
the provided ticket.

C. CONTRIBUTION AND PLAN OF THIS PAPER
This paper proposes a construction to endow an existing
e-ticket system with reusability so that a limited number of
transfers can be done before an expiration time set at the
moment of ticket validation.

Our proposal aims to be an extension, or plug-in, that can
be coupled to any existing privacy-enabled ticketing system.
After the purchase and validation of an e-ticket of the under-
lying system, the plug-in proceeds by generating a chain of
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travel tokens. These travel tokens are presented sequentially
each time the user starts a new (elementary) journey at the
beginning of her journey or after doing a transfer.

Regarding data privacy, the construction guarantees
anonymity and unlinkability among all the journeys made
with a given e-ticket, even after an inspection. This is themain
contribution of the paper.

The proposal has been designed in order to be run on smart
phones and get amobile application similar to that used in the
Iceland public transport system [24], but including privacy
guarantees for users.

The paper has been structured in the following way.
Section II introduces the cryptographic tools employed in
the design of our solution. Section III explains the system
and adversary models together with an enumeration of the
privacy requirements. Section IV describes the new construc-
tion whereas Section V analyzes its privacy and security.
Section VI shows the performance results obtained from a
prototype implementation. Finally, Section VII concludes the
paper.

II. PRELIMINARIES
The following section briefly reviews the cryptographic prim-
itives and tools used in the design of our proposal. It also
introduces the formal notation employed along the paper.

A. HASH AND HMAC FUNCTIONS
A hash function, H, is a cryptographic one-way function
that receives an arbitrary message, M , as input, and returns
a fixed-length digest of M as output [25]. Such digests are
recommended to be between 160 and 512 bit long.

It must be computationally hard to find two different
messages, M 6= M ′, such that H(M ) = H(M ′). Given a
bitstring m, it must also be computationally hard to find a
message M such that m = H(M ).

A keyed hash function, HMAC , is a keyed cryptographic
one-way function. Given amessageM and a keyK , we denote
the resulting digest as HMACK (M ). The relation between a
message M and its HMAC digest can only be determined if
key K is known [26].

B. DIGITAL SIGNATURES
A digital signature is a cryptographic scheme which demon-
strates the authenticity of a messageM transferred through an
insecure channel [27]. The scheme also guarantees integrity
in the sense that the message has not been modified after
being signed, and non-repudiation, i.e., the signer can not
deny having signed the message.

A signer, S, is required to own a private/public key pair.
Then, SignS (M ) denotes the resulting signature on mes-
sageM computed using signer’s private key. Such a signature
can be later validated using signer’s public key. Signatures
are usually computed over the hash digest of the message,
SignS (H(M )), so as to reduce its computational cost.

C. BLIND SIGNATURES
A blind signature [28] is computed by means of a protocol
run between Alice, who is in possession of a messageM , and
Bob, who is in possession of a key pair. As a result, Alice
obtains a signature by Bob on H(M ) in such a way that Bob
does not learn anything aboutH(M ). Such a protocol consists
of the following steps:

1) Alice selects a random blinding factor, r , and masks
H(M ) using r . The blinded result, Blindr (H(M )),
is sent to Bob.

2) Bob signs the blinded message using his private key.
The result is then returned to Alice.

3) Alice unblinds the received blinded signature obtaining
a signature on H(M ) by Bob, namely SignBob(H(M )).

The resulting signature can be validated by any party who
is in possession of Bob’s public key.

D. PARTIALLY BLIND SIGNATURES
Partially blind signature schemes [29] are an extension of
blind signature schemes. They allow a signer, Bob, to explic-
itly include necessary information (expiration date, collateral
conditions, or whatever) in the resulting signatures under
some agreement with the message owner, Alice.
Bob is required to own a private-public key pair. Bob and

Alice must agree with the information, Info, that will be
included in the signature computed on Alice’s message, M .
As a result of running a partially blind signature proto-

col, Alice obtains a digital signature by Bob on the digest
of her message, H(M ), together with the digest of the
agreed information, H(Info). This signature will be denoted
as PartialSignBob(H(M ),H(Info)). Bob gets no information
onH(M ).

E. RANGE PROOFS OF COMMITTED VALUES
A commitment scheme [30] is a cryptographic primitive
which allows one to commit to a chosen value while keeping
it hidden to others, with the ability to reveal the committed
value later. A commitment on E is computed from a random
parameter c, so that Commitc(E) denotes the resulting com-
mitment. The committed value is revealed by releasing the
parameter c.
Some commitment schemes [31] allow to prove in zero-

knowledge that a committed value lies in an interval [a, b].
Given Commitc(E), it is possible to prove in zero-knowledge
that a ≤ E ≤ b.

III. SYSTEM AND ADVERSARY MODELS
This section first describes the system and adversary models.
After that, the privacy requirements are detailed.

A. SYSTEM MODEL
Our system is composed of the following actors:
1) Mobile application or app. It runs on the mobile phone

of public transport users. It is used for e-ticket purchase
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and validation. Each time a user gets in a means of
transport (after an e-ticket validation or a transfer),
the mobile phone is to be approached to a hardware
device which will grant access. When a user gets out,
a similar operation is necessary for getting the data
needed for the next journey in case a transfer is to
be done. If a random inspection takes place, the user
will use the app to demonstrate the validity of her
ticket. The app also manages the so-called deposit
token, employed to force all users to run the ‘‘get-out’’
procedure at the end of each journey, even when they
are not going to do a transfer.

2) System server. This is a central server which manages
all the information of the e-ticket system. It is contacted
by the users’ app during the purchase and validation
of e-tickets. It is also accessed by transport system
proximity devices when users run the ‘‘get-in’’ and
‘‘get-out’’ procedures, including the management of
deposit tokens. Inspectors also access it when perform-
ing random inspections. It incorporates a database to
store data and avoid double spending frauds.

3) Transport system devices. Our proposal requires the
transport system provider to install a proximity reading
device at each entrance and exit.

• An entrance device is accessed by users when
getting in a transport system. It is responsible for
validating whether the data provided by a user
(a travel token) allows her to get in the transport
system. In that case, it grants access to the user and
provides her with data (an inspection token) that
will be requested if an inspection takes place.

• An exit device is accessed by users when leaving a
transport system. This access is mandatory for all
the users even if they are not going to do a transfer.
If not done, the user loses her deposit token.

Both devices need a permanent communication with
the system server.

4) Inspector. He is responsible for carrying out random
controls within the transport system. He verifies that
users are traveling with a valid inspection token. The
inspector uses a mobile device to that end.

The use cases are next summarized:

1) Server set-up. The system server is initialized. After
configuring the underlying e-ticket system, the plug-in
is also configured by setting some parameters like the
maximum amount of allowed transfers or the expiration
time. Several cryptographic keys are also created at this
moment.

2) Application set-up. Public transport users install and
configure the app in their mobile phones. Some per-
sonal data is requested at this stage.

3) E-ticket purchase. A user acquires, via app, e-tickets
of the underlying e-ticket system by following the
established procedure.

FIGURE 1. System model.

4) Deposit token generation. So as to force users to run the
‘‘get-out’’ procedure at the end of each journey, they
leave a deposit token during the ‘‘get-in’’ process, and
get a new (free of charge) one when they do ‘‘get-out’’.
If not done, the user loses her deposit token so that she
will have to pay for a new one. This procedure serves
to that end.

5) E-ticket activation. The app takes an e-ticket of the
underlying system and connects to the server so as to
activate it. After that, the plug-in generates a chain
of travel tokens. The user can now begin her jour-
ney by performing a ‘‘get-in’’ action using the first
travel token of the chain. So as to avoid tracing,
this procedure should be run through an anonymous
channel [32].

6) Get-in.When the user is to begin a new journey (after
activating an e-ticket or after doing a transfer), she is
required to approach her mobile phone to a proximity
device located at the entrance control of the trans-
port system. After the user provides a ready to be
used travel token and a valid deposit token, she will
receive an inspection token and will be granted access
to the transport system.Otherwise, the systemwill deny
access by means of a blocking barrier or a warning
sound.

7) Get-out. When leaving a transport system, a user is
required to approach her phone to a proximity device
similar to that accessed during the ‘‘get-in’’ procedure.
In this way, her next travel token becomes ready to
be used, and she obtains a new free of charge deposit
token.

8) Random inspection. An inspector requires a user to
prove she is allowed to make the current journey. The
user has to approach her mobile phone to inspector’s
and provide her inspection token. In case of infringe-
ment the user will be fined.
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B. ADVERSARY MODEL
We assume that all the cryptographic primitives have been set
so that an adversary can not perform successful brute-force
attacks against them. Regarding the capacity of an attacker:

1) An adversary can not corrupt the app. The app does not
leak any private information about users. It runs all the
protocols as specified.

2) The system server and the inspectors are honest–but–
curious entities. They run the protocols as specified, but
may collaborate with an adversary by releasing all the
information they have access to.

From the service provider point of view, users are untrusted
entities who may try to travel for free.

C. DESIGN OBJECTIVES
The privacy and security goals to be achieved by our proposal
are enumerated next:

1) While traveling, the interactions with the system
(except for those arising from an inspection carried out
by an inspector) performed by a user are anonymous
and unlinkable.

2) While traveling, a user is only required to identify her-
self if requested by an inspector. In such a case, the only
information obtained by the system is a boolean indi-
cating whether the identified user is allowed to make
the current journey.

3) Users traveling without a valid inspection token will
be detected if requested by an inspector. An inspection
token is valid when it is linked to user’s identity, and
has been issued for the current public transport trip.

Requirement 1 implies that the moments a user gets in and
out of a transport system can not be related. Also, the system
can not link the different journeys made by a user with one or
several e-tickets.

Requirement 2 determines that, as a result of an inspection,
the system can only obtain information inherent to the inspec-
tion itself. That is, it can associate a user with a specific time
and place. Any additional information, like the starting and
end stations can not be deduced.

Finally, Requirement 3 states that users can not travel
fraudulently. It is worth mentioning that an electronic e-ticket
system can not provide security against certain actions like
users getting in a transport system after jumping over the
access blocking barrier. Such users will be fined if requested
by an inspector.

IV. OUR PROPOSAL
A. SYSTEM OVERVIEW
Our proposal is designed as a plug-in to be coupled to an
existing e-ticket system. The underlying e-ticket system has
its own purchase and anonymity policies.

When a user starts a new journey (maybe composed of
several elementary journeys with the corresponding trans-
fers), she must activate an available e-ticket of the underlying
system. Just after that, the ‘‘travel token chain generation’’

procedure is run. During its execution, the plug-in generates a
travel token chain whose length equals the maximum amount
of elementary journeys allowed per e-ticket. When this pro-
cedure concludes, the first travel token of the chain is ready
to be used. These chained travel tokens are to be presented
sequentially at the beginning of each elementary journey.

Just before getting access to a transport system vehicle
or platform, the user performs a ‘‘get-in’’ operation during
which she is required to approximate her mobile phone to
an entrance control device and provide a travel token via
some proximity communication system. The entrance device,
by querying the central system server, determines whether
the provided travel token is ready to be used and checks
that it has not been used before. If the validation is correct,
the entrance device will generate, and send to the mobile
device, an inspection token which includes a trip identifier.
A trip identifier is a random value which uniquely identifies
each trip carried out by the transport system. The inspection
token will be required in case of inspection.

When a user leaves a platform or vehicle, she runs the ‘‘get-
out’’ procedure. Shemust then approximate her mobile phone
to an exit device in order to get her next travel token ready to
be used for the next elementary journey.

During a ‘‘random inspection’’, the user must provide the
inspection token she obtained when running the ‘‘get-in’’
procedure. That inspection token is linked to some piece of
personal information, such as her passport number or the hash
digest of a personal picture, which will be checked by the
inspector.

So as to avoid some fraudulent uses, our system requires
all the users to run the ‘‘get-out’’ procedure at the end of
each elementary journey even when they are not going to
do a transfer. That is achieved by making users provide a
deposit token during the execution of the ‘‘get-in’’ procedure
and obtaining a free of charge new one when running the
corresponding ‘‘get-out’’. If that is not done, the user loses her
deposit and will have to pay for a new one. The first deposit
token of each user is provided free of charge.

B. PRELIMINARY SETUP PROCEDURES
Next we describe two procedures related to system configura-
tion. The first one, ‘‘Server set-up’’, is run by the ticket issuer
so as to create and set the cryptographic keys and constants
required for the system to run. The other one, ‘‘Application
set-up’’, is run by users when installing the system app in their
mobile devices.

1) SERVER SET-UP
Before deploying the system, the ticket issuer:

1) Creates the following cryptographic keys:

• ‘‘Get-in’’ blind signature (see Sect. II-C) key pair:
PS in/VS in .

• ‘‘Get-out’’ blind signature key pair: PSout /VSout .
• ‘‘Deposit’’ blind signature key pair: PSd /VSd .
• ‘‘User token’’ blind signature key pair: PSu/VSu .
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• ‘‘Trip’’ partially blind signature (see Sect. II-D)
key pair: PS t /VS t .

The created public keys are: PS in ,PSout ,PSd ,PSu ,PS t .
The created private keys are: VS in ,VSout ,VSd ,VSu ,VS t .

2) Creates a tuple of setup parameters for a commitment-
scheme allowing zero-knowledge range proofs (see
Sect. II-E).

3) Sets and stores the following constants:
• T ≡ Maximum amount of journeys allowed per
e-ticket.

• TIME_ACTIVE ≡ Amount of minutes during
which an e-ticket is valid after its activation.

• TTend ≡ Random string.
• N ≡ Parameter which tunes the security level of
the cut-and-choose checking performed during the
generation of travel token chains.

The private keys VS in ,VSout ,VSd ,VSu ,VS t must be kept
secret by the ticket issuer which will make them available
only to the system server. The remaining parameters are made
public to all the actors.

2) APPLICATION SET-UP
A user has to install the application of the underlying e-ticket
system together with the extension plug-in on her mobile
phone. Then, she must introduce all the information required
by the underlying e-ticket system (credit card, etc). After
that, the extension plug-in will request some information that
identifies her unequivocally (like a picture or her passport
number) which will be stored in the IDuser object in her
phone. This information must allow an inspector to verify her
identity.

The app obtains a free of charge deposit token by running
the procedure described in Section IV-D1.

C. TRAVEL TOKEN CHAIN
After a ticket is activated, the system generates a chain com-
posed of T chained travel tokens, {TTi}0≤i<T, being T the
maximum amount of journeys (with the corresponding trans-
fers) that can be made with each e-ticket. Each travel token
in a given chain is assigned the same expiration time E and is
linked to the same masked user identity IDmasked (computed
as HMACKu (IDuser ) with Ku being a secret key).

1) STRUCTURE OF A TRAVEL TOKEN
A travel token is a tuple containing several public parameters
computed from a set of secret ones. The private parameters
are generated and kept secret by the app. The public ones
compose the travel token object, TTi.
• Private parameters of TTi:

– Ki: secret key used to re-mask the masked user
identity.

– ui: secret value for blinding the re-masked user
identity.

– ci: secret value for committing to the expiration
time.

– ti: secret value for blinding the link to the next travel
token of the chain.

• Public parameters of TTi:
– Ui: blinded re-masked user identity, namely
Blindui (H(HMACKi (IDmasked )),PSu ).

– Ci: commitment to the expiration time E , namely
Commitci (E).

– NextTTi: blinded link to the next travel token of the
chain, namely Blindti (H(TTi+1),PS in ).

• The chain is concluded by setting TTT = TTend.
A travel token TTi is said to be ready for use when it is

accompanied by two digital signatures under the ‘‘get-in’’
and ‘‘get-out’’ server key pairs, namely SignS in (H(TTi)) and
SignSout (H(TTi)). A ready for use travel token allows a user
to get access to a transport system.

2) GENERATION OF A TRAVEL TOKEN CHAIN
A travel token chain is generated by means of the following
procedure which takes as input and expiration time E and a
masked user identity IDmasked :
1) Set i = T− 1
2) While i ≥ 0 (generate TTi):

• Generate Ki, ui, ci, and ti at random and store them
secretly.

• Set Ui = Blindui (H(HMACKi (IDmasked )),PSu ).
• Compute Ci = Commitci (E).
• Compute NextTTi:
– if i < T− 1 then
NextTTi = Blindti (H(TTi+1),PS in ).

– if i = T− 1 then
NextTTi = Blindti (H(TTend),PS in ).

• Pack Ui, Ci and NextTTi into a tuple and name it
TTi.

• Let i = i− 1.
3) The resulting travel token chain is represented as a set

C = {TT0, . . . ,TTT−1}.

3) VALIDATION OF A TRAVEL TOKEN CHAIN
GivenH(TT0), the correct composition of a travel token chain
can be checked by requiring its generator to provide the input
parameters E and IDmasked together with all its private and
public parameters. The verifier can then repeat the construc-
tion process from TTT−1 down to TT0 and finally check that
the hash of the obtained token TT0 matchesH(TT0).

D. TRAVEL-RELATED PROCEDURES
The following section describes the protocols executed by
users while traveling in public transport.

1) DEPOSIT TOKEN GENERATION
When a user gets in a transport system, she has to provide a
deposit token. Later, when she gets out, she receives a new
one which is generated by means of the process described in
this section. As a result of this process, the user gets a new
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deposit token whose structure is that of an anonymous e-coin
generated through Chaum’s system [28].

A deposit token is generated free of charge the first time
a user registers to the system or when obtained during the
‘‘get-out’’ process. If a user lost her deposit token, probably
because she did not run the ‘‘get-out’’ procedure at the end of
a journey, she will be charged for obtaining a new one.

A deposit token is generated as follows:

1) If necessary, the app performs a credit card payment for
the cost of a deposit token.

2) The app generates a random value deposit , hashes and
blinds it with a random blinding factor d for server’s
deposit key, Blindd (H(deposit),PSd ), and sends the
resulting value to the server.

3) The server blindly signs the received value and returns
the resulting blinded signature to the app.

4) The app unblinds the received blinded signature get-
ting a signature by the server on H(deposit), namely
SignSd (H(deposit)).

5) Finally, the app stores the resulting deposit token tuple
{deposit, SignSd (H(deposit))}.

When the previous procedure is executed during a ‘‘get-
out’’ process (step 1 is skipped), the identity of the user is not
revealed.

When a payment is done, anonymity is not required since
the identity of the user can be obtained from the payment
method data. Such use case shall not be applied to users acting
as required.

2) E-TICKET PURCHASE
The user pays for and gets e-tickets of the underlying e-ticket
system. The underlying e-ticket system is required to guar-
antee that the purchased e-tickets can later be activated
anonymously.

3) E-TICKET ACTIVATION
When a user is about to start a journey (which may include
several transfers), her app contacts the ticket issuer server
and activates an e-ticket of the underlying system. After a
successful activation, the plug-in module runs the following
‘‘travel token chain generation’’ procedure.
Travel token chain generation. This procedure generates a

chain composed of T travel tokens. Its correct composition is
checked by means of a cut-and-choose technique tuned with
parameter N.

1) The app sets the expiration time to E = CurrentTime+
TIME_ACTIVE.

2) The app takes IDuser and computes a set of N masked
identities {IDmaskedk = HMACKUk (IDuser )}0≤k<N from
N different keys KUk .

3) Using the procedure of Section IV-C2, the app gener-
ates N travel token chains {Ck}0≤k<N providing E and
IDmaskedk as input, respectively.

4) The app, for each chain Ck = {TT k0 , . . . ,TT kT−1},
hashes its first travel token, TT k0 , and blinds the

resulting digest under a random blinding factor rk gen-
erating a set of blinded digests:

{Bk = Blindrk (H(TT k0 ),PS in )}0≤k<N.

All these blinded values are sent to the server.
5) The server chooses a random j ∈ [0,N − 1] and sends

it to the app.
6) The app, for each k 6= j, sends the blinding factor rk to

the server together with all the information required to
check the correct composition of chain Ck .

7) For each k 6= j, the server unblinds the received
hash and verifies each chain Ck under H(TT k0 ), E and
IDmaskedk together with all the additional parameters as
described in Section IV-C3.

8) If all the validations are satisfied, the server blindly
signs Bj under its ‘‘get-in’’ key pair so that the app is
able to obtain SignS in (H(TT j0)).

9) Next, the app generates r ′j at random and computes

Blindr ′j (H(TT j0),PSout ) which is sent to the server
which will blindly sign it under its ‘‘get-out’’ key
pair. From the result, the app obtains the signature
SignSout (H(TT j0)).

10) Finally, the app keeps a chain of travel tokens Cj =
{TT j0, . . . ,TT

j
T−1}, whose first token, TT j0 has been

blindly signed by the server under the ‘‘get-in’’ and
‘‘get-out’’ key pairs. Hence, this first travel token is
ready for use.

If some checking fails, the procedure of the underlying
e-ticket system applied in case of fraudulent behaviour is
run. This may include anonymity revocation and fining the
user. Although the probability of cheating can not be made
arbitrarily small (making 1/N negligible would require a
rather large value for N which has a direct impact on the
running time of the protocol), users will be discouraged from
cheating if the amount of the fine is large enough.

The chain generation process ensures that all the travel
tokens of a chain are linked to the same IDuser object so
that they can not be shared among different users. The user
linked to the travel tokens of the chain shall not necessarily
be the one who acquired the e-tickets. This assumes that the
underlying e-tickets are transferable.

4) GET-IN
When a user is about to begin a new journey (after doing a
transfer or after the activation of an e-ticket), it approaches
her mobile phone to a device located at the entrance control
system. Both devices communicate through some proximity
communication system. If the user provides a ready to be used
travel token (signed under both the ‘‘get-in’’ and ‘‘get-out’’
key pairs) and a valid deposit token, she will be allowed to
enter. The transport system, for each trip, generates a unique
identifier IDtrip. The user receives an inspection token that
will be required in case of inspection.

The user is required to leave a deposit token. In this way,
she will be forced to run the ‘‘get-out’’ process at the end of
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her journey so as to get a new one. If not done, she will lose
it and will have to pay for a new one.

1) The app transmits its deposit token, namely {deposit,
SignSd (H(deposit))}.

2) The entrance device verifies the digital signature over
H(deposit) and asks the system server to check it has
not been used before. If all these checkings are satis-
fied, the server storesH(deposit) in a database to record
it as already used.

3) The app transmits a ready to be used travel
token TTi (accompanied with SignS in (H(TTi)) and
SignSout (H(TTi))) to the entrance device.

4) The entrance device verifies both digital signatures and
checks that TTi 6= TTend.

5) The entrance device computes the digest H(TTi) and
sends it to the system server to verify that it has not been
used before. If not used before, the server storesH(TTi)
together with CurrentTime to record it as already used.

6) The app proves in zero-knowledge to the entrance
device that the commitment Ci extracted from TTi con-
tains an expiration time that is still valid by proving
that it falls between CurrentTime and CurrentTime +
TIME_ACTIVE. This is done by means of the tech-
niques described in Section II-E.

7) The entrance device extractsNextTTi from TTi and asks
the server to sign it with the ‘‘get-in’’ key, so that the
app blindly obtains a signature SignS in (H(TTi+1)).

8) The entrance device extracts Ui from TTi and
asks the server to sign it with the user-token key,
so that the app blindly obtains Utoken = SignSu
(H(HMACKi (IDmasked ))).

9) The user asks, via the entrance device, the server to
compute a partially blind signature onUtoken with IDtrip
as agreed information. The resulting signature Utrip =
PartialSignS t (H(Utoken),H(IDtrip)) is obtained by the
app.

10) Finally, the inspection token is stored by the app as the
tuple {Utoken, IDtrip,Utrip}.

5) GET-OUT
When a user has finished a journey and is about to leave the
transport system, she has to approach her mobile phone to
the corresponding exit device. As a result of this protocol,
the user gets her next travel token ready to be used (she
receives a second signature under the ‘‘get-out’’ key pair)
and a new free of charge deposit token to be used in her next
journey. She is also asked to present her inspection token so
as to record it as no longer valid.

If this protocol is not run, the user does not get a deposit
token andwill have to pay for a new one so as to use the public
transport again in the future.

1) The app hashes and blinds, with a random number t ,
the next travel token TTi+1. Then it sends the result,
Blindt (H(TTi+1),PSout ), to the exit device.

2) The exit device asks the system server to sign the
received blinded message under the ‘‘get-out’’ key pair
so that the app obtains SignSout (H(TTi+1)).

3) The app obtains a free deposit token as follows:
a) The app sends the current inspection token
{Utoken, IDtrip,Utrip} to the exit device together
with HMACKi (IDmasked ).

b) The exit device, checks IDtrip corresponds to the
current trip of the transport system.

c) The exit device, in collaboration with the system
server, verifies that neither Utoken nor Utrip have
been received before. It also verifies that Utoken
is a valid signature on H(HMACKi (IDmasked )).
It finally verifies that Utrip is a partial signature
PartialSignS t (H(Utoken),H(IDtrip)).

d) By running the procedure in Section IV-D1,
the app gets a new free of charge deposit token,
{deposit, SignSd (H(deposit))}.

e) Finally, the system server stores both Utoken and
Utrip so as to record them as no longer valid.

6) RANDOM INSPECTION
During an inspection, an inspector determines whether a user
has a valid inspection token for the current public transport
trip.

1) The app sends {IDuser , IDtrip,Utoken,Utrip,Ku,K } to
the inspector via a short-range communication system.

2) The inspector:
a) Checks that the data in IDuser corresponds to the

person in from of him (it may be a picture or her
passport number).

b) Checks that IDtrip corresponds to the current trip.
c) Checks that neither Utoken nor Utrip have been

provided in a previous inspection nor have been
marked as no longer valid.

d) Computes IDmasked = HMACKu (IDuser ),
and checks that Utoken is a valid signature
SignSu (H(HMACK (IDmasked ))).

e) Checks that Utrip is a valid partial signature
PartialSignS t (H(Utoken),H(IDtrip)).

3) The inspector sends both Utoken and Utrip to the server
so as to record them as no long valid.

If some of these checkings fails, the user will be fined
according to the established regulations.

After being inspected, the user obtains a new inspection
token so as to avoid that her next execution of the ‘‘get-
out’’ process can be linked to the inspection. This is done as
follows:

1) The app generates a random key K ′, a random
blinding factor u′, and computes U ′ = Blindu′
(H(HMACK ′ (IDmasked )),PSu ) which is sent, via
inspector’s device, to the server.

2) The server blindly signs U ′ and returns, via inspec-
tor’s device, the result to the app so that it can obtain
U ′token = SignSu (H(HMACK ′ (IDmasked ))).
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3) Next, the app asks, via inspector’s device, the server
to compute a partially blind signature over U ′token with
IDtrip as agreed information. The resulting signature
U ′trip = PartialSignS t (U ′token, IDtrip) is obtained by the
app.

4) Finally, the app stores the new inspection token as the
tuple {U ′token, IDtrip,U

′
trip}.

V. PRIVACY AND SECURITY ANALYSIS
This section analyzes the security of our proposal under the
assumed adversary model (Sec. III-B), and the privacy and
security requirements described in Section III-C.

A. PRIVACY ANALYSIS
We next present a set of lemmas which are the basis for
proving Theorem 1.
Lemma 1: During an execution of the ‘‘travel token chain

generation’’ procedure, the server obtains no information
allowing it to identify the generated chain.

Proof: A travel token chain is generated through a
cut-and-choose protocol in which the app first generates N
blinded chains. After that, the server asks the app to reveal all
the parameters used in the generation ofN−1 of them. Finally,
the first travel token of the remaining chain is blindly signed
by the server. We next justify the server gets no information
allowing it to identify the remaining chain.

All the random parameters generated during the creation
of the N chains are chosen independently among them so that
revealing the parameters of N − 1 chains does not provide
any information about the parameters used for creating the
remaining one.

Regarding the IDuser object, it is masked with a dif-
ferent random key before its inclusion in each chain (set
{IDmaskedk }0≤k<N). These masked values are revealed for
N− 1 of the chains, but their knowledge does not provide any
information about the remaining one, since the random keys
are kept secret.

The N chains share the same expiration time E which is
revealed during the cut-and-choose checkings. Nevertheless,
E is included in the travel tokens TTi through commitments
Ci = Commitci (E). In all future uses of these tokens,
the non-expiration of a travel token is proven by means of
zero-knowledge proofs so that the exact value for E is never
revealed. Hence, the remaining chain can not be identified
from E .

Finally, the only access the server has to the remaining
chain is produced when it is asked to blindly sign its first
travel token. A blind signature protocol guarantees that the
signing party gets no information about the signed data.
Hence, the server gets no information about the signed token.
Lemma 2: The travel tokens of a chain can not be linked

among them by the server.
Proof: A travel token TTi is a tuple composed of three

parameters, namely Ui, Ci, and NextTTi.
Both Ui and NextTTi are blinded values generated from

random blinding factors so that they can not be related to

the values blinded inside them nor to the resulting signatures.
Hence, they provide no information at all as long as the
blinding factors are kept secret by the app.

The expiration time, E , committed in Ci is shared among
all the travel tokens of a chain. However, each Ci is gen-
erated from a different and random ci so that linking
travel tokens from these commitments is computationally
unfeasible. The non-expiration of a travel token is proven
through zero-knowledge proofs so that the value E is not
revealed.
Lemma 3: When an inspection token is generated,

the server only gets information about its IDtrip component.
Proof: An inspection token is a tuple {Utoken, IDtrip,

Utrip}. TheUtoken component is obtained by the app as a blind
signature computed by the system server. Hence, the server
obtains no information about it.

Regarding Utrip, it is obtained by the app as a partially
blind signature over Utoken with IDtrip as agreed information.
Hence, the server only learns IDtrip.
Lemma 4: After a ‘‘random trip inspection’’, the ‘‘get-in’’

and ‘‘get-out’’ procedures of the inspected journey can not be
determined.

Proof: During an inspection, the app sends the tuple
{IDuser ,Utoken, IDtrip,Utrip,Ku,K } to the inspector.
The link between an inspection token and the travel token

TTi provided for its generation is given by Utoken being
a signature over the value blinded in the Ui component
of TTi. Since Ui is a blinded value, it can not be related to
the (unblinded) signature obtained from it. Hence, an inspec-
tion token provided during an inspection can not be related to
the execution of the ‘‘get-in’’ process it was generated in.

At the end of an inspection, a new inspection token is
generated by the user. When it will be provided during an
execution of the ‘‘get-out’’ procedure, it will not be linkable
to the current inspection.
Theorem 1: The proposed system meets the design objec-

tives 1 and 2 (user’s mobility profiles can not be created).
Proof: When a user activates an e-ticket of the underlying
system, a chain of travel tokens is created. From Lemma 1,
the server gets no information allowing it to identify that
chain, hence the ‘‘e-ticket activation’’ operation keeps anony-
mous and unlinkable.

After that, each time the user runs a ‘‘get-in’’ procedure,
she provides a travel token of that chain. From Lemma 2,
the tokens of a chain can not be related among them so that the
executions of the ‘‘get-in’’ process using tokens of the same
chain can not be related among them.

When running a ‘‘get-in’’ process, the user also obtains
an inspection token, from which, according to Lemma 3,
the server gets no information but its IDtrip component. Hence
the server gets no information at all about the user from the
‘‘get-in’’ process.

When running a ‘‘get-out’’ process, the user provides her
inspection token so as to mark it as no longer valid. Since
the keys used to mask user’s identity in that token are not
revealed, the server can not link that token to the identity of

101394 VOLUME 8, 2020



R. Borges, F. Sebé: Construction for Providing Reusability to Mobile Phone-Based e-Tickets

the user. From Lemma 3, the provided inspection token can
not be linked to any personal data of the user.

When a random inspection takes place, the user is asked
to provide her inspection token and all the data allowing to
link it to her identity. The inspector gets user’s identity but,
according to Lemma 4, her inspection token can not be linked
to the executions of the ‘‘get-in’’ and ‘‘get-out’’ procedures
of that journey. In this way, the only information obtained
is the presence of the inspected user at the place where the
inspection has taken place.

B. SECURITY ANALYSIS AGAINST MALICIOUS USERS
We next present a set of lemmas which are the basis for
proving Theorem 2.
Lemma 5: A malicious user can get a fraudulent travel

token chain with probability at most 1
N .

Proof: A travel token chain has been properly generated
when its first travel token, TT0, is ready to be used, i.e.,
it has been digitally signed by the system server. Since digital
signatures are unforgeable, the only way for a user to get
such signatures is to run the ‘‘travel token chain generation’’
procedure, in which the server signs the first token of a chain.

A malicious user could cheat by trying to get a chain with a
larger amount of travel tokens, with a higher expiration time,
or with its travel tokens linked to different identity objects.
A travel token chain is generated using a cut-and-choose

technique in which the user generates N chains. Next the
server asks her to reveal all the parameters used in the gen-
eration of N − 1 of them so that it can check their correct
composition. Finally, it signs the remaining unrevealed one.
So as to succeed, a malicious user must generate just one
malicious chain and be lucky so that the fraudulent chain is
the one which is not checked by the server. This happens with
probability 1

N .
Lemma 6: A user can not obtain a fraudulent ready to

be used travel token from a properly generated travel token
chain.

Proof: A ready to be used travel token is a non-expired
travel token, TTi, accompanied with two digital signatures
computed under the ‘‘get-in’’ and ‘‘get-out’’ server key pairs
(SignS in (H(TTi)) and SignSout (H(TTi))). Since digital signa-
tures are unforgeable, the only way for a user to get such
signatures is by requesting them to the server.

The first travel token of a chain is signed during the chain
generation process. If we assume that the chain has been
properly generated, its first travel token can not be fraudulent.

The signatures over the following travel tokens are
obtained through the ‘‘get-in’’ and ‘‘get-out’’ procedures.
During the execution of the ‘‘get-in’’ procedure, the server
blindly signs the next travel token by signing, under its
‘‘get-in’’ key pair, the NextTTi field of a ready for use
travel token provided by a user. Hence, the next travel
token can only be fraudulent if the provided one also is.
That is not possible if we assume the chain was properly
generated.

During the ‘‘get-out’’ process, the server blindly signs
under its ‘‘get-out’’ key pair without performing any check-
ing. Nevertheless, a signature under the ‘‘get-out’’ key pair is
useless if the corresponding one computed with the ‘‘get-in’’
key pair is not available. That signature under the ‘‘get-out’’
key pair is computed just to complicate the transmission of
ready for use travel tokens among users.
Lemma 7: An inspection token is linked to the IDuser

object contained in the travel token provided during its gen-
eration, or some user lost a deposit token.

Proof: An inspection token is generated during the
execution of the ‘‘get-in’’ procedure. A user provides a
deposit token and a ready to be used travel token, TTi,
to the server which extracts its Ui field and computes a
digital signature over it so that the user obtains a blind
signature Utoken = SignSu (H(HMACKi (IDmasked ))) linked
to IDmasked , which is linked to IDuser . After that, the user
requires the server to compute a partially blind signature
on Utoken with IDtrip as agreed information. The resulting
signature obtained by the user is denoted Utrip. The resulting
inspection token is the tuple {Utoken, IDtrip,Utrip}. Hence,
the obtained inspection token is linked to IDuser through its
Utoken component.
During the ‘‘get-out’’ procedure, the user will be required

to provide her inspection token so as to get a free of charge
deposit token. All the components of that inspection token
will be recorded as no longer valid.

A malicious user may perform the ‘‘get-in’’ procedure but
require a partially blind signature U ′trip over a value U ′token
(linked to a different ID′user ) different from that obtained from
the provided TTi. Since U ′token is a digital signature, it can not
be forged, so that it must have been obtained during a ‘‘get-
in’’ procedure whose corresponding ‘‘get-out’’ has not been
performed. In that case, the deposit token was not obtained,
so that the user lost it.
Theorem 2: The proposed system meets the design objec-

tive 3 (a user can not travel fraudulently).
Proof: Lemma 5 proves that, for a properly chosen

parameter N, a travel token chain is probably generated with
the allowed amount of travel tokens, with a valid expiration
time, and with all its travel tokens linked to the same user
identity.

Next, Lemma 6 ensures that a travel token accepted during
a ‘‘get-in’’ procedure can not be fraudulent. Additionally,
the system stores the used travel tokens so as to avoid them
being used more than one time.

Finally, Lemma 7 guarantees that the inspection token
generated during a ‘‘get-in’’ procedure is linked to the iden-
tity of the provided travel token, or that, in case of fraud,
the malicious user lost a deposit token. If the price of a deposit
token is set to be higher than that of regular e-tickets, users are
discouraged from acting fraudulently.

VI. EXPERIMENTAL RESULTS
The actors considered in our experiments are: the server, the
entrance devices, the exit devices, and the app. To simplify,
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we have considered the entrance and exit devices to be part
of the system server.
Prototypes have been implemented in Java. The app

has been developed specifically for the Android operating
system. The java.math.BigInteger library has been
used to implement cryptographic operations involving big
integers.

The feasibility of the system has been analyzed from the
two most critical use cases. Namely, ‘‘e-ticket activation’’
(Section IV-D3) which performs a cut-and-choose check-
ing involving strong computations, and the ‘‘get-in’’ pro-
cess (Section IV-D4) which should respond with a minimum
delay. Both protocols are executed between the app and the
system server.
Our implementation makes use of RSA blind signa-

tures [28], Abe and Okamoto’s partially blind signatures [29]
and Boudot’s range proofs for committed values [31]. All
these protocols have been chosen because no successful
cryptanalysis attacks against them have been reported in the
last years. A deep research would probably provide alterna-
tive options leading to faster running times. Nevertheless, the
objective of this section is just to show the feasibility of the
proposed system. Optimizing its performance falls beyond
our objectives.

Our experiments employ 2048 bit cryptography for
RSA blind signatures and for all the operations involv-
ing hard-to-solve instances of the discrete logarithm prob-
lem. Hash digests are computed by means of the SHA-256
function.

The cut-and-choose checking run during ‘‘e-ticket activa-
tion’’ has been tuned to N = 100 so that the probability
of cheating is reduced to 1% (generation of a fraudulent
chain involves, on average, the payment of 99 fines). The
‘‘travel token chain generation’’ procedure has been executed
with parameter T = 3 (maximum amount of elementary
journeys which can be done with a single e-ticket). All the
implemented processes require intensive CPU usage with
negligible memory requirements.

TABLE 2. Mobile application running times (in milliseconds).

Table 2 shows the average running times at the app.
Two variants of the ‘‘e-ticket activation’’ protocol have
been tested. A real-time variant in which all the compu-
tations are performed during the protocol execution, and
a pre-computed variant in which values for IDmasked , Ui,
and NextTTT−1 have been computed in advance. Both vari-
ants have been implemented taking advantage of parallel
computing. We can observe that pre-computations provide
a 60%-75% time reduction. The ‘‘get-in’’ protocol at the
app has been implemented in serial mode (it can not ben-
efit neither from pre-computations nor parallel processing).

Running the ‘‘get-in’’ protocol took less than one second in
the two devices it was tested on.

TABLE 3. System server running times (in milliseconds).

Table 3 shows the average running times at the server part.
Both the ‘‘e-ticket activation’’ and ‘‘get-in’’ protocols have
been executed in serial and in parallel. In the parallel version,
multiple instances of the ‘‘e-ticket activation’’ protocol have
been executed concurrently.

In our opinion, the experiments show that the app can be
deployed on current mobile phones, since tickets can be acti-
vated in around 4.5 seconds, whereas a ‘‘get-in’’ procedure
can be completed in less than one second. The computer load
at the server part must be balanced among several computers
so as to manage all the concurrent requests received in a large
city. A professional 36-Cores (72-Threads) computer could
manage three ‘‘e-ticket activation’’ requests per second.

VII. CONCLUSION
This article has presented a construction for providing
reusability to mobile phone-based e-tickets that avoids the
possibility to create profiles about user’s mobility habits.
Reusability is provided in the sense that users, after activat-
ing an e-ticket of the underlying system, can make several
journeys before an expiration time. The maximum amount of
journeys is determined from the length of a chain of travel
tokens that is generated after the activation of an e-ticket.

The proposal incorporates the possibility to carry out ran-
dom in situ inspections. The experiments have shown that the
proposal could be run on nowadays mobile phone devices.
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