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ABSTRACT Long-term electrocardiogram (ECG) monitoring requires high-ratio lossless compression
techniques to reduce data transmission energy and data storage capacity. In this paper, we have proposed
a high-ratio ECG compression system with low computational complexity. Firstly, as the morphologies of
the ECG change over time, we divide the signal of each heartbeat cycle into two regions. To achieve high
prediction accuracy, a 1st order linear predictor and a combination of the template predictor and 3rd order
linear predictor are applied in the two regions respectively. Secondly, we introduce a context-based error
modeling module to the system, which cancels the statistical bias of the prediction algorithm and further
improves the prediction accuracy. Thirdly, we modify the Golomb-Rice encoding algorithm to adaptively
encode the prediction errors, while preserving a code space for packaging the information that is necessary
for prediction. We evaluate the proposed system by using the MIT-BIH Arrhythmia Database (ARRDB).
The experimental results show that with memory requirements as low as 444 to 14556 total variables this
system achieves a compression ratio (CR) from 2.975 to 3.040, suggesting that it is highly applicable to both
the low-power design and the cloud.

INDEX TERMS Electrocardiogram, lossless compression, error modeling.

I. INTRODUCTION
Electrocardiogram (ECG) indicates the electrical activity of
the heart and it is the most commonly used method to mon-
itor the heartbeat. With wireless and wearable healthcare
devices, long-term ECG data can be recorded continuously
for monitoring and diagnosis. However, collecting such a
large amount of data requires excessive transmission energy
or storage capacity, which significantly increases the cost of
long-term ECG applications [1], [2]. Therefore, an effective
and efficient data compression method for ECG signals is
required.

ECG compression methods include lossless compres-
sion and lossy compression. In lossless systems, the recon-
structed ECG can be exactly the same as the original ECG,
which is generally more useful for cardiac disease diagnosis.
Because the lossy compression discards some morphological
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information, and it has not been approved by medical bod-
ies in most countries and cannot be used in commercial
devices [3]. Therefore, this paper focuses on lossless ECG
compression.

A good lossless ECG compression algorithm must achieve
a high CR with low computational complexity and a low
number of variables, which are closely related to the hard-
ware requirement of the algorithm. Especially for low-
power application-specific integrated circuit (ASIC) designs
or embedded system designs, low computational complexity
and a low number of variables can decrease the chip area, thus
reducing the chip cost and power consumption. Convention-
ally, the lossless ECG compression technique first predicts
or transforms the signal to reduce the signal entropy, then
entropy encodes the signal to remove redundant bits [4]. To
date, various lossless ECG compression methods have been
proposed, including algorithms such as data pulse code mod-
ulation (DPCM) + Golomb-Rice encoding [5], adaptive lin-
ear predictor+modified Huffman encoding [6], [7], adaptive
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linear predictor + variable-length encoding [8], short term
linear predictor+fixed-length encoding [3], and adaptive lin-
ear predictor+Golomb-Rice encoding [9]. These algorithms
are relatively simple, but they do not utilize sufficient ECG
morphologies hence causing poor CRs.

Some other methods achieve high CRs. Among which,
Miaou and Chao [10] applied the combination of distortion-
constrained codebook replenishment (DCCR), set partition-
ing in hierarchical tree (SPIHT), and bit-plane coding (BPC)
algorithms, but this method contains recursive operation and
requires many variables. Zhou [11] applied k-means cluster
predictor+ Huffman encoding, and Tseng et al. [12] applied
Takagi-Sugeno fuzzy neural network + arithmetic encoding,
but they require multiply-accumulate operation many times
when predicting each point. Tsai and Tsai [13] applied adap-
tive linear predictor + Golomb-Rice encoding, and Rzepka
[14] applied selective and multichannel linear predictor +
asymmetric numeral systems encoding, but they all require
integer division operation hence increasing the computational
complexity. Therefore, the methods of [10]–[14] are difficult
to be implemented on wearable ECG monitoring devices.

This study proposes a lossless ECG compression algorithm
based on dual-mode prediction with context error modeling.
The features of the proposed method are:

1) Given the feature that the morphologies of the ECG
change over time, we divide the signal of each heartbeat
cycle into two regions. A 1st order linear predictor and
a combination of the template predictor and 3rd order
linear predictor are applied respectively to achieve high
prediction accuracy.

2) A context-based error modeling module is added after
the predictors to cancel the statistical bias of the predic-
tion errors and further improve the prediction accuracy.

3) A modified Golomb-Rice encoding algorithm is
designed for entropy encoding. This algorithm adap-
tively encodes the prediction error according to the
current error amplitudes to improve the CR. Besides,
it preserves a code space for packaging the information
which is necessary for prediction.

4) By adjusting the size of the templates and contexts,
this system can balance the number of variables and
compression performance, in this way enabling com-
pression applications from the edge to the cloud.

The remainder of this paper is organized as follows.
Section II briefly introduces the database that applies to this
research. Section III presents the proposed lossless ECG
compression system. The proposed method is evaluated in
Section IV. Section V discusses the experimental results.
Finally, section VI draws the conclusion.

II. DATABASE
This paper uses the MIT-BIH Arrhythmia Database
(ARRDB) to evaluate the proposed lossless ECG compres-
sion system. The ARRDB contains 48 excerpts of two-
channel ambulatory ECG recordings, which are obtained

from 47 subjects studied by the BIH Arrhythmia Laboratory
between 1975 and 1979. 23 recordings were chosen at ran-
dom from a set of 4000 24-hour ambulatory ECG recordings
collected from a mixed population of inpatients (about 60%)
and outpatients (about 40%) at Boston’s Beth Israel Hospital;
the remaining 25 recordings were selected from the same set
to include less common but clinically significant arrhythmias
that would not be well-represented in a small random sample.
The recordings were digitized at 360 samples per second
per channel with an 11-bit resolution over a 10 mV range,
and there are in total 650,000 points in each channel. Two
or more cardiologists independently annotated each record;
disagreements were resolved to obtain the computer-readable
reference annotations for each beat (approximately 110,000
annotations in all) included in the database [15], [16].

III. METHOD
Figure 1 shows the block diagram of the proposed method.
In the compression part, this method split each sampled ECG
point into the prediction value and error value, i.e.

ε [n] = x [n]− x̃ [n] (1)

where x [n] represents the ECG samples at the nth point, x̃ [n]
represents the prediction value which is derived from the
past samples by using the dual-mode prediction and context-
based error modeling methods, and ε [n] represents the error
value. Then, we package the error codes with the information
which is necessary for prediction to form the final bitstream.
In the decompression part, we use the same prediction and
error modeling methods to get the same prediction values. By
adding the error values with the prediction values, the lossless
reconstruction ECG can be obtained.

A. DUAL-MODE PREDICTION
The normal ECG comprises a sequence of P, Q, R, S, and T
wave. Among them, the Q, R, S waves compose the QRS-
complex which is the main spike seen on the ECG, while the
waveform out of the QRS-complex is flatter as shown in Fig.
2.

According to the different morphologies of the ECG in
different periods, we divide the ECG signal into the QRS
regions and the non-QRS regions first for separate prediction.
The QRS duration of a normal ECG is between 60-109ms.
However, when there are some abnormalities in the ECG,
such as the premature ventricular contractions (PVCs), the
QRS duration may be ≥120ms [17]. To obtain relatively
accurate division results for both normal and abnormal ECG,
we set the length of the QRS region to 100ms and the R-peak
position as the midpoint of the QRS region. So the number
of sampling points in the QRS region Wqrs is calculated
according to

Wqrs = 0.1fs (2)

where fs represents the ECG sampling rate. We apply the R-
peak detection algorithm proposed by Ieong et al. [2] to locate
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FIGURE 1. Overall block diagram of the proposed lossless ECG compression and decompression system.

FIGURE 2. (a) A piece of the normal ECG with 6 cycles from the ARRDB
recording 100. (b) A piece of the abnormal ECG with 7 cycles from the
ARRDB recording 200, including occasional PVCs. Where the green
background indicates the QRS-complex.

the QRS region since this algorithm achieves a high R-peak
detection accuracy with low computational complexity.

For the flat non-QRS region, the difference between the
two adjacent points is small. Therefore, we predict the current
signal by using the previous sampled point, which is called 1st

order linear prediction, i.e.

x̂ [n] = x [n− 1] (3)

where x̂ [n] is the prediction value of the nth point, and
x [n− 1] is the sampled value of the (n− 1)th point.

Koski [4] applied one template to predict the points belong-
ing to the QRS complex since the morphologies such as the
directions and the slope values of continuous heartbeats are
similar. However, in general, more templates lead to higher
prediction performance, because

1) Some ECG signals contain multiple QRS morpholo-
gies, as shown in Fig. 2 (b). More templates can cover
more QRS morphologies.

2) Even if the morphology of two QRS-complexes is the
same macroscopically, there may be some differences
in details. For example, the amplitude of the 5th R-peak
is smaller than that of the 4th R-peak in Fig. 2(a). More
templates can help to reduce prediction errors.

In this system, we introduce multiple templates to predict
the signal in the QRS regions. However, it should be noted
that more templates will increase the number of variables and
computation amount, thus making it difficult to be applied to
low-power design. Therefore, it is necessary to use different
numbers of templates to balance the memory requirement,
computation amount, and CR for different scenarios. For
narrative purposes, we assume that there are Nt templates
in the system. So, the templates have a total of Wqrs × Nt
variables. Since the ECG is vulnerable to the interference of
the baseline drift noise, which causes some bias [18], to make
the templates not affected by the signal bias, the templates
only store the difference between two adjacent points, i.e.

v = 1x [n] = x [n]− x [n− 1] (4)

where v is the value that will be saved to the template.
Besides, on considering the fluctuation feature of the QRS,
we also use the 3rd order linear prediction as a supplemen-
tary predictor to predict the data of the QRS region more
accurately when 1) there is no template for prediction in the
initial stage, or 2) the templates do not contain this QRS
morphology. The prediction formula is given in (5).

x̂ [n] = x [n− 1]+1x [n− 1]+1(1x [n− 1])

= 3x [n− 1]− 3x [n− 2]+ x [n− 3] (5)

There are Nt + 1 predictors for the QRS region, includ-
ing Nt template predictors and a 3rd order linear predictor.
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FIGURE 3. Flow chart of the proposed dual-mode prediction algorithm.

FIGURE 4. Block diagram of the context-based error modeling, where e
is the prediction error, E

(
e|C

)
is the expectation of the prediction errors,

which is also used as the correction value for the current context, x̃ is the
corrected prediction value, and ε is the prediction error after correction.

The predictor with the minimum total prediction error is used
to predict this QRS region, then the difference data of the
newest QRS region will be saved as a template to replace the
‘‘Least Recently Used’’ (LRU) template. Therefore, a real-
time updated LRU table is required to record the order of the
used templates. The detailed flow chart of the proposed dual-
mode prediction algorithm is shown in Fig. 3. The index of
the predictor used for each QRS region will be packed into
the final bitstream to use the same predictor when decom-
pressing. To make full use of the code space, the length of the
index code Bidx is set according to (6).

Bidx = dlog2 (Nt + 1)e (6)

B. CONTEXT-BASED ERROR MODELING
The context-based error modeling technique that captures the
statistical information of the prediction errors can be used to
improve the CR [19]–[23]. This technique first classifies the
prediction errors based on their contexts. Then the expecta-
tion of the prediction errors from each category is determined
and this value will be added to the prediction value to correct
the prediction, as shown in Fig. 4. Compared with the original
prediction values, the corrected prediction values are more
accurate, thus increasing the CR.

A simple but effective context classification model is based
on the binarized differences of past points, i.e.

c (x [n]) = {Q (1x [n−Wc]) , · · · ,Q (1x [n− 1])} (7)

whereWc is the number of points used for context classifica-
tion. c (x [n]) is the category index of the nth point.Q (1x [n])
is the binarized differences of the nth point, and the formula
is given in (8).

Q (1x [n]) =

{
1, 1x [n] ≥ 0
0, 1x [n] < 0

(8)

The total number of contexts is 2Wc . In general, more
contexts capture more accurate statistical information, thus
improving the CR. However, more context also increases
the number of variables. So, it is necessary to use different
numbers of contexts for different scenarios.

Memon et al. [22], Sriraam and Eswaran [23], Chua and
Fang [5] also applied the context-based error modeling tech-
nique for lossless biosignal compression. They estimate the
expectation of each context category by dividing the sum
of the prediction errors with the occurrence counter. How-
ever, this algorithm has two drawbacks. First, it requires the
‘‘divide’’ operation, which is difficult to be implemented on
the low-power ASICs or embedded systems. Second, it is sen-
sitive to outliers, thus reducing the accuracy of the expecta-
tions. Weinberger et al. [24] designed another error modeling
algorithm for image compression. It only requires the ‘‘add’’
and ‘‘compare’’ operations and reduces the influence of the
outliers. Therefore, we select this algorithm for error model-
ing to achieve higher CRswith lower computational complex-
ity. In this algorithm, there are 3 variables in each context cat-
egory, i.e. COR, CNT , RES. COR stores the expectation and
also the correction values of the prediction errors;CNT stores
the occurrence number; and RES stores the sum of errors
after bias cancellation. By limiting the range of RES, this
algorithm reduces the influence of outliers. COR is updated
by comparing CNT and RES to make the mean value of the
corrected prediction errors close to ‘‘0’’. The specific pseudo-
code of this error modeling algorithm is shown in Fig 5.

C. ENCODING
Figure 6 shows the prediction errors after dual-mode predic-
tion and context-based error modeling. It can be seen that the
prediction errors fluctuates around ‘‘0’’, and the occurrence
probability of small values is much higher than large values.
Golomb-Rice code is quite useful to encode such prediction
errors as it has optimal prefix code for this distribution [25]
and it has low computational complexity.

The Golomb-Rice encoding algorithm requires mapping
the integer prediction errors into the non-negative integer
first, i.e.

M [n] =

{
2ε [n] , ε [n] ≥ 0
−2ε [n]− 1, ε [n] < 0

(9)
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FIGURE 5. Pseudo-code of the error modeling algorithm used in the
proposed ECG compression system.

FIGURE 6. (a) An example of the typical ECG from the recording 100 of
the ARRDB. (b) The final prediction errors ε of (a), where the prediction
errors of neighbor points distribute in similar ranges.

whereM [n] is the error after mapping.M [n] is then divided
by another integer k to obtain the quotient part and the
remainder part. The unary and binary codes are used to
encode the quotient and the remainder, and a bit ‘‘0’’ is
inserted between the unary code and binary code to obtain
the final code, as follows

golomb_rice_code (M [n])

= group (

unary_code
(⌊

M [n]
2k

⌋)
,

0,

binary_code
(
M [n] mod 2k

)
) (10)

where
⌊
M [n]
2k

⌋
can be calculated by using the ‘‘shift right’’

operation in the ASIC or embedded system.
The efficiency of the code is sensitive to k value. Specif-

ically, when k is set to
⌊
log2M [n]

⌋
, the code length of

M [n] is the shortest. Considering that the prediction errors
of neighbor points distribute in similar ranges, as shown in
Fig. 6, we propose a k value prediction mechanism. First,
we add a variable t to predict the value of M [n]. Actually,
since only integer operations can be performed in low-power
devices, we set t to 4 times the predicted value to improve the
precision. Second, k is calculated by (11) to encode M [n].
For low power ASICs or embedded systems,

⌊
log2

t
4

⌋
can be

calculated by searching the most significant bit of t . When
k = 0, the code length increases significantly with the
increase of M [n], thus causing a great penalty when t

4 is
lower than M [n]. Therefore, we force k ≥ 1 to reduce the
penalty. Third, after coding, t is updated by (12) to predict
the next data. This update method gives a higher weight to the
data closer to the uncoded data and improves the prediction
accuracy. The initial values of t and k are set to 64 and 4 to
avoid excessive code length due to the large value of the first
uncoded data.

k = max
(⌊

log2
t
4

⌋
, 1
)

(11)

t =
⌊
3t
4

⌋
+M [n] (12)

Besides, the Golomb-Rice code has covered all the cod-
ing space and made it impossible to add the R-peak posi-
tion information to the code. Therefore, we add a bit ‘‘1’’
to all the unary codes with quotient ≥ 8 to reserve the
code ‘‘111111110’’ as the R-peak indication code. Table. 1
shows several comparison examples between the Golomb-
Rice code and the modified Golomb-Rice code. This encod-
ing method makes the QRS code length relatively short while
only increasing the code length of data with large quotient
(which rarely appears) by 1 bit.

D. PACKAGING
In the packaging process, all the information needed for the
decoder to reconstruct the ECG will be packaged into the
final bitstream. It should be noted that the sampling frequency
and resolution of the ECG sensor, the template number and
context width of the proposed compression system, and the
initial values of all the variables should already be known to
the decoder. Therefore, the final bitstream doesn’t contain this
information. Figure 7 shows the packaging format. First, we
package the first three signals by using the original binary
codes so that the decoder can predict the following points
according to the known points. After that, for each heartbeat
cycle, the data is packaged in the following order to compress
and decompress the signal in real-time:

1) Package the modified Golomb-Rice codes of the cur-
rent non-QRS region.

2) When entering the QRS region, the R-peak indication
code ‘‘111111110’’ and the prediction index for current
QRS region are first packaged to inform the decoder.

3) Package the modified Golomb-Rice codes of the cur-
rent QRS-region.
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TABLE 1. Several examples of comparison between the Golomb-Rice code and the modified Golomb-Rice code.

FIGURE 7. Packaging format for the ECG.

Table. 2 shows an example of using the proposed packag-
ing format to package the ECG. The sampling frequency and
resolution of the example are 360Hz and 11-bit respectively,
which are the same as those of the ARRDB. The Nt value for
the compression system used in Table. 2 is set to 7. The 51st

to 86th sampling points in this example belongs to the QRS
region of cycle 0.

IV. EVALUATION
A. EVALUATION CRITERIA
We take all the recordings from the ARRDB as our test set.
CR is used as the evaluation criteria for each ECG recording,
which is calculated according to

CR =
Bo
Bc

(13)

where Bo is the total bit number of the original ECG record-
ing,

Bo = Np × R (14)

Np indicates the number of sampling points in the record-
ing, and R indicates the resolution. For ARRDB, Np =
650, 000 and R = 11, So Bo = 7, 150, 000.
Bc is the total bit number after compressing. In this paper,

Bc is calculated according to

Bc = Binit + Nhb ×
(
Bqrs + Bidx

)
+ Bcode (15)

whereBinit is the bit number for initialization,Nhb is the heart-
beat number, Bqrs is the R-peak indication code length, and
Bcode is the overall bit length formodifiedGolomb-Rice code.
For ARRDB, Binit = 33, Bqrs = 9, and Bidx is calculated
according to (6). The final CR is obtained by calculating the
average CR of all the recordings in the database.

FIGURE 8. Different Nt values versus CRs on the ARRDB.

B. Nt , Wc SELECTION AND COMPRESSION RESULTS
To select Nt , we remove the context-based error modeling
module and set Nt to 1, 3, 7, 15, 31, 63, 127, and 255 for
alternatives. At this time, the total number of the predictors
for the QRS region is exactly an integer power of 2, thus
maximizing the utilization of the index code. Figure 8 shows
the CRs obtained by using different Nt . It can be seen that
the CR improves significantly as Nt increases from 1 to 7,
and achieves the maximum value at 63. When Nt continues
to increase, CR begins to fall. It is because 1) when the num-
ber of templates reaches a certain level, the templates con-
tain enough QRS morphologies that are currently required,
2) using more templates increases Bidx value, thus decreasing
the CR. Since the low-power ASICs or embedded systems are
sensitive to the memory requirement, we select Nt = 7 for
low-power design. For the cloud ECG compression scenario,
we select Nt = 63.
To select Wc, we set Wc from 1 to 15 for alternatives and

do experiments under the condition of Nt = 7 or Nt = 63.
Figure 9 shows the results. It can be seen that the CR improves
significantly as Wc increases from 1 to 6, and achieves the
maximum value at 12. As Wc continues to increase, CR
begins to fall. It is because that the correction values need
to be updated during bias cancellation to converge to the
statistical expectations. With the increase of the contexts, the
points of each context become insufficient for converging,
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TABLE 2. An example of using the proposed packaging format.

FIGURE 9. Different Wc values versus CR on the ARRDB when Nt is set to
7 or 63.

thus reducing the performance of bias cancellation. On both
considering the memory requirement and the CR, we select
Wc = 6 for low-power design. For the cloud ECG compres-
sion scenario, we select Wc = 12.
For convenience, we use ‘‘S’’ and ‘‘L’’ to represent the

proposed compressing system for low-power design (which
has a small number of variables) and the cloud (which has a
large number of variables). Table. 3 shows the specific vari-
able numbers and CRs on the ARRDB by using the proposed
S system or L system.

C. COMPARISON WITH OTHER METHODS
Table. 4 compares the CR of the proposed systemwith several
other existing methods. The proposed method achieves the
CR second only to Miaou’s method [10]. However, Miaou’s
method contains a codebook with a size of 1024× 64, mean-
ing that there are as many as 65536 variables in the codebook.
Moreover, Miaou’s method requires recursive operations, so
that the computational complexity and the variable number

of Miaou’s method are higher than that of the proposed
method. We have reproduced Miaou’s method and modi-
fied the size of the codebook to explore the relationship
between the CR and the variable number. Figure 10 shows
the comparison of the proposed method and Miaou’s method
with different variable numbers. It can be seen that the
CR of the proposed method is higher than Miaou’s method
when the variable numbers are similar and less than 16384.
References [11]–[14] also achieve relatively high CR.
However, the K-means cluster of Zhou’s method [11]
needs to square each point when matching templates,
and the Huffman codebook in Zhou’s method contains
2048 items the compress the ECG signal of the ARRDB
(which has 11-bit resolution), more than the variable
number of the proposed S system; the Takagi-Sugeno
Fuzzy Neural Network in [12] contains many multiply-
accumulate operations when predicting each point; and
both [13] and [14] need integer division operations. So
the computational complexity of [11]–[14] are higher than
that of the proposed method. References [3], [5]–[9]
used simple prediction and entropy encoding algorithms, but
the proposed S system achieves significantly higher CR than
these methods so that this method can save more transmission
power or storage space.

V. DISCUSSION
A. EFFECT OF DIFFERENT R-PEAK DETECTION
ALGORITHMS ON CR
In the proposed system, the R-peak detection algorithm
used for the QRS region location can be replaced by other
algorithms. We select two R-peak detection algorithms, i.e.
Pan-Tompkins (PT) algorithm [26] and quadratic spline
wavelet transform (QSWT) algorithm [27] as examples to
explore the CRs of the proposed system when combined with
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TABLE 3. Variable numbers and CRs of the proposed two representative systems on the ARRDB.

TABLE 4. Lossless compression result comparison with several other methods on the ARRDB.

FIGURE 10. Comparison between the proposed method and Miaou’s
method with different variable numbers.

other R-peak detection algorithms. Among them, the Pan-
Tompkins algorithm is a popular R-peak detection algorithm
proposed in 1985, whose detection accuracy is a bit lower
than Ieong’s algorithm. The QSWT algorithm has a bit higher
detection accuracy than Ieong’s algorithm. Besides, we also
combine the proposed method with the annotations from the
ARRDB to obtain the reference CRs. The results are shown
in Table. 5. It can be seen that although the CR using the
PT algorithm is the lowest, the performance decrement is
not significant. The CR of the PT algorithm is at most 0.010
lower than the highest CR, which is obtained by using the
annotation. The CRs of the QSWT algorithm and Ieong’s
algorithm only decrease 0.003 and 0.004 at most. It is because
the false detected or false missed R-peaks are generally noisy
or have atypical morphologies, which have similar prediction
performance by using the QRS region predictor or non-QRS
region predictor, as shown in Fig. 11. At present, many R-
peak detection algorithms or hardware implementations with
higher detection performance than PT algorithm or QSWT
algorithm have been published, such as [3], [28]–[31]. It
can be inferred that using the proposed compression system

FIGURE 11. (a) A piece of the ECG from the ARRDB recording 108. It
contains some sharp noises enclosed in red boxes. (b) Prediction errors
of (a) by using the annotations. (c) Prediction errors of (a) by using the PT
algorithm. (d) Prediction errors of (a) by using the QSWT algorithm. (e) A
piece of the ECG from the ARRDB recording 210. There is an atypical
R-peak morphology enclosed in a red box. (f) Prediction errors of (e) by
using the annotations. (g) Prediction errors of (e) by using the PT
algorithm. (h) Prediction errors of (e) by using the QSWT algorithm. The
green backgrounds in (a),(b),(e),(f) indicate the QRS region obtained by
the annotation, and the green backgrounds in (c),(d),(g),(h) indicate the
QRS region obtained by the respective R-peak detection methods.

combined with these R-peak detection methods can also
achieve similar CRs.

B. LIMITATIONS
Though the proposed ECG compression system achieves high
CR based on simple prediction and encoding algorithms, its
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TABLE 5. CR of each channel on the ARRDB by using the proposed system combined with the R-peak annotations, PT algorithm and QSWT algorithm.

limitations should be recognized. First, this method needs to
cooperate with an R-peak detection algorithm. Second, this
method contains two arrays, QRS templates, and contexts,
which occupy some storage space when compressing.

VI. CONCLUSION
In this paper, we have proposed a lossless ECG compression
system based on dual-mode prediction and error modeling.
The ECG signal is firstly divided into the QRS regions and
the non-QRS regions. The 1st order linear predictor is applied
to predict the non-QRS region, and the combination of the 3rd

order linear predictor and QRS templates predictor is applied
to predict the QRS region. After prediction, a context-based
error modeling module is added to cancel the statistical bias
of the prediction errors. By packaging the modified Golomb-
Rice codes of prediction errors, R-peak indication codes, and
QRS prediction indexes, the final compressed bitstream is
obtained. The proposed system is evaluated on the ARRDB.
Experiment results show that the proposed system achieves
a CR from 2.975 to 3.040 with memory requirements as low
as 444 to 14556 variables. The proposed ECG compression
method is highly applicable to both the low-power ECG
monitor and the cloud.
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