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ABSTRACT The zero-shot classification algorithm has been widely concerned in recent years, in which the
labeling of samples of a new category is unnecessary and the cost of annotations can be reduced in applica-
tions. This paper presents a zero-shot method for image classification based on word vectors enhancement
and distance metric learning. Specifically, the convolutional neural network (CNN) is employed to extract
image feature vectors which have the same dimension as semantic feature vectors. Then, an unsupervised
learning method is applied on Wikipedia corpus for extracting word vectors and the skip-gram is used
to obtain word vectors. The model of analysis dictionary learning is improved by reducing redundant
information in word vectors. The obtained sparse vectors are used as semantic features and a distance metric
learning method is employed to measure the distance between image features and semantic features. Finally,
the classification is implemented by a nearest neighbor based classifier. The effectiveness of the proposed
algorithm is validated on the AwA and CUB data sets. Experimental results demonstrate that the proposed
method has good performance in terms of both accuracy and robustness.

INDEX TERMS Zero-shot learning, word vectors, analysis dictionary learning, distance metric learning,
image classification.

I. INTRODUCTION
Most of the existing object classification methods are within
the scope of supervised learning. The accurate identification
of certain types of data means that training related models
require a large amount of labeled data [1], [2]. However,
some categories of data labels are difficult to obtain or require
manual labeling of large amounts of data. And the number
of object types in the real world continues to be showing
a growing trend, which requires the recognition system to
continuously increase and reconstruct new data. According
to statistics, there are currently about 30,000 types of human
identifiable objects [3]. It is arduous to label such a huge
amount of data. Therefore, there is an urgent need for a tech-
nology that can still identify the data of the target category
even if the visual annotation data of the target category is
completely missing [4]. Driven by the actual requirement
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and the continuous development of technology, zero-shot
classification technology came into being.

Zero-shot learning (ZSL) in visual classification aims to
recognize novel categories for which few or even no training
samples are available [5]. Therefore, zero-shot learning can
be employed as an effective method to solve the problem of
missing class labels [6]. For the current zero-shot classifica-
tion task, the key to success is to learn the cross-shot mapping
relationship between visual and semantic modalities [7]–[9].
In the early stages, most of the zero-shot classification meth-
ods can be ascribed to the method of direct attribute predic-
tion(direct attribute prediction, DAP) [10], [11]. To alleviate
the unreliability of attribute predictions, Jayaraman et al. pro-
posed a novel random forest approach [12], which leverages
statistics about each attributes error tendencies in order to
select discriminative and predictable decision nodes, thereby
obtaining a more robust discriminative model for unseen
classes. The model established with this idea has strong
interpretability. However, its shortcomings are also evident.
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For example, the labeling of attributes by humans is not
always reliable, and the mislabeled of attributes will have a
large negative impact on the performance of such methods.
In addition, the correlation between attributes will also lead
to the generation of redundant information, which will also
seriously affect the performance of the model [13].

In order to better resolve the problems in the DAP method,
a method based on the embedding model [14], [15] has
proposed. The core idea of the embedding model method is
to simultaneously map all visual features and category labels
to a certain space, and then perform zero-shot classifica-
tion based on the similarity measure [16], [17]. The method
proposed by Li et al. [18], [19] is to learn a distinguishing
category description feature from the representation of visual
distribution. A nonlinear mapping model with piecewise lin-
ear properties was constructed by Xian et al. [20], using a
ranking-based loss function for training. Akata et al. [21]
used a bilinear model to establish the compatibility between
visual samples and category attribute descriptions, and used
0-1 loss to learn discriminant. Information between different
categories.Yu et al. presented a direct push classification
method [22] for zero-shot images. This paper proposed a
structured joint embedding (SJE) model, which textual image
features and semantic features of a common feature space
through a mapping matrix. So that the sum of the inner prod-
ucts of the two features is maximized. Xian et al. proposed a
latent embedding model (LatEm) on this basis and achieved
good results [23]. However, these methods are easily affected
by the hubness phenomenon [24], and the distances between
many features are quite close, which leads to a decrease in
performance when using the nearest neighbor classification
method for classification.

Due to the limitations of using attribute features, this
paper uses word vectors to achieve semantic features. Seman-
tic word vector is a high-dimensional vector representation
of entity words obtained through unsupervised learning on
large-scale text corpora adopting natural language training
models. Each category name is under a unique correspond-
ing semantic word vector, thus providing different distance
relationship between categories. However, there exists certain
redundant information in these semantic word vectors, which
affects the effective expression of distance structure informa-
tion between categories. To reduce redundant information,
this paper uses analysis dictionary learning (ADL) to sparsely
encode word vectors [25]. In order to better adapt the over-
all model to the zero-shot classification problem, this paper
improves the basic ADL algorithm and proposes the LC-ADL
method, which enhances the operational efficiency and has a
positive impact on improving the classification accuracy.

When image features and semantic features are mapped
to the same feature space, scientific distance measurement
methods can accurately reflect the corresponding relationship
between them, which is conducive to improving classification
accuracy. Traditional ZSL methods are usually measured by
Euclidean distances. Images and semantics belong to dif-
ferent modals, if all dimensions of sample features are still

configured in equal importance at this time, the relation-
ship between samples cannot be effectively described. In
this case, this paper uses distance metric learning (DML)
to measure the distance between the image feature vector
and the semantic feature vector, and finally uses the nearest
neighbor classifier to classify depending upon the distance.
In this paper, an improved Large Margin Nearest Neighbor
(LMNN) algorithm is used. LMNN shows advantages in
this respect and can alleviate the hubness phenomenon to a
certain extent. Experimental results show that introducing the
combined DML and LMNN to zero-shot learning can achieve
satisfactory results and improve the performance of image
classification.

The main contributions in the paper are listed as follows:

1) The analysis dictionary learning method is imple-
mented in sparse representation of word vectors to alle-
viate redundant information.The objective function of
the ADLmodel is improved, and an error term is added
to improve the decisiveness of the model. A LC-ADL
model combining with a synthetic linear classifier is
proposed. It further reduces noise and errors from word
vectors.

2) In the distance measurement module, the LMNN algo-
rithm of DML method is introduced. In order to avoid
falling into the local optimal solution when using the
gradient descent method, reconstructing the loss func-
tion can effectively reduce the error rate and the com-
putational complexity. It has better applicability.

3) A zero-shot image classification method based on
word vector enhancement and distance metric learn-
ing is proposed, which acquires better performance in
accuracy and robustness than several mainstream ZSL
methods.

II. RELATED WORK
In this section, we introduce the selection of the basic model.
We summarize the notations and variables used in this paper
in Table 1.

A. ANALYSIS DICTIONARY LEARNING
Word vectors obtained from unsupervised learning from
large-scale text corpora, where each dimension contains some
redundant information. It will affect the accuracy of the word
vector and the effect of the final classification. Therefore,
this paper will use the ADL method to enhance the word
vector, and sparsely represent the word vector library initially
extracted from the corpus. On the one hand, redundancy
between the dimensions of these vectors can be folded up,
and the information loss caused by compression may be
beneficial. On the other hand, more compact vectors are more
efficient to calculate.

Dictionary learning can be regarded as a method of data
dimensionality reduction, which is mainly divided into two
categories: synthesis dictionary learning (SDL) and anal-
ysis dictionary learning (ADL). The idea of SDL is that
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TABLE 1. Nomenclature.

FIGURE 1. The process of sparse coding.

the dictionary and the corresponding sparse coefficients can
be reconstructed to obtain the input features. ADL is like
a dual structure of SDL. It applies a dictionary to known
input features. The sparse coefficients of the input feature
can be accessed according to the transformation rules. The
advantage of ADL is that its dictionary is obtained by learning
related data, which can better adapt to the characteristics of
the data. It is highly interpretable and represents the encoding
process more intuitively. The schematic diagram of ADL is
shown in Figure 1.

In addition, the efficiency of the ADL algorithm for data
processing is comparatively high. Given an input feature
y ∈ Rn, the first goal of the ADL algorithm is to learn a
parsing dictionary� ∈ Rm×n with a constraint condition of
‖a‖0 ≤ T . The learned dictionary� satisfies the constraints
such that ‖a− �y‖2F can achieve a minimum value. The
sparseness of sparse coding a is achieved by parameters T and
norms l0. Therefore, the analysis dictionary� can be obtained
by solving the following objective function:

min
A,�
‖A−�Y‖2F

s.t. � ∈ Γ , ‖ai‖0 ≤ T, i = 1, 2, · · · ,N (1)

where A = [a1, a2, · · · , an] ∈ Rm×n is the sparse coding
matrix. Conditions for obtaining a standardized and derivable
solution: À the matrix satisfies the set Γ constraint and the
row norm is 1; Á the Frobenius norm that satisfies the matrix

is the smallest. The coding coefficient a can be achieved
through matrix multiplication and threshold function, which
has a high operating efficiency [26], [27].

B. DISTANCE METRIC LEARNING
Traditional measurement methods often use Euclidean dis-
tance and cosine distance. However, these methods are not
applicable to the case where the importance of each compo-
nent of the vector is different. After obtaining the image fea-
ture vector and the semantic feature vector, a more accurate
measurement method is needed to improve the classification
effect. Therefore, this paper presents the DML method.

Distance metric learning was proposed by Xing et al. [28].
Pan C et al. proposed an objective function based on cosine
distance to learn the conversion from semantic to visual
features [29]. Duan Y et al. proposed a deep adversarial
metric learning (DAML) framework [30] that can generate
synthetic hard negativewords from original negative samples.
The framework is widely applicable to existing supervised
deep metric learning algorithms. In order to take advantage
of the nonlinear structure of data points, Hu J et al. seek a
variety of nonlinear transformations by using neural network
architecture [31] and extend MvML to a multi-view deep
metric learning (MvDML) method.

The idea is that for two feature vectors a and b, the learned
distance metric form is as follows:

D(a, b) = DM(a, b) = ‖a− b‖M
=

√
(a− b)T(a− b) (2)

In order to ensure the non-negativity of DM(a, b) and
satisfy the triangle inequality, the matrix M should be a
semi-positive definite matrix. When M = E, DM(a, b) is
the Euclidean distance; when M is a diagonal matrix, the
elements on the diagonal can be regarded as the weights
given to each dimension; whenM is a full matrix, the learned
distance metric can be counted as the Mahalanobis distance.

C. LARGE MARGIN NEAREST NEIGHBOR ALGORITHM
The goal of DML is to find a metric matrix that minimizes the
distance between pairs of similar samples when the sum of the
distances between pairs of dissimilar samples is greater than
a set fixed value. This paper uses the Large Margin Nearest
Neighbor(LMNN) algorithm to cope with this problem. The
core of the large interval nearest neighbor algorithm is to
replace the Euclidean distance in the traditional K nearest
neighbor with the Mahalanobis distance. The LMNN algo-
rithm only penalizes points that are different from the target
sample label but are close to it and points that are the same as
the target sample label but are far away from it. The k-nearest
neighbor prior knowledge of each sample in the training set
is necessary for the calculation. The algorithm solves the
optimal Mahalanobis distance matrix M through the semi-
definite programming optimization method. The optimiza-
tion maximizes the interval between different classes, so as to
ensure that the classification accuracy is improved compared
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FIGURE 2. The function of the LMNN algorithm.

with the KNN algorithm. But when the data scale increases,
the semi-determined planning scale in the LMNN algorithm
also increases greatly, which makes the iteration cost of each
step increase, leading to an increase in the computational
complexity of the algorithm.

To improve the efficiency of the LMNN algorithm,
Shen et al. used the gradient descent method to resolve
the unconstrained optimization objective function [32].
Weinberger and Saul [33] incorporated slack variables into
the objective function, thereby reducing the algorithm com-
plexity. In addition, in order to improve efficiency of the
LMNN algorithm, they also proposed a method of spa-
tial mapping using an ellipsoid tree structure. S. Ying et
al. use the manifold structure of positive-definite matrix
group and deduce an intrinsic steepest descent method [34],
which assures that the metric matrix is strictly symmetric
positive-definite at each iteration, with the manifold struc-
ture of the symmetric positive definite matrix manifold.
Peng Y et al. address the nonlinear metric learning by con-
structing smooth nonlinear metrics based on data [35]. The
partition coefficient obtained by unit partition is smooth,
and the metric at any point on the manifold can be directly
defined. Huo J et al. proposed a CML method by directly
maximizing AUC [36]. The method is formulated as a log-
determinant regularized semi-definite optimization problem.
Li X et al. used multiple kernel representation to describe
the nonlinear metrics, and projected the data into a high
dimensional space where the data can be well represented
by linear metric learning [37]. They designed an inherent
steepest descent algorithm to learn the positive definite metric
matrix.

The function of the LMNN algorithm is illustrated in
Figure 2. Figure 2(a) is the original data space. Figure 2(b) is

the data space after the LMNN algorithm is mapped. It can be
observed that after using the LMNN algorithm, the data of the
same category becomes more compact, which is conducive to
the accuracy of vector mapping.

The image feature matrix set is X = [x1, x2, · · · , xs]
and the semantic feature set is Y = [y1, y2, · · · , yn]. n is
the sum number of categories. The basic idea of the LMNN
algorithm is to set a suitable boundary, learn a training matrix
to obtain a mapping matrix L, and then mapping the original
data with xi → Lxi. The cross-validation method is used on
the training set for each point xi in X. It is assumed that xl
in its K-neighbors is different from its class label but within
a large margin, and xj is the same as its class label within a
large boundary, the large boundary conditional discriminant
can be constructed as follows:

‖L(xi − xl)‖2 ≤ ‖L(xi − xj)‖2 + 1 (3)

where L is the distance metric matrix, and use this to define
non-equivalent constraints. The formula is as follows:

εpush(L) =
∑

i,j∈KpNN

∑
l
(1− yil)[

1+ DL
(
xi, xj

)
− DL (xi, xl)

]
+

(4)

where Kp is the prior knowledge; and the distance measure
of the points xi and xj after the mapping is: DL(xi, xj) =
‖L(xi − xj)‖2. j ∈ KpNN indicates that the training sample
xi is the K-nearest neighbor of the test sample xj ; when the
semantic vector corresponding to xi is yi = yl , yil = 1;
when yi 6= yl , yil = 0. [Z]

+
= max(Z, 0). εpush(L) only

affects training samples that are distinct from the test sample
category but within the maximum distance. It has a visual
effect of ‘pushing’.
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Similarly, the equivalence constraints formula is as fol-
lows:

εpush(L) =
∑

i,j∈KpNN
DL(xi, xj) (5)

εpush(L) only affects the training samples that are the same
as the test sample category but the distance is beyond the
maximum. It has a visual effect of ‘pulling’. Finally, com-
bining the formulas (4) and (5) to construct the loss function
as follows:

ε(L) = (1− µ)εpull(L)+ µεpush(L) (6)

where µ is the weight coefficient and we take the value of
µ is 0.5. It can be seen that when calculating the mapping
matrix L, only the points that partially affect the classification
by mistake are penalized, which simplifies the computational
complexity of obtaining the global optimal mapping and
effectively reduce error rates.

III. MODEL IMPROVEMENT
A. LC-ADL MODEL
This paper uses ADLmethod to sparse the word vector library
to achieve the purpose of enhancing the word vector to maxi-
mize the useful information. However, the judgment capacity
of ADL is not strong and needs to be further improved. We
add a classification error term based on a synthetic linear
classifier to the objective function of the basic model of
ADL. The synthetic linear classifier I uses the dual form
of the universal linear classifier: A ∼= IC. I establishes a
corresponding relationship between the coding coefficients
and the category labels of the data. The classification error
term based on the synthetic linear classifier is:

min
I
‖A− IC‖2F (7)

Therefore, the objective function of the LC-ADL model
proposed in this chapter can be optimized as:

min
A,�,I

‖A− �Y‖2F + α‖A− IC‖2F
s.t. � ∈ Γ, ‖ai‖0 ≤ T , i = 1, 2,· · · ,N (8)

where A = [a1, a2, · · · , an] ∈ Rm×N is a sparse coding
matrix. C = [c1, c2, · · · , cm] ∈ RK×N is the word vector
matrix extracted from the Word2Vec model that has been
trained on the Wikipedia corpus. K is the sum number of
categories of training samples. The function of the parameter
α is to control the weight of the classification error term. Γ is
the set of the constraint analysis dictionary�, and the matrix
in the set Γ satisfies the row norm of 1. In addition, in order
to ensure that the results reproducible, the matrix of Γ also
satisfies the Frobenius norm of the matrix to the minimum.
A, �, and I can be calculated by solving the optimization
problem (8). We expand an alternating iterative algorithm
to solve the LC-ADL model. The results of formula (8)
optimization can be calculated alternately by the following
two steps:

1) FIX A, UPDATE � AND I
According to the constraint set Γ set above, the sub-
optimization problem of the analysis dictionary can be
described as follows:

�∗ = argmin
�
‖A− �Y‖2F + β‖�‖

2
F (9)

The penalty term ‖�‖2F in equation (9) is to obtain a stable
solution. β is a scalar parameter. After obtaining the optimal
solution of formula (9), in order to avoid trivial solutions,
each row of�∗ must be renormalized to the unit norm. Since
the term ‖A− IC‖2F has no bearing on solving the sub-
problems of�, this term is omitted in this step. Similarly, the
formula for the sub-optimization problem of the classifier is
as follows:

I∗ = argmin
I
‖A− IC‖2F (10)

Differentiate the objective function in formula (9) and make
its first derivative is equal to 0, and a closed-form solution of
� can be obtained:

�∗ = AYT(YYT
+ βE)−1 (11)

Renormalize each line of �∗ to the unit norm to get the final
solution of the parse dictionary. Similarly, we can get the
closed-form solution of I:

I∗ = ACT(CCT
+ γE)−1 (12)

where γ = 10e − 6 is to ensure that the inverse of CCT is
obtainable. E is the identity matrix corresponding to it.

2) FIX � AND I, AND SOLVE A
The solution of the coding coefficient A can be obtained
according to formula (8), and the conversion process is as
follows:

A∗ = argmin
A
‖A− �Y‖2F + α‖A− IC‖2F

= argmin
A

tr |(A− �Y)(A− �Y)T

+α tr
[
(A− IC)(A− IC)T

]
= argmin

A
(1+ α) tr

[
AAT

]
− 2 tr

[
(�Y+ αIC)AT

]
= argmin

A
‖A−

1
1+ α

(�Y + αIC)‖2F
s.t. ‖ai‖0 ≤ T , i = 1, 2, · · · ,N (13)

The result obtained through this process is the best sparse
coefficient matrix A∗.

B. IMPROVED LMNN DISTANCE METRIC LEARNING
ALGORITHM
When measuring the distance between image feature vectors
and semantic feature vectors, the traditional Euclidean dis-
tance and cosine distance often cannot effectively describe
the mapping relations between them. The scientific distance
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measurement method can alleviate the hubness phenomenon,
which is conducive to improving the classification accuracy.
We use the improved LMNN algorithm in the metric learning
module. The linear transformation obtained in formula (6) is
non-convex, when using stochastic gradient descent (SGD)
algorithm it may fall into a local optimal solution. Given
different initial matrices, the final results are different. It is not
reproducible for some problems so the applicability needs to
be strengthened. By reconstructing the formula (6), it can be
converted into a semi-definite programming problem. Define
the symmetric positive semidefinite matrixQ = LTL and use
matrixQ instead of matrixL. The loss function can be defined
as follows:

ε(M) = (1− µ)
∑

i,j∈KpNN
DQ

(
xi, xj

)
+µ

∑
i,j∈KpNN

∑
l

(1− yil)[
1+ DQ

(
xi, xj

)
Q − DQ (xi, xl)

]
+

(14)

where

DQ(xi, xj) = (xi − xj)TQ(xi − xj)

s.t. Q < 0 (15)

In order to facilitate the solution in a larger feasible
domain, this paper converts the above equation (14) into a
convex program. The non-negative relaxation variable ξijl is
introduced. The non-zero number of ξijl can represent the
number of intrusive maximum interval samples in the triple.
Construct the following positive semi-definite program:

min (1− µ)
∑

i,j∈KpNN

(
xi − xj

)T Q (xi − xj
)

+µ
∑

i,j∈KpNN,l
(1− yi) ξijl

s.t. Àξijl ≥ 0

ÁQ < 0

Â (xi − x1)T Q (xi − x1)

−
(
xi − xj

)T Q (xi − xj
)
≥ 1− ξijl (16)

Although there are many constraints for this positive semi-
definite program, ξijl is very sparse. The reason is that the
distribution of most samples is reasonable, and only a rel-
atively small number of samples will invade the fields of
other samples, resulting in the loss of hinges, so most of
the values are 0. This optimization can be resolved by sub-
gradient descent method.

C. ZERO-SHOT CLASSIFICATION MODEL
The flowchart of zero-shot image classification model based
on word vector enhancement and distance metric learning is
shown in Figure 3. The model structure diagram is shown in
Figure 4, which mainly includes the following four steps:
Step 1: Extract the image features of the sample.

We use VGGNet-19 convolutional neural network model.

FIGURE 3. The classification process of zero-shot learning model.

As showing in Figure 4, three-channel images of 224 * 224
are input. After convolution and pooling operations, it is
finally expanded to generate a 4096-dimensional vector. Add
two fully connected layers at the end, and finally output image
feature vectors of 200 dimensions.
Step 2: Extract word vectors of all categories. We use

skip-gram neural language model for unsupervised learning
of large-scale text corpora. Set the dimension of word vec-
tors to 300 dimensions, and each category can get a unique
corresponding word vector. As showing in Figure 4, the
word vectors of all categories form a category word vector
library, whose size is 300 ∗ N. N represents the number of
all categories of the sample image. The word vector obtained
at this time still contains some redundant information. After
LC-ADL processing, the corresponding sparse coding matrix
of the word vector library is obtained. Each coding dimension
is 200 dimensions.
Step 3: Perform distance metric learning on image feature

vectors and semantic feature vectors. Using the Euclidean
distance to the training samples, the prior knowledge
K-nearest neighbor of each data point in the training set is
computed using the cross-validation method, and the label is
set. This K value is set toKp. The improved LMNN algorithm
is utilized to learn the mapping rules, and the mapping matrix
Q is obtained. The training samples and test samples in the
image features are mapped respectively:

xi → Qxi
x′i → Qx′i (17)

Step 4: Test the sample classification. Utilizing the nearest
neighbor classifier, the category corresponding to the text
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FIGURE 4. The classification process of LC-ADL combined with distance metric learning model.

feature closest to the image feature of the input test sample
is the predicted category.

IV. EXPERIMENTS
A. DATA SET AND EXPERIMENTAL SETUP
This paper uses two data sets AwA (animals with attributes)
[38] and CUB (caltech-uCSD-birds-200-2011) [39] com-
monly used in the field of zero-shot learning to verify the pro-
posedmodel method. Among them, the AwA dataset contains
50 animal categories with a total of 30,475 pictures. The CUB
dataset contains 200 bird categories with a total of 11,788
pictures. During the experiment, the default training set test
set division method is selected. In AwA, 40 categories are
selected as training samples, and the remaining 10 categories
are invoked as test samples. In CUB, 150 categories are
selected as training samples and the remaining 50 are invoked
as test samples. The training samples do not overlap with the
test samples. The exact division is shown in Table 2.

In the AwA database, the image features use the same
CNN features (VGGNet-19) as in document [40]. Compared
to AwA, the CUB dataset is more challenging. Because its
objects are birds, the differences between categories are small
so it is a data set for fine classification. In addition, the CUB
dataset contains more categories, and the number of samples
in each category is relatively small, which also increases the
difficulty of the CUB dataset. This paper uses the text corpus
provided by Wikipedia to extract 300-dimensional semantic
features for the category names of AwA and CUB datasets.

B. EVALUATION OF EXPERIMENTAL RESULTS
Since the CUB dataset contains many categories and the time
cost of distance metric learning for all samples is very high,
this paper randomly samples the training set. 30 samples were
selected for each category in AwA; 5 samples were selected
for each category in CUB. Using the method described above,
random sampling was performed 20 times for repeated exper-
iments. The performance of the algorithm is measured by the
average classification accuracyM. Input the images of unseen

TABLE 2. AwA and CUB dataset partition.

categories into the model, first classify the classification
accuracy within each class, and then calculate the average
class accuracy by averaging [41], [42]. The class average
accuracy calculation formula is as follows:

M =

N∑
n=1

Accx ′i

k
, 1 ≤ i ≤ k (18)

where k represents the total number of unseen classes, x ′i
represents the unseen classes, and Accx ′i is the classification
accuracy in the unseen classes.

In order to prove that the combination of LC-ADL and
improved DML method can improve classification perfor-
mance, four groups of experiments will be set up for eval-
uation:

1) Use Euclidean distance Euc for classification;
2) Use DML method;
3) Use LC-ADL for vector analysis and combined with

Euclidean distance;
4) Use LC-ADL for vector analysis and combined with

DML;
Table 3 shows the recognition rates of the above four

groups of methods performed 20 random trials on the AwA
and CUB data sets. It can be observed in the results in Table
3 that the performance of the ADL-DML method has been
significantly improved compared with the Euc method. The
classification accuracy rate increased by 20.4% in the AwA
dataset.In the CUB dataset, it increased by 9.7%. On the one
hand, because the semantic feature vectors consist of more
noise, the LC-ADL method used in this paper can effectively
reduce redundant information and make the semantic vector
more accurate. On the other hand, the LMNN algorithm in the
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TABLE 3. The accuracy of proposed method and relative methods on
AwA and CUB.

FIGURE 5. The recognition accuracy of the above methods on AwA.

DMLmethod can give lower weight to noise, which has good
performance in terms of both noise immunity and robustness.
Because the CUB data set is a fine classification, there are
many categories and small differences between categories.
The LMNN algorithm used in this paper can better handle this
problem, so that the elements of the same category are close,
and the distance between different categories is farther away,
which can alleviate the hubness phenomenon to a certain
extent. It is better for classification than Euclidean distance.

The classification accuracy of the four methods on AwA
for 20 random times is shown in Figure 5. It can be
seen from the figure that our method has better classifica-
tion effect. The comparison between experiments (1) and
(2) proves the effectiveness of the distance metric learning
method. The comparison between experiments (1) and (3)
shows that sparse coding of the original word vector is bene-
ficial to improve the accuracy.

C. COMPARATIVE ANALYSIS WITH CURRENT
MAINSTREAM METHODS
Table 4 displays the average classification accuracy of differ-
ent algorithms in theAwAandCUBdatasets. The comparison
algorithms selected in the experiments include DeViSE [43],
ESZSL [44], SJE [22], LatEm [23], and Ba et.al [45]. The
experimental performance of other comparison algorithms
is the value provided by the corresponding article. Figure 6
shows the recognition rate fluctuations of these algorithms
using word vectors as semantic features on AwA and CUB.

FIGURE 6. Comparison of accuracy with five mainstream methods on
AwA.

FIGURE 7. The robustness comparison of three algorithms.

It can be seen from Figure 6 that the word vector enhance-
ment and distance metric learning method proposed in this
paper can achieve good performance when using word vec-
tors. Referring to Table 4, for the AwA dataset, the perfor-
mance of this model is 4.9% and 6.6% higher than LatEm and
ESZSL. For the CUB dataset, the performance of this model
is 3.2% higher than Ba et.al. These results demonstrate the
effectiveness of the proposed method of LC-ADL combined
with DML.

D. ROBUSTNESS ANALYSIS OF ALGORITHMS
A typical advantage of the dictionary learning method is
that it has good robustness for noisy data sets. Therefore,
it is necessary to compare the robustness of the LC-ADL
algorithm with other algorithms. In order to verify the above
points, this paper conducts a comparative experiment. Ran-
dom Gaussian noise is added to the word vector extracted
from the Wikipedia corpus through the skip-gram method,
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FIGURE 8. Robustness comparison under Gaussian noise and Speckle noise.

TABLE 4. Recognition accuracy of correlation methods on AwA and CUB.

and the variance of the Gaussian noise is gradually increased
to verify the robustness of the LC-ADL algorithm.

The comparison algorithm selected in this paper includes
the basic ADL method and SDL algorithm. The results of
the robustness comparison of the three algorithms are pre-
sented in Figure 7. It can be observed in the curve that the
LC-ADL algorithm has better performance in robustness than
the method based on the synthetic dictionary and the basic
ADL method.

In order to examine the robustness of the distance metric
learning method, we designed a comparative experiment on
the AwA dataset.We add Gaussian noise and Speckle noise to
the training images of the AwA dataset. For Gaussian noise,
the mean value is 0, and the standard deviation is altered from
0 to 0.1σ , where σ is the standard deviation of the image data.
For Speckle noise, we increase its content from 0 to 10%, and
observe the changes in algorithm performance.

The comparison algorithm selected in this paper includes
KNN method and Euclidean distance. Figure 8 shows the
experimental results in these two cases. As can be observed
in the curve in the figure, the performance of LMNN is con-
sistently better than KNN and Euclidean distance. It shows
that the LMNN method is more robust to noise.

E. EFFECT OF TRAINING SAMPLE NUMBER ON
ALGORITHM PERFORMANCE
In practical application, because of the amount of computa-
tion and efficiency involved, the training sample is usually
used to reduce the training samples. Considering that the
number of randomly drawn samples will be related to the

FIGURE 9. Training samples impact on model performance.

experimental results, this paper explores the impact of the
number of samples in the training set on the performance
of the model. Figure 9 shows the change in ADL-DML
performance for different sample numbers in the AwA and
CUB datasets.

Figure 9 depicts that as the number of training samples
increases, the accuracy rate slowly rises; when the num-
ber of samples reaches a certain number, the accuracy rate
stabilizes. After comprehensively considering classification
performance and calculation amount, the number of samples
in AwA and CUB is set to 1200 and 750.

V. DISCUSSION AND CONCLUSION
Based on word vector enhancement and distance metric
learning, this paper proposes a zero-shot image classification
method, enhancing the accuracy of classification and over-
coming the limitation of attribute learning, not necessarily
labeling a large amount of data. Word vectors of the corre-
sponding categories are obtained by performing unsupervised
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learning on a large amount of text in the Wikipedia corpus.
Semantic feature vectors that aremore consistent with the dis-
tance structure of the image feature vectors can be achieved
to improve the robustness of the model by using the improved
LC-ADL model to process the word vectors.

We introduce distancemetric learning when calculating the
correspondence between image feature vectors and semantic
feature vectors. LMNN algorithm can effectively alleviate the
hubness phenomenon by keeping the elements of the same
label within the maximum boundary closer and the elements
of different labels far away from each other. The classification
results are given by the nearest neighbor classifier according
to the distance. When the results are evaluated, in addition
to the control factors, the rest of the experiments in different
groups use the same network structure and classifier. Based
on this, it is proved that the model in this paper has better clas-
sification accuracy than the traditional classification model.

When it comes to the Imagenet dataset, one of the limita-
tions of this paper is the increasingly difficult classification
due to the growing number of sample categories, including
diverse objects, images of animals, plants, objects, scenes,
etc., not confined to animals and birds. This part of the task
will be placed in our subsequent research work.
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