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ABSTRACT In fifth generation (5G) networks, the densification of small base stations in the coverage
region of macro base station (MBS) leads to significant inter-cell interference (ICI). Similarly, drones (a.k.a.
unmanned aerial vehicles) have a diverse scope in multifarious 5G assisted applications and, therefore,
cause considerable drones interference (DI) as a result of excessive drone usage. This paper investigates
the bottleneck uplink (UL) coverage performance of the MBS edge users in the presence of ICI and DI.
To mitigate both ICI and DI, we use an efficient resource allocation scheme known as reverse frequency
allocation (RFA). Moreover, we use decoupled association (DeCA) in place of coupled association to further
improve UL signal-to-interference ratio. The results depict that RFA in conjunction with DeCA overpass all
other techniques in terms of improved UL coverage performance because of effective DI and ICI mitigation.

INDEX TERMS Coverage probability, coupled association, decoupled association, heterogeneous cellular
networks, interference mitigation, reverse frequency allocation.

I. INTRODUCTION
A. MOTIVATION
In fifth-generation (5G) networks, ultra-dense deployment of
small base stations (SBSs) in the macro base station (MBS)’
coverage region, high MBS transmit power, and aggressive
frequency reuse lead to significant inter-cell interference
(ICI) [1]–[4]. Meanwhile, unmanned aerial vehicles, popu-
larly known as drones, are expected to be used excessively for
5G assisted applications because of their higher maneuver-
ability, hovering, ease of deployment, and lower maintenance
and operating costs [5], [6]. The prominent 5G applications
of drones include mineral exploration, precision agriculture,
smart logistics, air surveillance, disaster assistance, and emer-
gency healthcare [7], [8]. Such applications demand for an
excessive use of drones assisted by 5G networks. However,
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such excessive drone usage (EDU) leads to additional traffic
load in conjunction with users’ traffic load and, hence, causes
significant drones interference (DI). In this paper, we explore
the effect of DI and ICI on the bottleneck uplink (UL) com-
munication of MBS coverage edge users (M-EUs). Here,
the bottleneck UL communication indicates the limitations
in UL communications, i.e., (i) lower UL transmit power by
user equipment (UE), which leads to lower UL signal-to-
interference ratio (SIR), and (ii) limited available power in
battery-operated UEs [9], [10].

In two-tier heterogeneous cellular networks (HetNets),
coupled association (CA) is often considered, where a user
equipment (UE) associates with the same base station (BS)
both in downlink (DL) and UL following the maximum
received power (MRP) association rule [11], [12]. CA is
typically followed when the UEs are closer to the serving
BS. However, the M-EUs following CA experience lower
signal-to-interference ratio (SIR) because of their longer
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distances from the BS [13], [14]. Therefore, decoupled asso-
ciation (DeCA) has attracted considerable attention, where a
user associates in UL and DL directions with different tiers of
BSs [15]. By using DeCA, UL SIR of M-EUs is significantly
increased because of nearest SBS association [15].

In the state-of-the-art, different interference management
schemes, such as fractional frequency reuse (FFR) [16] and
soft frequency reuse (SFR) [17], have been studied. The
SFR scheme achieves better spectral efficiency as a result of
frequency reuse, while FFR leads to lower interference due to
partitioning of total available bandwidth [18], [19]. Another
proactive resource allocation scheme available in the state-
of-the-art is reverse frequency allocation (RFA) [20]–[22].
In RFA, the complete bandwidth is made available to both
MBS and SBS in a cell. Thus, RFA is spectrallymore efficient
as compared with both FFR and SFR. Therefore, we employ
RFA with DeCA to alleviate ICI and DI (see Sec. II-B2 for
details on RFA).

B. RELATED WORK
In [23], the authors examine the effects of users and
devicemobility in device-to-device (D2D) and drone-assisted
mission-critical machine-type communications. Their results
show that D2D links and drone-assisted access lead to 40%
improvements in link availability and reliability on top of
the cellular-only baseline. The work in [24] investigates the
security challenges posed by drones to sensitive installations.
The paper also highlights the importance of drone monitor-
ing, which can help to avoid damages to sensitive installa-
tions. Diverse drone platform applications and challenges in
the network infrastructure are discussed in [25]. Their study
highlights the significance of using drones in heterogeneous
networks to improve the network capacity and coverage. The
work in [26] investigates the use of drones mounted minia-
turized BSs to serve the network mobile users. The authors
propose that the drones move continuously within the cell.
Therefore, their proposed setup reduces the distance between
the BS and the UEs and, hence, improves spectral efficiency
of the network. The simulation results in [26] indicate that
their proposed model leads to improved spectral efficiency as
compared with the scenario where drones hover over fixed
locations. In [27], the authors evaluate the usage of drones
in conventional terrestrial cellular networks. They investigate
DL spectral efficiency of the network with optimal altitude
and intensity of drones. Their results show that drones’ usage
provides improved DL spectral efficiency for conventional
terrestrial cellular networks. Similarly, the authors in [28]
evaluate drones’ usage in multiple-input multiple-output
(MIMO) and non-orthogonal multiple access assisted net-
works while utilizing stochastic geometry framework. They
derive outage probability expressions for proposed setup.
Their results show that rate and coverage of far users rely on
power allocation factors.

RFA along with CA and DeCA are considered in [29].
The authors derive DL coverage probability expressions for
their proposed setup. Their results show that RFA along with

DeCA overpass other techniques with respect to coverage
performance in the DL. In [30], the authors investigate inter-
ference mitigation and resource management while employ-
ing D2D communications. Moreover, the authors employ
DeCA and FFR in conjunction with their proposed setup.
Their results show that their proposed model significantly
abates the interference.

The work in [31] considers RFA in non-uniform HetNets.
It is assumed that the SBSs located nearMBS aremutedwhile
SBSs remain active in theMBS edge area. The results indicate
that non-uniform HetNets with RFA lead to improved UL
coverage. The work in [32] proposes modified RFA, which
leads to significant coverage improvement as a result of
reduced interference.

This work is different from the state-of-the-art as follow:
1) The works in [23]–[28] discuss various application sce-

narios of drone usage. However, they lack the analysis
of DI because of 5G assisted EDU. Therefore, in this
paper, we investigate both DI and ICI that affect the
bottleneck UL SIR of M-EUs.

2) The works in [29]–[32] analyze DL coverage in the
presence of ICI, however, in this paper, we inves-
tigate UL coverage performance in the presence of
ICI and DI.

C. CONTRIBUTIONS
In this paper, we investigate DI due to EDU for 5G assisted
applications and ICI due to multi-tier deployment. The cov-
erage region of MBS is split into non-intersecting regions,
i.e., center region, AcM, and outer region, AoM, with radii d1
and d2, respectively (see Fig. 1). The analysis is performed
on typical user, ν, located in AoM. The main contributions of
this paper are listed as follows:
1) Investigation of bottleneck M-EUs’ UL coverage per-

formance in the presence of both DI and ICI.
2) Mitigation of DI and ICI by utilizing RFA along with

DeCA and, hence, improving UL SIR of the M-EUs.
3) Derivations of the UL coverage probabilities for the

following network scenarios for ν ∈ AoM: (i) RFA, CA,
and EDU, and (ii) RFA, DeCA, and EDU.

4) The results depict 16% UL coverage improvement as
observed at SIR threshold, γM,= −10 dB by DeCA
with RFA employment in contrast to CA with RFA
employment. Moreover, at γM = −10 dB and drones
density, ρD,= 50, DeCA and RFA cause 8% UL
coverage improvement in comparison with CA and
RFA. Furthermore, increasing ρD from 100 to 150 at
γM = −10 dB leads to 15% UL coverage degradation
because of significant DI.

In the results, we show that an increase in ρD causes signifi-
cant DI and consequently lowers the UL coverage. Moreover,
the results indicate that RFA with DeCA produces improved
UL coverage as opposed to CA with RFA.

D. PAPER ORGANIZATION
The rest of the paper is organized as follows. After presenting
the system model in Section II, UL coverage probabilities are
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FIGURE 1. A multi-tier HetNet deployment model with EDU, RFA and
DeCA. Ac

M and Ao
M denote the center and outer regions of MSB,

respectively.

TABLE 1. Notation summary.

derived in Section III. Numerical and simulation results with
discussion are presented in Section IV. Finally, Section V
concludes our work and presents future directions. The nota-
tions used in this paper are listed in Table 1.

II. SYSTEM MODEL
This section presents the proposed network layout with DI
due to EDU for 5G assisted applications and ICI due to

FIGURE 2. Frequency allocation in the two-tier HetNets via RFA.

multi-tier deployment. Moreover, DeCA and RFA are
employed to abate ICI and DI. Furthermore, in this section,
we develop mathematical preliminaries that will be used for
the UL coverage analysis afterwards.

A. NETWORK LAYOUT WITH ASSUMPTIONS
In this paper, we consider a two-tier HetNet, compris-
ing of MBSs, SBSs, and drones with densities ρM, ρS,
and ρD, respectively. MBSs, SBSs, UEs, and drones are
deployed using independent homogeneous Poisson point pro-
cesses (IHPPPs), i.e., φM, φS, φu, and φD, respectively,
as shown in Fig. 1. This work considers frequency division
duplex (FDD) systems, where different channels are used for
UL and DL as indicated in Fig. 1 and Fig. 2. This work
can be extended to incorporate time division duplex (TDD)
systems, where the same frequency is used for both UL
and DL directions in different time slots [33]. In contrast
to FDD systems, TDD system with DeCA leads to lower
interference at the cost of increased synchronization signal-
ing [34]. We investigate DI resulting from EDU and ICI
because of multi-tier deployment. To mitigate DI and ICI,
we use RFA with DeCA as opposed to RFA with CA.
Interference is considered to be the dominant performance
limiting factor and, thus, noise is ignored. The analysis is
performed on ν located at the origin by using the Slivnyak
Theorem which retains and simplifies the statistical prop-
erties of IHPPPs [21], [35]. This work assumes Rayleigh
fading for tractability in SIR analysis using Laplace transform
(LT) [36]. In particular, |h| models Rayleigh fading, which
is independent and exponentially distributed with unit mean,
i.e., |h| ∼ exp (1) [37].

B. OVERVIEW OF SCHEMES
Here, we give a brief overview of the schemes used in this
paper from the system model perspective.

1) COUPLED AND DECOUPLED ASSOCIATIONS
According to CA, ν associates both in UL and DL with
the identical tier ω1 following the DL association rule (see
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Definition 1 for the DL association rule) [15]. However,
according to DeCA, ν associates in the DL with tier ω1 based
on the DL association rule and with another tier ω2 in the UL
based on UL association rule (see Definition 2 for the UL
association rule [29]). Therefore, by following DeCA in our
proposed model, ν associates in the DL with MBS following
MRP, and with the SBS in the UL based path loss model.
Definition 1: (DL association rule). In the DL association

rule, a user connects in the DL with tier ω1 following MRP
scheme [12]. Association with ω1 can be expressed as

ω1 = arg maxi∈(M,S) PDLt,i r
−α
i,ν . (1)

Here, PDLt,i denotes the transmit power of BS in DL, r indicate
the distance between ν and associated BS, and α indicates
the path loss exponent.
Definition 2: (UL association rule). According to UL

association rule, a user associates in the UL with tier ω2
based on path loss, i.e., r−α [29]. The association with ω2
can be expressed as

ω2 = arg max
i∈(M,S)

r−αi . (2)

2) REVERSE FREQUENCY ALLOCATION
In HetNets high throughput is obtained by frequency reuse.
This, however, leads to severe ICI because of co-channel
interference. Therefore, there is a need for effective inter-
ference management scheme. Hence, we use RFA (an FDD
system) in conjunctions with DeCA to increase spectral effi-
ciency due to lower interference. In RFA, the total available
frequency band, F , is split into two sub-bands, i.e., F1 and
F2, such that F =

⋃
j∈1,2 Fj. Here, frequency sub-bands of

MBS, i.e., F1 and F2 are used in AcM and AoM, respectively,
as shown in Fig. 2. The sub-bands F1 and F2 are further
divided into UL and DL sub-carriers of the MBS and are
denoted as F1 = F1,UL + F1,DL and F2 = F2,UL +

F2,DL, in AcM and AoM, respectively [4]. The UL and DL sub-
carriers in F1 and F2 of MBS are used as the frequency
sub-carriers in F ′1 and F ′2 for the SBS in reverse direction,
i.e., DL and UL transmissions with corresponding alternate
regions AoM and AcM, respectively [4], [11]. Similarly, the UL
and DL sub-carriers of the SBS in AcM and AoM are denoted as
F2 = F ′2,UL+F ′2,DL and F ′1 = F ′1,UL+F ′1,DL, respectively.
RFA provides improvedUL coverage because of effective ICI
mitigation [20], [29].

III. ANALYSIS OF COVERAGE PROBABILITY
In this section, we derive UL coverage probability expres-
sions for: (i) EDU, RFA, and CA, (see Sec. III-A), and (ii)
EDU, RFA, and DeCA (see Sec. III-B).

A. UL COVERAGE PROBABILITY WITH CA
The UL coverage probability given that ν ∈ AoM, PUL

′′

AoM
(γM),

while assuming EDU, RFA, and CA, can be written as [20]

PUL
′′

AoM
(γM) = P

(
SIRUL

M > γM

)
. (3)

Here, SIRUL
M is the UL received SIR by MBS and γM is the

SIR threshold of MBS. Because of RFA, the UL interference
received is the union of MBS-tier UL interference in AcM,
IUL
φM,AcM

, SBS-tier DL interference in AoM, IDL
φS,AoM

, and the

interference from EDU, IDL
φD,AcM

. Therefore, SIRUL
M from (3)

can be rewritten as

SIRUL
M =

PULt,ν |hM|r
−α
M

IUL
φM,A

o
M
+IDL

φS,A
c
M
+IDL

φD,A
c
M

. (4)

Eq. (4) can be further expanded as

SIRUL
M

=
PULt,ν |hM|r

−α
M∑

l∈φM
PULt,l |hl |r

−α
l +

∑
k∈φS

PDLt,k |hk |r
−α
k +

∑
j∈φD

PDLt,j |hj|r
−α
j

.

(5)

Here, PULt,l denotes the UL transmit power of MBS associated
ν, PDLt,k indicates the SBS transmit power in DL, and PDLt,j is
the drones transmit power in DL. Now, by substituting (4)
into (3), we obtain PUL

′′

AoM
(γM) as

PUL
′′

AoM
(γM)

= P

 PULt,ν |hM|r
−α
M

IUL
φM,AoM

+ IDL
φS,AcM

+ IDL
φD,AcM

> γM


= ErM,IULφM,AoM ,I

DL
φS,A

c
M
,IDL
φD,A

c
M

×

[
exp

(
−
rαMγM
PULt,ν

(
IULφM,AoM

+ IDLφS,AcM
+ IDLφD,AcM

))]

= ErM

[
LIUL

φM,A
o
M

(s)× LIDL
φS,A

c
M

(s)× LIDL
φD,A

c
M

(s)
] ∣∣∣∣

s=
rαMγM
PULt,ν

,

(6)

where L(·) denotes the LT.
The LT of the interference from MBS-tier in UL,

i.e., LIUL
φM,A

o
M

(s), is obtained as

LIUL
φM,A

o
M

(s)

= exp
(
ρMπγMd

(2−α)
2 rαM

α/2− 1 2F1

(
1, 1−

2
α
, 2−

2
α
,−γM

(
rM
d2

)α)

−
ρMπγMd

(2−α)
1 rαM

α/2− 1 2F1

×

(
1, 1−

2
α
, 2−

2
α
,−γM

(
rM
d1

)α))
. (7)

Proof: The proof of (7) is given in Appendix A.
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We obtain the LT of the interference from SBSs in DL,
i.e., LIDL

φS,A
o
M

(s), in a way similar to (7), and given as

LIDL
φS,A

o
M

(s)

= exp
(
ρSπζ1γMx

(2−α)
2 rαM

α/2− 1 2F1(
1, 1−

2
α
, 2−

2
α
,−ζ1γM

(
rM
x2

)α)
−
ρSπζ1γMx

(2−α)
1 rαM

α/2− 1 2F1

×

(
1, 1−

2
α
, 2−

2
α
,−ζ1γM

(
rM
x1

)α))
. (8)

Here, ζ1 is the ratio of PDLt,S and PULt,ν , where P
DL
t,S is the SBS

DL transmit power.
From (8), the LT of the interference from SBSs in UL,

i.e., LIUL
φS,A

o
M

(s), is obtained as

LIUL
φS,A

o
M

(s) =
(
LIDL

φS,A
o
M

)
\ζ1, (9)

where (·) \ζ1 denotes the exclusion of ζ1 from (8).
The LT of DI due to EDU, i.e., LIDL

φD,A
c
M

(s), can be given as

LIDL
φD,A

c
M

(s)

= exp
(
ρDπζ2γMd

(2−α)
1 rαM

α/2− 1 2F1

(
1, 1−

2
α
, 2−

2
α
,−ζ2γM

(
rM
d1

)α)

−
ρDπζ2γMy(2−α)rαM

α/2− 1 2F1

×

(
1, 1−

2
α
, 2−

2
α
,−ζ2γM

(
rM
y

)α))
. (10)

In (10), ζ2 is the ratio of PDLt,D and PULt,ν , where P
DL
t,D is the

transmit power of drones inAcM. y and d1 define the interfering
drones area, s.t., y < d1.

Proof: See Appendix B for the proof of (10).
Given that ν ∈ AoM, i.e., νAoM , and associated with MBS at

a distance rM, has the PDF of distances given as [38]

frM|νAoM
(rM) =

2πρMrMexp
(
−ρMπr2M

)
exp

(
−ρMπd21

) . (11)

Similarly, assuming that ν ∈ AoM, i.e., νAoS , and associated
with SBS at a distance rS, has the PDF of distances given as

frS|νAoS
(rS) =

2πρSrSexp
(
−ρSπr2S

)
exp

(
−ρMπd21

) . (12)

The UL coverage probability expression, i.e., PUL
′′

AoM
(γM),

for ν associated with MBS in AoM while considering EDU,

FIGURE 3. UL coverage in Ao
M with CA and DeCA.

TABLE 2. Simulation parameters.

RFA, and CA can be written as [39]

PUL
′′

AoM
(γM) =

∫ d2

d1
LIUL

φM,A
o
M

(s)× LIDL
φS,A

c
M

(s)× LIDL
φD,A

c
M

(s)

×frM,ν |νAoM

(
rM,ν

)
drM,ν . (13)

By substituting (7), (8), (10), and (11) into (13), the expres-
sion for UL coverage probability, given that ν is associated
with MBS in AoM, can be written as (14), shown at the
bottom of the next page. In (14), J (·) indicates the Gauss-
hypergeometric function.

B. UL COVERAGE PROBABILITY WITH DeCA
The UL coverage probability expression, i.e., PUL

′

AoM
(γS),

assuming EDU, RFA and DeCA, can be written as [29], [40]

PUL
′

AoM
(γS) =

∫ d2

d1

[
LIUL

φS,A
c
M

(s)× LIDL
φS,A

o
M

(s)× LIDL
φD,A

c
M

(s)
]

×frS|UAoM
(rS) drS. (16)

By substituting (8), (9), (10) and (12) into (16), PUL
′

AoM
(γS)

can be expressed as (15), shown at the bottom of the next
page.

IV. RESULTS AND DISCUSSION
This section presents simulation and numerical results for the
UL coverage probability given that ν ∈ AoM, while consider-
ing EDU and RFA for (i) CA, and (ii) DeCA. A is taken as
π (1000m)2, s.t., A = AcMUAoM. Moreover, transmit powers
of MBS, SBS, UE, and drone are configured as 40 dBm,

VOLUME 8, 2020 102159



M. S. Haroon et al.: Interference Management in Ultra-Dense 5G Networks With Excessive Drone Usage

FIGURE 4. UL coverage in Ao
M with and without RFA.

30 dBm, 20 dBm, and 20 dBm, respectively. Mathematica
11 and MATLAB 2017B have been used to derive and eval-
uate the coverage probability expressions.

In Figs. 3 and 4, we measure the UL coverage against
the predefined threshold, γM, and different values of ρD
while assuming different network scenarios, such as with and
without CA, with and without DeCA, and with and without
RFA. In Fig. 3, we compute numerical and simulation results
for the UL coverage probabilities taking CA and DeCA into
account. This figure validates (14) and (15) and points toward
improved UL coverage with DeCA as compared with CA.
Moreover, the plots in Fig. 3 indicate that increase in the the
values of ρD reduces the UL coverage.

The plots in Fig. 4 indicate significant coverage improve-
ment by using RFA as compared with the conventional meth-
ods. This is due to the fact that by using RFA, the interference
received by ν from drones located in AcM is neglected. More-
over, the results demonstrate that DeCA outperforms CA
due to users’ association with the closest BSs. Furthermore,
the results depict that the UL coverage degrades significantly
when ρD = 100. Furthermore, the plots in Fig. 4 indicate 16%

FIGURE 5. UL coverage in Ao
M against γM and ρD.

UL coverage improvement as observed at γM = −10 dB by
DeCA with RFA, as compared to CA with RFA.

Figs. 5(a) and 5(b) measure the UL coverage probabili-
ties against ρD while employing CA and DeCA. Both these
figures indicate that the UL coverage considerably degrades
with an increase in ρD. This is due to the fact that an increase
in the values of ρD leads to severe DI. However, Fig. 5(b)
indicates improved UL coverage as compared with Fig. 5(a)
due to effective interference mitigation by using both DeCA
and RFA. Moreover, Figs. 5(a) and 5(b) indicate that, at
γM = −10 dB and ρD = 50, DeCA with RFA leads to 8%
UL coverage improvement as opposed to CA with RFA.

In Figs. 6(a) and 6(b), we present the UL coverage proba-
bilities against different values of PDLt,D and ρD taking CA and
DeCA into account, respectively. In both the figures, the value
of PDLt,D ranges from 20 dB to 100 dBwhile ρD = 0, 10, 20, 30,
40, and 50. The figures depict that an increase in the value of
PDLt,D and ρD leads to reduced UL coverage because of higher
DI. This is due to the fact that an increase in the values of
PDLt,D and ρD leads to significant DI. Moreover, in Fig. 6(b),

PUL
′′

AoM
(γM)

=
2πρM

exp
(
−ρMπd21

)
∫ d2

d1

exp
(
πγMrαM
α/2− 1

[
ρMd

(2−α)
2 J

(
α,−γM

(
rM
d2

)α)
− ρMd1(2−α)J

(
α,−γM

(
rM
d1

)α)
+ρSζ1 d

(2−α)
1 J

(
α,−γMζ1

(
rM
d1

)α)
− ρSζ1 y(2−α)J

(
α,−γMζ1

(
rM
y

)α)
+ ρDζ2 d

(2−α)
2 J

(
α,−γMζ2

(
rM
d2

)α)
−ρDζ2 y(2−α)J

(
α,−γMζ2

(
rM
y

)α)]
− ρMπr2M

)
rMdrM. (14)

PUL
′

AoM
(γS)

=
2πρS

exp
(
−ρMπd21

)
∫ d2

d1

exp
(
πρSrαS γS
α/2− 1

[
x(2−α)2 ζ1J

(
α,−ζ1γS

(
rS
x2

)α)
− x(2−α)1 ζ1J

(
α,−ζ1γS

(
rS
x1

)α)
+x(2−α)2 J
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FIGURE 6. UL coverage in Ao
M against PDL

t,D and ρD.

FIGURE 7. UL coverage in Ao
M against PDL

t,D and γM.

FIGURE 8. UL coverage in Ao
M for CA, DeCA, and different configurations

of γM and ρD.

we show significant improvement in the UL coverage due to
DeCA and RFA as compared to CA and RFA in Fig. 6(a).

Figs. 7(a) and 7(b) present the UL coverage probabilities
against PDLt,D and γM while employing CA and DeCA. The
plots in the figures show that raising values of PDLt,D causes
reduced UL coverage as a result of higher DI. Moreover,
the plots in the figure show that lower values of γM cause
higher UL coverage due to improved users association. Fur-
thermore, the results indicate that RFA with DeCA provides
improved UL coverage.

Next, in Figs. 8(a) and 8(b), we compute the UL cov-
erage probability for different values of ρD and γM. The
figures indicate that raising the values of γM causes lower

UL coverage due to lower user associations. Moreover,
an increase in the values of ρD causes reduced UL coverage
because of higher DI. Furthermore, the figures indicate that
DeCA in conjunction RFA overpass all other scenarios due to
efficient ICI and DI management.

V. CONCLUSION
In 5G networks, SBS densification in the MBS coverage area
give rise to improved spectral efficiency and capacity, how-
ever, this causes significant ICI. Moreover, 5G assisted EDU
imposes considerable DI on the network. To mitigate both DI
and ICI, we use RFA along with DeCA. The results depict
that higher values of PDLt,D and ρD cause lower UL coverage
for ν which is located in AoM. Moreover, the results show that
RFA andDeCA lead to significant UL coverage improvement
and, thus, outperform all other techniques. This work can be
further extended by incorporating fractional power control in
the proposed setup.

APPENDIX A
PROOF OF THE LT OF (7)
Proof of (7): The LT of the UL interference fromMBS-tier

in AoM, i.e., LIUL
φM,A

o
M

(s), is obtained as

LIUL
φM,A

o
M

(s)

(a)
= EIUL

φM,A
o
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[
exp
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 ,
(17)
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where equality (a) is achieved by following LT defini-
tion [20], equality (b) is achieved by replacing IUL

φM,AoM
=∑

l∈φM
PULt,l |hl |r

−α
l into equality (a), equality (c) is achieved

by replacing s =
(
rαMβM

)
/
(
PULt,ν

)
into equality (b), equality

(e) is achieved by evaluating the LT of equality (d) in terms
of hj, equality (f ) is achieved from probability generating
functional (PGFL) of IHPPP [39], and equality (g) is achieved
by replacing u =

(
rl/(γM)1/αrM

)2
into equality (f ). Lastly,

employing Gauss-hypergeometric function [20] yields (7).�

APPENDIX B
PROOF OF THE LT OF (10)
Proof of (10): The LT of DI received from EDU,

i.e., LIDL
φD,A

c
M

(s), can be shown as
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∏
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(18)

Here, equality (h) is achieved from the LT definition
[20], equality (i) is achieved by replacing IDL

φD,AcM
=∑

j∈φD P
DL
t,j |hj|r

−α
j into equality (h), equality (j) is achieved

by replacing s =
(
rαMβM

)
/
(
PULt,ν

)
into equality (i), equality

(l) is achieved by evaluating the LT of equality (k) with
respect to hj, equality (m) is achieved by using PGFL of
IHPPP, and equality (n) is achieved by replacing u =(
rj/(ζ2γM)1/αrM

)2
into equality (m). Finally, by employing

Gauss-hypergeometric function to equality (n), we obtain the
expression given in (10) �
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